mwitiderrick commited on
Commit
5d04de5
·
verified ·
1 Parent(s): 9650272

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
+ inference: false
4
+ model_type: llama
5
+ prompt_template: |
6
+ <|im_start|>user\n
7
+ {prompt}<|im_end|>\n
8
+ <|im_start|>assistant\n
9
+ quantized_by: mwitiderrick
10
+ tags:
11
+ - deepsparse
12
+ ---
13
+ ## TinyLlama 1.1B Chat 1.0 - DeepSparse
14
+ This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
+
16
+ This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
+
18
+ ## Inference
19
+ Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
20
+ ```bash
21
+ pip install deepsparse-nightly[llm]
22
+ ```
23
+ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
24
+ ```python
25
+ from deepsparse import TextGeneration
26
+
27
+ prompt = "How to make banana bread?"
28
+ formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
29
+
30
+ model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds")
31
+ print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
32
+
33
+ """
34
+ 1. Preheat the oven to 375°F (178°C).
35
+ 2. In a mixing bowl, add 1 cup of all-purpose flour, 1 cup of melted coconut oil, 1/2 cup of sugar, 1/2 cup of banana, 1/2 cup of melted coconut oil, 1/2 cup of salt, 1/2 cup of vanilla extract, and 1/2 cup of baking powder.
36
+ 3. Mix the ingredients together until they are well combined.
37
+ 4. Add 1/2 cup of melted coconut oil to the mixture.
38
+ 5. Add 1/2 cup of melted coconut oil to the mixture.
39
+ 6. Mix the ingredients together until they are well combined.
40
+ 7. Add 1/2 cup of melted
41
+
42
+ """
43
+ ```
44
+ ## Prompt template
45
+
46
+ ```
47
+ <|im_start|>user\n
48
+ {prompt}<|im_end|>\n
49
+ <|im_start|>assistant\n
50
+
51
+ ```
52
+ ## Sparsification
53
+ For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
54
+
55
+ ```bash
56
+ git clone https://github.com/neuralmagic/sparseml
57
+ pip install -e "sparseml[transformers]"
58
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16 --recipe recipe.yaml --save True
59
+ ```
60
+ ## Sparse Finetuning
61
+ Continue training the sparse model to improve accuracy:
62
+
63
+ ```python
64
+ from sparseml.transformers.finetune.text_generation import run_train
65
+
66
+
67
+ model = "./obcq_deployment"
68
+ teacher_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
69
+ dataset_name = "open_platypus"
70
+ concatenate_data = False
71
+ output_dir = "./output_finetune"
72
+ recipe = "recipe.yaml"
73
+ num_train_epochs=2
74
+ overwrite_output_dir = True
75
+ splits = {
76
+ "train": "train[:50%]",
77
+ }
78
+
79
+ run_train(
80
+ model_name_or_path=model,
81
+ distill_teacher=teacher_model,
82
+ dataset_name=dataset_name,
83
+ output_dir=output_dir,
84
+ recipe=recipe,
85
+ num_train_epochs=num_train_epochs,
86
+ overwrite_output_dir=overwrite_output_dir,
87
+ concatenate_data = concatenate_data,
88
+ splits = splits
89
+ )
90
+ ```
91
+ Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
92
+ ## Slack
93
+
94
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)