--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 inference: false model_type: llama prompt_template: | <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n quantized_by: mwitiderrick tags: - deepsparse --- ## TinyLlama 1.1B Chat 1.0 - DeepSparse This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ """ ``` ## Prompt template ``` <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16 --recipe recipe.yaml --save True ``` ## Sparse Finetuning Continue training the sparse model to improve accuracy: ```python from sparseml.transformers.finetune.text_generation import run_train model = "./obcq_deployment" teacher_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" dataset_name = "open_platypus" concatenate_data = False output_dir = "./output_finetune" recipe = "recipe.yaml" num_train_epochs=2 overwrite_output_dir = True splits = { "train": "train[:50%]", } run_train( model_name_or_path=model, distill_teacher=teacher_model, dataset_name=dataset_name, output_dir=output_dir, recipe=recipe, num_train_epochs=num_train_epochs, overwrite_output_dir=overwrite_output_dir, concatenate_data = concatenate_data, splits = splits ) ``` ## Export Model Export the model while injecting the KV Cache ```bash sparseml.export --task text-generation output_finetune/ ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)