Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
3 |
+
inference: false
|
4 |
+
model_type: llama
|
5 |
+
prompt_template: |
|
6 |
+
<|im_start|>user\n
|
7 |
+
{prompt}<|im_end|>\n
|
8 |
+
<|im_start|>assistant\n
|
9 |
+
quantized_by: mwitiderrick
|
10 |
+
tags:
|
11 |
+
- deepsparse
|
12 |
+
---
|
13 |
+
## TinyLlama 1.1B Chat 1.0 - DeepSparse
|
14 |
+
This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
|
15 |
+
|
16 |
+
This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
|
17 |
+
|
18 |
+
## Inference
|
19 |
+
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
|
20 |
+
```bash
|
21 |
+
pip install deepsparse-nightly[llm]
|
22 |
+
```
|
23 |
+
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
|
24 |
+
```python
|
25 |
+
from deepsparse import TextGeneration
|
26 |
+
|
27 |
+
prompt = "How to make banana bread?"
|
28 |
+
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
29 |
+
|
30 |
+
model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds")
|
31 |
+
print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
|
32 |
+
|
33 |
+
"""
|
34 |
+
1. Preheat the oven to 375°F (178°C).
|
35 |
+
2. In a mixing bowl, add 1 cup of all-purpose flour, 1 cup of melted coconut oil, 1/2 cup of sugar, 1/2 cup of banana, 1/2 cup of melted coconut oil, 1/2 cup of salt, 1/2 cup of vanilla extract, and 1/2 cup of baking powder.
|
36 |
+
3. Mix the ingredients together until they are well combined.
|
37 |
+
4. Add 1/2 cup of melted coconut oil to the mixture.
|
38 |
+
5. Add 1/2 cup of melted coconut oil to the mixture.
|
39 |
+
6. Mix the ingredients together until they are well combined.
|
40 |
+
7. Add 1/2 cup of melted
|
41 |
+
|
42 |
+
"""
|
43 |
+
```
|
44 |
+
## Prompt template
|
45 |
+
|
46 |
+
```
|
47 |
+
<|im_start|>user\n
|
48 |
+
{prompt}<|im_end|>\n
|
49 |
+
<|im_start|>assistant\n
|
50 |
+
|
51 |
+
```
|
52 |
+
## Sparsification
|
53 |
+
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
|
54 |
+
|
55 |
+
```bash
|
56 |
+
git clone https://github.com/neuralmagic/sparseml
|
57 |
+
pip install -e "sparseml[transformers]"
|
58 |
+
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16 --recipe recipe.yaml --save True
|
59 |
+
```
|
60 |
+
## Sparse Finetuning
|
61 |
+
Continue training the sparse model to improve accuracy:
|
62 |
+
|
63 |
+
```python
|
64 |
+
from sparseml.transformers.finetune.text_generation import run_train
|
65 |
+
|
66 |
+
|
67 |
+
model = "./obcq_deployment"
|
68 |
+
teacher_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
69 |
+
dataset_name = "open_platypus"
|
70 |
+
concatenate_data = False
|
71 |
+
output_dir = "./output_finetune"
|
72 |
+
recipe = "recipe.yaml"
|
73 |
+
num_train_epochs=2
|
74 |
+
overwrite_output_dir = True
|
75 |
+
splits = {
|
76 |
+
"train": "train[:50%]",
|
77 |
+
}
|
78 |
+
|
79 |
+
run_train(
|
80 |
+
model_name_or_path=model,
|
81 |
+
distill_teacher=teacher_model,
|
82 |
+
dataset_name=dataset_name,
|
83 |
+
output_dir=output_dir,
|
84 |
+
recipe=recipe,
|
85 |
+
num_train_epochs=num_train_epochs,
|
86 |
+
overwrite_output_dir=overwrite_output_dir,
|
87 |
+
concatenate_data = concatenate_data,
|
88 |
+
splits = splits
|
89 |
+
)
|
90 |
+
```
|
91 |
+
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
|
92 |
+
## Slack
|
93 |
+
|
94 |
+
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|