Update README.md
Browse files
README.md
CHANGED
|
@@ -2596,4 +2596,71 @@ model-index:
|
|
| 2596 |
value: 86.38437691024106
|
| 2597 |
- type: max_f1
|
| 2598 |
value: 78.79039565086076
|
| 2599 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2596 |
value: 86.38437691024106
|
| 2597 |
- type: max_f1
|
| 2598 |
value: 78.79039565086076
|
| 2599 |
+
---
|
| 2600 |
+
|
| 2601 |
+
# nomic-embed-text-v1-ablated: A Reproducible Long Context (8192) Text Embedder
|
| 2602 |
+
|
| 2603 |
+
`nomic-embed-text-v1-ablated` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 performance on short and long tasks.
|
| 2604 |
+
.
|
| 2605 |
+
|
| 2606 |
+
|
| 2607 |
+
| Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data |
|
| 2608 |
+
| :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- |
|
| 2609 |
+
| nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ |
|
| 2610 |
+
| jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ |
|
| 2611 |
+
| text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ |
|
| 2612 |
+
| text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ |
|
| 2613 |
+
|
| 2614 |
+
|
| 2615 |
+
If you would like to finetune a model on more data, you can use this model as an initialization
|
| 2616 |
+
|
| 2617 |
+
|
| 2618 |
+
## Training Details
|
| 2619 |
+
|
| 2620 |
+
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
|
| 2621 |
+
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
| 2622 |
+
|
| 2623 |
+
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
| 2624 |
+
|
| 2625 |
+
For more details, see Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf).
|
| 2626 |
+
|
| 2627 |
+
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
| 2628 |
+
|
| 2629 |
+
## Usage
|
| 2630 |
+
|
| 2631 |
+
|
| 2632 |
+
```python
|
| 2633 |
+
import torch
|
| 2634 |
+
import torch.nn.functional as F
|
| 2635 |
+
from transformers import AutoTokenizer, AutoModel
|
| 2636 |
+
|
| 2637 |
+
def mean_pooling(model_output, attention_mask):
|
| 2638 |
+
token_embeddings = model_output[0]
|
| 2639 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 2640 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 2641 |
+
|
| 2642 |
+
sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
|
| 2643 |
+
|
| 2644 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 2645 |
+
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
|
| 2646 |
+
|
| 2647 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 2648 |
+
|
| 2649 |
+
with torch.no_grad():
|
| 2650 |
+
model_output = model(**encoded_input)
|
| 2651 |
+
|
| 2652 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 2653 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 2654 |
+
print(embeddings)
|
| 2655 |
+
```
|
| 2656 |
+
|
| 2657 |
+
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
|
| 2658 |
+
|
| 2659 |
+
```diff
|
| 2660 |
+
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 2661 |
+
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
|
| 2662 |
+
|
| 2663 |
+
|
| 2664 |
+
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
|
| 2665 |
+
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True, rotary_scaling_factor=2)
|
| 2666 |
+
```
|