zpn commited on
Commit
e650938
·
verified ·
1 Parent(s): 8e10993

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,199 +1,142 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
 
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
196
 
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ base_model: nomic-ai/nomic-embed-text-v2-moe
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
  ---
10
 
11
+ # SentenceTransformer based on nomic-ai/nomic-embed-text-v2-moe
 
 
 
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
+ - **Model Type:** Sentence Transformer
19
+ - **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) <!-- at revision 8e109938f32da90ed146077b419bedd5cc6590b7 -->
20
+ - **Maximum Sequence Length:** 512 tokens
21
+ - **Output Dimensionality:** 768 dimensions
22
+ - **Similarity Function:** Cosine Similarity
23
+ <!-- - **Training Dataset:** Unknown -->
24
+ <!-- - **Language:** Unknown -->
25
+ <!-- - **License:** Unknown -->
26
 
27
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
28
 
29
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
30
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
31
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
32
 
33
+ ### Full Model Architecture
34
 
35
+ ```
36
+ SentenceTransformer(
37
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NomicBertModel
38
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
39
+ (2): Normalize()
40
+ )
41
+ ```
42
 
43
+ ## Usage
44
 
45
+ ### Direct Usage (Sentence Transformers)
46
 
47
+ First install the Sentence Transformers library:
48
 
49
+ ```bash
50
+ pip install -U sentence-transformers
51
+ ```
52
 
53
+ Then you can load this model and run inference.
54
+ ```python
55
+ from sentence_transformers import SentenceTransformer
56
 
57
+ # Download from the 🤗 Hub
58
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v2-moe")
59
+ # Run inference
60
+ sentences = [
61
+ 'The weather is lovely today.',
62
+ "It's so sunny outside!",
63
+ 'He drove to the stadium.',
64
+ ]
65
+ embeddings = model.encode(sentences)
66
+ print(embeddings.shape)
67
+ # [3, 768]
68
 
69
+ # Get the similarity scores for the embeddings
70
+ similarities = model.similarity(embeddings, embeddings)
71
+ print(similarities.shape)
72
+ # [3, 3]
73
+ ```
74
 
75
+ <!--
76
+ ### Direct Usage (Transformers)
77
 
78
+ <details><summary>Click to see the direct usage in Transformers</summary>
79
 
80
+ </details>
81
+ -->
82
 
83
+ <!--
84
+ ### Downstream Usage (Sentence Transformers)
85
 
86
+ You can finetune this model on your own dataset.
87
 
88
+ <details><summary>Click to expand</summary>
89
 
90
+ </details>
91
+ -->
92
 
93
+ <!--
94
+ ### Out-of-Scope Use
95
 
96
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
97
+ -->
98
 
99
+ <!--
100
+ ## Bias, Risks and Limitations
101
 
102
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
103
+ -->
104
 
105
+ <!--
106
+ ### Recommendations
107
 
108
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
109
+ -->
110
 
111
  ## Training Details
112
 
113
+ ### Framework Versions
114
+ - Python: 3.10.12
115
+ - Sentence Transformers: 3.3.0
116
+ - Transformers: 4.44.2
117
+ - PyTorch: 2.4.1+cu121
118
+ - Accelerate: 1.0.0
119
+ - Datasets: 2.19.0
120
+ - Tokenizers: 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
+ ## Citation
123
 
124
+ ### BibTeX
125
 
126
+ <!--
127
+ ## Glossary
128
 
129
+ *Clearly define terms in order to be accessible across audiences.*
130
+ -->
131
 
132
+ <!--
133
+ ## Model Card Authors
134
 
135
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
136
+ -->
137
 
138
+ <!--
139
  ## Model Card Contact
140
 
141
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
142
+ -->
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "nomic-ai/nomic-xlm-2048",
3
  "activation_function": "gelu",
4
  "add_pooling_layer": false,
5
  "architectures": [
 
1
  {
2
+ "_name_or_path": "nomic-ai/nomic-embed-text-v2-moe",
3
  "activation_function": "gelu",
4
  "add_pooling_layer": false,
5
  "architectures": [
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:097012b27af76d80af74fed4bc2ccc9091245286f776adf03ad1758a24ade9a0
3
  size 1901187232
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29e9da2939e5af80a5b3c5e1ad8db2999e195dce11b166d5948175f034dc4fd
3
  size 1901187232
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json CHANGED
@@ -1,7 +1,25 @@
1
  {
2
- "bos_token": "<s>",
3
- "cls_token": "<s>",
4
- "eos_token": "</s>",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "mask_token": {
6
  "content": "<mask>",
7
  "lstrip": true,
@@ -9,7 +27,25 @@
9
  "rstrip": false,
10
  "single_word": false
11
  },
12
- "pad_token": "<pad>",
13
- "sep_token": "</s>",
14
- "unk_token": "<unk>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  }
 
1
  {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
  "mask_token": {
24
  "content": "<mask>",
25
  "lstrip": true,
 
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
  }