Update README.md (#1)
Browse files- Update README.md (3602167b6cdaf119e0768eb5ba539bf66eb0cac6)
Co-authored-by: Ivan Medennikov <[email protected]>
README.md
CHANGED
@@ -12,7 +12,7 @@ datasets:
|
|
12 |
- dihard_challenge-3-dev
|
13 |
- NIST_SRE_2000-Disc8_split1
|
14 |
- Alimeeting-train
|
15 |
-
-
|
16 |
thumbnail: null
|
17 |
tags:
|
18 |
- speaker-diarization
|
@@ -37,11 +37,11 @@ model-index:
|
|
37 |
name: Speaker Diarization
|
38 |
type: speaker-diarization-with-post-processing
|
39 |
dataset:
|
40 |
-
name:
|
41 |
type: dihard3-eval-1to4spks
|
42 |
config: with_overlap_collar_0.0s
|
43 |
input_buffer_lenght: 1.04s
|
44 |
-
split: eval
|
45 |
metrics:
|
46 |
- name: Test DER
|
47 |
type: der
|
@@ -50,7 +50,33 @@ model-index:
|
|
50 |
name: Speaker Diarization
|
51 |
type: speaker-diarization-with-post-processing
|
52 |
dataset:
|
53 |
-
name:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
type: CALLHOME-part2-2spk
|
55 |
config: with_overlap_collar_0.25s
|
56 |
input_buffer_lenght: 1.04s
|
@@ -63,7 +89,7 @@ model-index:
|
|
63 |
name: Speaker Diarization
|
64 |
type: speaker-diarization-with-post-processing
|
65 |
dataset:
|
66 |
-
name: CALLHOME (NIST-SRE-2000 Disc8)
|
67 |
type: CALLHOME-part2-3spk
|
68 |
config: with_overlap_collar_0.25s
|
69 |
input_buffer_lenght: 1.04s
|
@@ -76,7 +102,7 @@ model-index:
|
|
76 |
name: Speaker Diarization
|
77 |
type: speaker-diarization-with-post-processing
|
78 |
dataset:
|
79 |
-
name: CALLHOME (NIST-SRE-2000 Disc8)
|
80 |
type: CALLHOME-part2-4spk
|
81 |
config: with_overlap_collar_0.25s
|
82 |
input_buffer_lenght: 1.04s
|
@@ -85,6 +111,45 @@ model-index:
|
|
85 |
- name: Test DER
|
86 |
type: der
|
87 |
value: 12.40
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
- task:
|
89 |
name: Speaker Diarization
|
90 |
type: speaker-diarization-with-post-processing
|
@@ -122,7 +187,7 @@ This model is a streaming version of Sortformer diarizer. [Sortformer](https://a
|
|
122 |
<img src="figures/sortformer_intro.png" width="750" />
|
123 |
</div>
|
124 |
|
125 |
-
Streaming Sortformer approach employs an Arrival-Order Speaker Cache (AOSC) to store frame-level acoustic embeddings of previously observed speakers.
|
126 |
<div align="center">
|
127 |
<img src="figures/streaming_sortformer_ani.gif" width="1400" />
|
128 |
</div>
|
@@ -138,9 +203,9 @@ Streaming sortformer employs pre-encode layer in the Fast-Conformer to generate
|
|
138 |
</div>
|
139 |
|
140 |
|
141 |
-
Aside from speaker-cache management part, streaming Sortformer follows the architecture of the offline version of Sortformer. Sortformer consists of an L-size (
|
142 |
-
Speech Tasks (NEST)](https://arxiv.org/abs/2408.13106)[
|
143 |
-
and two feedforward layers with 4 sigmoid outputs for each frame input at the top layer. More information can be found in the [Sortformer paper](https://arxiv.org/abs/
|
144 |
|
145 |
<div align="center">
|
146 |
<img src="figures/sortformer-v1-model.png" width="450" />
|
@@ -151,14 +216,14 @@ and two feedforward layers with 4 sigmoid outputs for each frame input at the to
|
|
151 |
|
152 |
## NVIDIA NeMo
|
153 |
|
154 |
-
To train, fine-tune or perform diarization with Sortformer, you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo)[
|
155 |
```
|
156 |
pip install git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[asr]
|
157 |
```
|
158 |
|
159 |
## How to Use this Model
|
160 |
|
161 |
-
The model is available for use in the NeMo Framework[
|
162 |
|
163 |
### Loading the Model
|
164 |
|
@@ -166,7 +231,10 @@ The model is available for use in the NeMo Framework[5], and can be used as a pr
|
|
166 |
from nemo.collections.asr.models import SortformerEncLabelModel
|
167 |
|
168 |
# load model
|
169 |
-
diar_model = SortformerEncLabelModel.restore_from(restore_path="diar_streaming_sortformer_4spk-v2", map_location=torch.device('cuda'), strict=False)
|
|
|
|
|
|
|
170 |
```
|
171 |
|
172 |
### Input Format
|
@@ -230,31 +298,30 @@ Sortformer diarizer models can be performed with post-processing algorithms usin
|
|
230 |
|
231 |
### Technical Limitations
|
232 |
|
233 |
-
- The model operates in a
|
234 |
- It can detect a maximum of 4 speakers; performance degrades on recordings with 5 and more speakers.
|
235 |
-
-
|
236 |
- The model was trained on publicly available speech datasets, primarily in English. As a result:
|
237 |
* Performance may degrade on non-English speech.
|
238 |
* Performance may also degrade on out-of-domain data, such as recordings in noisy conditions.
|
239 |
|
240 |
-
|
241 |
## Datasets
|
242 |
|
243 |
-
Sortformer was trained on a combination of
|
244 |
All the datasets listed above are based on the same labeling method via [RTTM](https://web.archive.org/web/20100606092041if_/http://www.itl.nist.gov/iad/mig/tests/rt/2009/docs/rt09-meeting-eval-plan-v2.pdf) format. A subset of RTTM files used for model training are processed for the speaker diarization model training purposes.
|
245 |
Data collection methods vary across individual datasets. For example, the above datasets include phone calls, interviews, web videos, and audiobook recordings. Please refer to the [Linguistic Data Consortium (LDC) website](https://www.ldc.upenn.edu/) or dataset webpage for detailed data collection methods.
|
246 |
|
247 |
|
248 |
### Training Datasets (Real conversations)
|
249 |
- Fisher English (LDC)
|
250 |
-
- 2004-2010 NIST Speaker Recognition Evaluation (LDC)
|
251 |
-
- Librispeech
|
252 |
- AMI Meeting Corpus
|
253 |
- VoxConverse-v0.3
|
254 |
- ICSI
|
255 |
- AISHELL-4
|
256 |
- Third DIHARD Challenge Development (LDC)
|
257 |
- 2000 NIST Speaker Recognition Evaluation, split1 (LDC)
|
|
|
|
|
258 |
|
259 |
### Training Datasets (Used to simulate audio mixtures)
|
260 |
- 2004-2010 NIST Speaker Recognition Evaluation (LDC)
|
@@ -263,40 +330,49 @@ Data collection methods vary across individual datasets. For example, the above
|
|
263 |
## Performance
|
264 |
|
265 |
|
266 |
-
### Evaluation
|
267 |
-
|
268 |
-
| **Dataset** | **DIHARD3-Eval** | **CALLHOME-part2** | **CALLHOME-part2** | **CALLHOME-part2** | **CH109** |
|
269 |
-
|:------------------------------|:------------------:|:-------------------:|:-------------------:|:-------------------:|:------------------:|
|
270 |
-
| **Number of Speakers** | ≤ 4 speakers | 2 speakers | 3 speakers | 4 speakers | 2 speakers |
|
271 |
-
| **Collar (sec)** | 0.0s | 0.25s | 0.25s | 0.25s | 0.25s |
|
272 |
-
| **Mean Audio Duration (sec)** | 453.0s | 73.0s | 135.7s | 329.8s | 552.9s |
|
273 |
-
|
274 |
-
### Diarization Error Rate (DER)
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
|
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
| DER **Input Buffer Length: 1.04s + DH3-dev Opt. PP** | **_13.32_** | - | - | - | - |
|
287 |
-
| DER **Input Buffer Length: 1.04s + CallHome-part1 Opt. PP** | - | **_6.43_** | **_10.26_** | **_12.40_** | **_5.09_** |
|
288 |
|
289 |
-
|
|
|
|
|
|
|
|
|
290 |
|
291 |
-
###
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
294 |
|
295 |
-
| **Latency
|
296 |
-
|
297 |
-
| 10.
|
298 |
-
|
|
299 |
-
|
|
|
|
|
|
|
|
300 |
|
301 |
|
302 |
## NVIDIA Riva: Deployment
|
@@ -315,16 +391,18 @@ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
|
|
315 |
## References
|
316 |
[1] [Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens](https://arxiv.org/abs/2409.06656)
|
317 |
|
318 |
-
[2] [
|
|
|
|
|
319 |
|
320 |
-
[
|
321 |
|
322 |
-
[
|
323 |
|
324 |
-
[
|
325 |
|
326 |
-
[
|
327 |
|
328 |
## Licence
|
329 |
|
330 |
-
License to use this model is covered by the [CC-BY-
|
|
|
12 |
- dihard_challenge-3-dev
|
13 |
- NIST_SRE_2000-Disc8_split1
|
14 |
- Alimeeting-train
|
15 |
+
- DiPCo
|
16 |
thumbnail: null
|
17 |
tags:
|
18 |
- speaker-diarization
|
|
|
37 |
name: Speaker Diarization
|
38 |
type: speaker-diarization-with-post-processing
|
39 |
dataset:
|
40 |
+
name: DIHARD III Eval (1-4 spk)
|
41 |
type: dihard3-eval-1to4spks
|
42 |
config: with_overlap_collar_0.0s
|
43 |
input_buffer_lenght: 1.04s
|
44 |
+
split: eval-1to4spks
|
45 |
metrics:
|
46 |
- name: Test DER
|
47 |
type: der
|
|
|
50 |
name: Speaker Diarization
|
51 |
type: speaker-diarization-with-post-processing
|
52 |
dataset:
|
53 |
+
name: DIHARD III Eval (5-9 spk)
|
54 |
+
type: dihard3-eval-5to9spks
|
55 |
+
config: with_overlap_collar_0.0s
|
56 |
+
input_buffer_lenght: 1.04s
|
57 |
+
split: eval-5to9spks
|
58 |
+
metrics:
|
59 |
+
- name: Test DER
|
60 |
+
type: der
|
61 |
+
value: 42.61
|
62 |
+
- task:
|
63 |
+
name: Speaker Diarization
|
64 |
+
type: speaker-diarization-with-post-processing
|
65 |
+
dataset:
|
66 |
+
name: DIHARD III Eval (full)
|
67 |
+
type: dihard3-eval
|
68 |
+
config: with_overlap_collar_0.0s
|
69 |
+
input_buffer_lenght: 1.04s
|
70 |
+
split: eval
|
71 |
+
metrics:
|
72 |
+
- name: Test DER
|
73 |
+
type: der
|
74 |
+
value: 18.97
|
75 |
+
- task:
|
76 |
+
name: Speaker Diarization
|
77 |
+
type: speaker-diarization-with-post-processing
|
78 |
+
dataset:
|
79 |
+
name: CALLHOME (NIST-SRE-2000 Disc8) part2 (2 spk)
|
80 |
type: CALLHOME-part2-2spk
|
81 |
config: with_overlap_collar_0.25s
|
82 |
input_buffer_lenght: 1.04s
|
|
|
89 |
name: Speaker Diarization
|
90 |
type: speaker-diarization-with-post-processing
|
91 |
dataset:
|
92 |
+
name: CALLHOME (NIST-SRE-2000 Disc8) part2 (3 spk)
|
93 |
type: CALLHOME-part2-3spk
|
94 |
config: with_overlap_collar_0.25s
|
95 |
input_buffer_lenght: 1.04s
|
|
|
102 |
name: Speaker Diarization
|
103 |
type: speaker-diarization-with-post-processing
|
104 |
dataset:
|
105 |
+
name: CALLHOME (NIST-SRE-2000 Disc8) part2 (4 spk)
|
106 |
type: CALLHOME-part2-4spk
|
107 |
config: with_overlap_collar_0.25s
|
108 |
input_buffer_lenght: 1.04s
|
|
|
111 |
- name: Test DER
|
112 |
type: der
|
113 |
value: 12.40
|
114 |
+
- task:
|
115 |
+
name: Speaker Diarization
|
116 |
+
type: speaker-diarization-with-post-processing
|
117 |
+
dataset:
|
118 |
+
name: CALLHOME (NIST-SRE-2000 Disc8) part2 (5 spk)
|
119 |
+
type: CALLHOME-part2-5spk
|
120 |
+
config: with_overlap_collar_0.25s
|
121 |
+
input_buffer_lenght: 1.04s
|
122 |
+
split: part2-5spk
|
123 |
+
metrics:
|
124 |
+
- name: Test DER
|
125 |
+
type: der
|
126 |
+
value: 24.41
|
127 |
+
- task:
|
128 |
+
name: Speaker Diarization
|
129 |
+
type: speaker-diarization-with-post-processing
|
130 |
+
dataset:
|
131 |
+
name: CALLHOME (NIST-SRE-2000 Disc8) part2 (6 spk)
|
132 |
+
type: CALLHOME-part2-6spk
|
133 |
+
config: with_overlap_collar_0.25s
|
134 |
+
input_buffer_lenght: 1.04s
|
135 |
+
split: part2-6spk
|
136 |
+
metrics:
|
137 |
+
- name: Test DER
|
138 |
+
type: der
|
139 |
+
value: 27.78
|
140 |
+
- task:
|
141 |
+
name: Speaker Diarization
|
142 |
+
type: speaker-diarization-with-post-processing
|
143 |
+
dataset:
|
144 |
+
name: CALLHOME (NIST-SRE-2000 Disc8) part2 (full)
|
145 |
+
type: CALLHOME-part2
|
146 |
+
config: with_overlap_collar_0.25s
|
147 |
+
input_buffer_lenght: 1.04s
|
148 |
+
split: part2
|
149 |
+
metrics:
|
150 |
+
- name: Test DER
|
151 |
+
type: der
|
152 |
+
value: 10.79
|
153 |
- task:
|
154 |
name: Speaker Diarization
|
155 |
type: speaker-diarization-with-post-processing
|
|
|
187 |
<img src="figures/sortformer_intro.png" width="750" />
|
188 |
</div>
|
189 |
|
190 |
+
[Streaming Sortformer](https://arxiv.org/abs/25XX.XXXXX)[2] approach employs an Arrival-Order Speaker Cache (AOSC) to store frame-level acoustic embeddings of previously observed speakers.
|
191 |
<div align="center">
|
192 |
<img src="figures/streaming_sortformer_ani.gif" width="1400" />
|
193 |
</div>
|
|
|
203 |
</div>
|
204 |
|
205 |
|
206 |
+
Aside from speaker-cache management part, streaming Sortformer follows the architecture of the offline version of Sortformer. Sortformer consists of an L-size (17 layers) [NeMo Encoder for
|
207 |
+
Speech Tasks (NEST)](https://arxiv.org/abs/2408.13106)[3] which is based on [Fast-Conformer](https://arxiv.org/abs/2305.05084)[4] encoder. Following that, an 18-layer Transformer[5] encoder with hidden size of 192,
|
208 |
+
and two feedforward layers with 4 sigmoid outputs for each frame input at the top layer. More information can be found in the [Streaming Sortformer paper](https://arxiv.org/abs/25XX.XXXXX)[2].
|
209 |
|
210 |
<div align="center">
|
211 |
<img src="figures/sortformer-v1-model.png" width="450" />
|
|
|
216 |
|
217 |
## NVIDIA NeMo
|
218 |
|
219 |
+
To train, fine-tune or perform diarization with Sortformer, you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo)[6]. We recommend you install it after you've installed Cython and latest PyTorch version.
|
220 |
```
|
221 |
pip install git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[asr]
|
222 |
```
|
223 |
|
224 |
## How to Use this Model
|
225 |
|
226 |
+
The model is available for use in the NeMo Framework[6], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
227 |
|
228 |
### Loading the Model
|
229 |
|
|
|
231 |
from nemo.collections.asr.models import SortformerEncLabelModel
|
232 |
|
233 |
# load model
|
234 |
+
diar_model = SortformerEncLabelModel.restore_from(restore_path="/path/to/diar_streaming_sortformer_4spk-v2", map_location=torch.device('cuda'), strict=False)
|
235 |
+
|
236 |
+
# switch to inference mode
|
237 |
+
diar_model.eval()
|
238 |
```
|
239 |
|
240 |
### Input Format
|
|
|
298 |
|
299 |
### Technical Limitations
|
300 |
|
301 |
+
- The model operates in a streaming mode (online mode).
|
302 |
- It can detect a maximum of 4 speakers; performance degrades on recordings with 5 and more speakers.
|
303 |
+
- While the model is designed for long-form audio and can handle recordings that are several hours long, performance may degrade on very long recordings.
|
304 |
- The model was trained on publicly available speech datasets, primarily in English. As a result:
|
305 |
* Performance may degrade on non-English speech.
|
306 |
* Performance may also degrade on out-of-domain data, such as recordings in noisy conditions.
|
307 |
|
|
|
308 |
## Datasets
|
309 |
|
310 |
+
Sortformer was trained on a combination of 2445 hours of real conversations and 5150 hours or simulated audio mixtures generated by [NeMo speech data simulator](https://arxiv.org/abs/2310.12371)[7].
|
311 |
All the datasets listed above are based on the same labeling method via [RTTM](https://web.archive.org/web/20100606092041if_/http://www.itl.nist.gov/iad/mig/tests/rt/2009/docs/rt09-meeting-eval-plan-v2.pdf) format. A subset of RTTM files used for model training are processed for the speaker diarization model training purposes.
|
312 |
Data collection methods vary across individual datasets. For example, the above datasets include phone calls, interviews, web videos, and audiobook recordings. Please refer to the [Linguistic Data Consortium (LDC) website](https://www.ldc.upenn.edu/) or dataset webpage for detailed data collection methods.
|
313 |
|
314 |
|
315 |
### Training Datasets (Real conversations)
|
316 |
- Fisher English (LDC)
|
|
|
|
|
317 |
- AMI Meeting Corpus
|
318 |
- VoxConverse-v0.3
|
319 |
- ICSI
|
320 |
- AISHELL-4
|
321 |
- Third DIHARD Challenge Development (LDC)
|
322 |
- 2000 NIST Speaker Recognition Evaluation, split1 (LDC)
|
323 |
+
- DiPCo
|
324 |
+
- AliMeeting
|
325 |
|
326 |
### Training Datasets (Used to simulate audio mixtures)
|
327 |
- 2004-2010 NIST Speaker Recognition Evaluation (LDC)
|
|
|
330 |
## Performance
|
331 |
|
332 |
|
333 |
+
### Evaluation data specifications
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
| **Dataset** | **Number of speakers** | **Number of Sessions** |
|
336 |
+
|----------------------------|------------------------|------------------------|
|
337 |
+
| **DIHARD III Eval <=4spk** | 1-4 | 219 |
|
338 |
+
| **DIHARD III Eval >=5spk** | 5-9 | 40 |
|
339 |
+
| **DIHARD III Eval full** | 1-9 | 259 |
|
340 |
+
| **CALLHOME-part2 2spk** | 2 | 148 |
|
341 |
+
| **CALLHOME-part2 3spk** | 3 | 74 |
|
342 |
+
| **CALLHOME-part2 4spk** | 4 | 20 |
|
343 |
+
| **CALLHOME-part2 5spk** | 5 | 5 |
|
344 |
+
| **CALLHOME-part2 6spk** | 6 | 3 |
|
345 |
+
| **CALLHOME-part2 full** | 2-6 | 250 |
|
346 |
+
| **CH109** | 2 | 109 |
|
347 |
|
348 |
+
### Latency setups and Real Time Factor (RTF)
|
349 |
|
350 |
+
* **Configuration Parameters**: Each setup is defined by its **Chunk Size**, **Right Context**, **FIFO Queue**, **Update Period**, and **Speaker Cache**. The value for each parameter represents the number of 80ms frames.
|
351 |
+
* **Latency**: Refers to **Input Buffer Latency**, calculated as **Chunk Size** + **Right Context**. This value excludes computational processing time.
|
352 |
+
* **Real-Time Factor (RTF)**: Characterizes processing speed, calculated as the time taken to process an audio file divided by its duration. RTF values are measured with a batch size of 1 on an NVIDIA RTX 6000 Ada Generation GPU.
|
|
|
|
|
353 |
|
354 |
+
| **Latency** | **Chunk Size** | **Right Context** | **FIFO Queue** | **Update Period** | **Speaker Cache** | **RTF** |
|
355 |
+
|-------------|----------------|-------------------|----------------|-------------------|-------------------|---------|
|
356 |
+
| 10.0s | 124 | 1 | 124 | 124 | 188 | 0.005 |
|
357 |
+
| 1.04s | 6 | 7 | 188 | 144 | 188 | 0.093 |
|
358 |
+
| 0.32s | 3 | 1 | 188 | 144 | 188 | 0.180 |
|
359 |
|
360 |
+
### Diarization Error Rate (DER)
|
361 |
|
362 |
+
* All evaluations include overlapping speech.
|
363 |
+
* Collar tolerance is 0s for DIHARD III Eval, and 0.25s for CALLHOME-part2 and CH109.
|
364 |
+
* Post-Processing (PP) is optimized on two different held-out dataset splits.
|
365 |
+
- [DIHARD III Dev Optimized Post-Processing](https://github.com/NVIDIA/NeMo/tree/main/examples/speaker_tasks/diarization/conf/post_processing/sortformer_diar_4spk-v1_dihard3-dev.yaml) for DIHARD III Eval
|
366 |
+
- [CALLHOME-part1 Optimized Post-Processing](https://github.com/NVIDIA/NeMo/tree/main/examples/speaker_tasks/diarization/conf/post_processing/sortformer_diar_4spk-v1_callhome-part1.yaml) for CALLHOME-part2 and CH109
|
367 |
|
368 |
+
| **Latency** | *PP* | **DIHARD III Eval <=4spk** | **DIHARD III Eval >=5spk** | **DIHARD III Eval full** | **CALLHOME-part2 2spk** | **CALLHOME-part2 3spk** | **CALLHOME-part2 4spk** | **CALLHOME-part2 5spk** | **CALLHOME-part2 6spk** | **CALLHOME-part2 full** | **CH109** |
|
369 |
+
|-------------|------|----------------------------|----------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------|
|
370 |
+
| 10.0s | no | 14.79 | 41.06 | 19.88 | 6.80 | 11.27 | 12.21 | 21.12 | 27.84 | 11.10 | 5.27 |
|
371 |
+
| 10.0s | yes | 13.67 | 41.45 | 19.02 | 6.06 | 10.01 | 11.22 | 20.34 | 26.97 | 10.09 | 4.82 |
|
372 |
+
| 1.04s | no | 14.57 | 42.12 | 19.89 | 7.35 | 11.57 | 13.83 | 25.81 | 29.06 | 12.00 | 5.59 |
|
373 |
+
| 1.04s | yes | 13.32 | 42.61 | 18.97 | 6.43 | 10.26 | 12.40 | 24.41 | 27.78 | 10.79 | 5.09 |
|
374 |
+
| 0.32s | no | 14.63 | 43.76 | 20.25 | 8.60 | 13.23 | 16.08 | 28.10 | 30.63 | 13.66 | 6.60 |
|
375 |
+
| 0.32s | yes | 13.43 | 43.98 | 19.32 | 6.86 | 10.84 | 13.64 | 25.78 | 28.58 | 11.50 | 5.41 |
|
376 |
|
377 |
|
378 |
## NVIDIA Riva: Deployment
|
|
|
391 |
## References
|
392 |
[1] [Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens](https://arxiv.org/abs/2409.06656)
|
393 |
|
394 |
+
[2] [Streaming Sortformer: Speaker Cache-Based Online Speaker Diarization with Arrival-Time Ordering](https://arxiv.org/abs/25XX.XXXXX)
|
395 |
+
|
396 |
+
[3] [NEST: Self-supervised Fast Conformer as All-purpose Seasoning to Speech Processing Tasks](https://arxiv.org/abs/2408.13106)
|
397 |
|
398 |
+
[4] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
|
399 |
|
400 |
+
[5] [Attention is all you need](https://arxiv.org/abs/1706.03762)
|
401 |
|
402 |
+
[6] [NVIDIA NeMo Framework](https://github.com/NVIDIA/NeMo)
|
403 |
|
404 |
+
[7] [NeMo speech data simulator](https://arxiv.org/abs/2310.12371)
|
405 |
|
406 |
## Licence
|
407 |
|
408 |
+
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode). By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-4.0 license.
|