{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': , 'q_net_target': }", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_build": "", "make_q_net": "", "forward": "", "_predict": "", "_get_constructor_parameters": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4dcefbb840>" }, "verbose": 1, "policy_kwargs": { "net_arch": [ 256, 256 ] }, "num_timesteps": 30000, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1699149376068469832, "learning_rate": { ":type:": "", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "tensorboard_log": "runs/CartPole-v1__dqn__2652168140__1699149373/CartPole-v1", "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAACh7/z7bw5M8GP0HvMGnDz2UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu" }, "_episode_num": 388, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.40002000000000004, "_stats_window_size": 100, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgAAAAAAACMAWyUS2CMAXSUR0BPPxFqi48VdX2UKGgGR0BTwAAAAAAAaAdLT2gIR0BPRTDwYtQLdX2UKGgGR0BeQAAAAAAAaAdLeWgIR0BP41y3kPtldX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BP8mnXNC7cdX2UKGgGR0BbwAAAAAAAaAdLb2gIR0BQSPu9eyAydX2UKGgGR0BbgAAAAAAAaAdLbmgIR0BQTV3Qla8pdX2UKGgGR0BaAAAAAAAAaAdLaGgIR0BQlVWbPQfIdX2UKGgGR0BcwAAAAAAAaAdLc2gIR0BQmb+98JD3dX2UKGgGR0BYwAAAAAAAaAdLY2gIR0BQ3RqbjLjhdX2UKGgGR0BtIAAAAAAAaAdL6WgIR0BQ5Ndu5z5odX2UKGgGR0BiAAAAAAAAaAdLkGgIR0BRNukpI+W4dX2UKGgGR0BiQAAAAAAAaAdLkmgIR0BRgBgAp8WsdX2UKGgGR0BsYAAAAAAAaAdL42gIR0BRy5bY9Pk8dX2UKGgGR0Bk4AAAAAAAaAdLp2gIR0BR1zwYtQKsdX2UKGgGR0BkgAAAAAAAaAdLpGgIR0BSNNRFZxJedX2UKGgGR0BbQAAAAAAAaAdLbWgIR0BSOSe/Yao/dX2UKGgGR0BcQAAAAAAAaAdLcWgIR0BSn28dxQzldX2UKGgGR0BbQAAAAAAAaAdLbWgIR0BSpPuPV/c4dX2UKGgGR0BcwAAAAAAAaAdLc2gIR0BTKWJ79hqkdX2UKGgGR0BTgAAAAAAAaAdLTmgIR0BTMGS2Yv38dX2UKGgGR0BUAAAAAAAAaAdLUGgIR0BTN8FINEw4dX2UKGgGR0BVgAAAAAAAaAdLVmgIR0BTO/NRm9QGdX2UKGgGR0BUAAAAAAAAaAdLUGgIR0BTwYHTqjagdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTwg8OkLx7dX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTwqTKT0QLdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTw3O8kD6ndX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BTw8sg+yJLdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BTxEJSiudPdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTxMvugHu7dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BTxYL9deIEdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BTxhPCVKPGdX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BUJxu0kWykdX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BULSteUpuudX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BUjqB7NSqEdX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BUk4z3yqdZdX2UKGgGR0BhQAAAAAAAaAdLimgIR0BU6mfkFOfvdX2UKGgGR0B9IAAAAAAAaAdN0gFoCEdAVWZbUwztTnV9lChoBkdAZmAAAAAAAGgHS7NoCEdAVcmgpSaVlnV9lChoBkdAZqAAAAAAAGgHS7VoCEdAViEnfEXLvHV9lChoBkdAcYAAAAAAAGgHTRgBaAhHQFaM1DjR2KV1fZQoaAZHQDMAAAAAAABoB0sTaAhHQFaNl7dBSk11fZQoaAZHQFkAAAAAAABoB0tkaAhHQFaTNjbzshR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BXVS0WuX/pdX2UKGgGR0BoIAAAAAAAaAdLwWgIR0BYJiwr1/UfdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BYnaSTyJ9BdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BYnjbnHNordX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BYnrx3FDOUdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BYnzV6NVBEdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BYn6LCN0eVdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BYoPHtF8XvdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BYoX/95yEMdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BYorW/ag27dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BYoyXt0FKTdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BYo4/mknCwdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BYpC/O+qR2dX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BYpM/2TPjXdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BYpTW07bL2dX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BYpc/yGzrvdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0BZA7fUF0PpdX2UKGgGR0BjAAAAAAAAaAdLmGgIR0BZdTmSyMUAdX2UKGgGR0BmwAAAAAAAaAdLtmgIR0BZf194NZvDdX2UKGgGR0BlQAAAAAAAaAdLqmgIR0BZ73Xyy2QXdX2UKGgGR0BlQAAAAAAAaAdLqmgIR0BaWWKIi1RcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWx0Kx9oexXV9lChoBkdAZwAAAAAAAGgHS7hoCEdAWygDoyKvV3V9lChoBkdAfCAAAAAAAGgHTcIBaAhHQFvxAdn003x1fZQoaAZHQGPgAAAAAABoB0ufaAhHQFxBNVzZHut1fZQoaAZHQHbQAAAAAABoB01tAWgIR0BcrQdXDFZQdX2UKGgGR0BroAAAAAAAaAdL3WgIR0BdGo2OyVv/dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BdGw2VE/jbdX2UKGgGR0BwgAAAAAAAaAdNCAFoCEdAXYcaBI4EOnV9lChoBkdAZKAAAAAAAGgHS6VoCEdAXdgi3XqZ+nV9lChoBkdAXoAAAAAAAGgHS3poCEdAXd6HzpX6qXV9lChoBkdAYwAAAAAAAGgHS5hoCEdAXkPIxQBPsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQF8XYjB2wFF1fZQoaAZHQDIAAAAAAABoB0sSaAhHQF8YNm16Vt51fZQoaAZHQFpAAAAAAABoB0tpaAhHQF8eTAnDziF1fZQoaAZHQEMAAAAAAABoB0smaAhHQF8f92X9itt1fZQoaAZHQFhAAAAAAABoB0thaAhHQF9mTbnHNot1fZQoaAZHQFmAAAAAAABoB0tmaAhHQF9qsasIVud1fZQoaAZHQFqAAAAAAABoB0tqaAhHQF++smv4dp91fZQoaAZHQH9AAAAAAABoB030AWgIR0BgUVoUSIxhdX2UKGgGR0BgQAAAAAAAaAdLgmgIR0BgVSGpMpPRdX2UKGgGR0BgAAAAAAAAaAdLgGgIR0Bgh4OUdJardX2UKGgGR0BpAAAAAAAAaAdLyGgIR0BgjYFPi1iOdX2UKGgGR0BmAAAAAAAAaAdLsGgIR0BgvkcCHRCydX2UKGgGR0BnQAAAAAAAaAdLumgIR0Bg7AsK9f1IdX2UKGgGR0ByMAAAAAAAaAdNIwFoCEdAYQ8CCBf8dnV9lChoBkdAW8AAAAAAAGgHS29oCEdAYREhIOH313V9lChoBkdAdoAAAAAAAGgHTWgBaAhHQGFcp3os7Mh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BhoeIGhVU/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYgCNR3u/lHV9lChoBkdAc/AAAAAAAGgHTT8BaAhHQGIov+OwPiF1fZQoaAZHQFsAAAAAAABoB0tsaAhHQGIqSNGViWp1fZQoaAZHQGVgAAAAAABoB0uraAhHQGJIC48U21l1fZQoaAZHQG0AAAAAAABoB0voaAhHQGJvnM+u/1x1fZQoaAZHQFzAAAAAAABoB0tzaAhHQGJx0GFBY3h1fZQoaAZHQGVAAAAAAABoB0uqaAhHQGKRxKpT/AF1fZQoaAZHQHcQAAAAAABoB01xAWgIR0BitGMXJo0zdX2UKGgGR0B7gAAAAAAAaAdNuAFoCEdAYwrlpXZGrnVlLg==" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 14592, "observation_space": { ":type:": "", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [ 4 ], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)" }, "n_envs": 1, "buffer_size": 1, "batch_size": 64, "learning_starts": 1000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 128, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "_maybe_cast_dtype": ")>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4dcf3ca7c0>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYgAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RNAAFoAIwSVHJhaW5GcmVxdWVuY3lVbml0lJOUjARzdGVwlIWUUpSGlIGULg==" }, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.04, "exploration_fraction": 0.16, "target_update_interval": 10, "_n_calls": 29999, "max_grad_norm": 10, "exploration_rate": 0.04, "lr_schedule": { ":type:": "", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": { ":type:": "", ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+keuFHrhR7hZRSlGg3Rz/EeuFHrhR7hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" } }