--- license: cc-by-4.0 track_downloads: true language: - en - es - fr - de - bg - hr - cs - da - nl - et - fi - el - hu - it - lv - lt - mt - pl - pt - ro - sk - sl - sv - ru - uk pipeline_tag: automatic-speech-recognition library_name: nemo datasets: - nvidia/Granary - nemo/asr-set-3.0 thumbnail: null tags: - automatic-speech-recognition - speech - audio - Transducer - TDT - FastConformer - Conformer - pytorch - NeMo - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: parakeet-tdt-0.6b-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: AMI (Meetings test) type: edinburghcstr/ami config: ihm split: test args: language: en metrics: - name: Test WER type: wer value: 11.31 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Earnings-22 type: revdotcom/earnings22 split: test args: language: en metrics: - name: Test WER type: wer value: 11.42 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: GigaSpeech type: speechcolab/gigaspeech split: test args: language: en metrics: - name: Test WER type: wer value: 9.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 1.93 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.59 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: SPGI Speech type: kensho/spgispeech config: test split: test args: language: en metrics: - name: Test WER type: wer value: 3.97 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: tedlium-v3 type: LIUM/tedlium config: release1 split: test args: language: en metrics: - name: Test WER type: wer value: 2.75 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Vox Populi type: facebook/voxpopuli config: en split: test args: language: en metrics: - name: Test WER type: wer value: 6.14 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: bg_bg split: test args: language: bg metrics: - name: Test WER (Bg) type: wer value: 12.64 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: cs_cz split: test args: language: cs metrics: - name: Test WER (Cs) type: wer value: 11.01 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: da_dk split: test args: language: da metrics: - name: Test WER (Da) type: wer value: 18.41 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: de_de split: test args: language: de metrics: - name: Test WER (De) type: wer value: 5.04 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: el_gr split: test args: language: el metrics: - name: Test WER (El) type: wer value: 20.70 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: en_us split: test args: language: en metrics: - name: Test WER (En) type: wer value: 4.85 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: es_419 split: test args: language: es metrics: - name: Test WER (Es) type: wer value: 3.45 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: et_ee split: test args: language: et metrics: - name: Test WER (Et) type: wer value: 17.73 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: fi_fi split: test args: language: fi metrics: - name: Test WER (Fi) type: wer value: 13.21 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: fr_fr split: test args: language: fr metrics: - name: Test WER (Fr) type: wer value: 5.15 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: hr_hr split: test args: language: hr metrics: - name: Test WER (Hr) type: wer value: 12.46 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: hu_hu split: test args: language: hu metrics: - name: Test WER (Hu) type: wer value: 15.72 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: it_it split: test args: language: it metrics: - name: Test WER (It) type: wer value: 3.00 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: lt_lt split: test args: language: lt metrics: - name: Test WER (Lt) type: wer value: 20.35 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: lv_lv split: test args: language: lv metrics: - name: Test WER (Lv) type: wer value: 22.84 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: mt_mt split: test args: language: mt metrics: - name: Test WER (Mt) type: wer value: 20.46 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: nl_nl split: test args: language: nl metrics: - name: Test WER (Nl) type: wer value: 7.48 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: pl_pl split: test args: language: pl metrics: - name: Test WER (Pl) type: wer value: 7.31 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: pt_br split: test args: language: pt metrics: - name: Test WER (Pt) type: wer value: 4.76 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: ro_ro split: test args: language: ro metrics: - name: Test WER (Ro) type: wer value: 12.44 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: ru_ru split: test args: language: ru metrics: - name: Test WER (Ru) type: wer value: 5.51 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: sk_sk split: test args: language: sk metrics: - name: Test WER (Sk) type: wer value: 8.82 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: sl_si split: test args: language: sl metrics: - name: Test WER (Sl) type: wer value: 24.03 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: sv_se split: test args: language: sv metrics: - name: Test WER (Sv) type: wer value: 15.08 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: uk_ua split: test args: language: uk metrics: - name: Test WER (Uk) type: wer value: 6.79 # Multilingual LibriSpeech ASR Results - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: spanish split: test args: language: es metrics: - name: Test WER (Es) type: wer value: 4.39 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: french split: test args: language: fr metrics: - name: Test WER (Fr) type: wer value: 4.97 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: italian split: test args: language: it metrics: - name: Test WER (It) type: wer value: 10.08 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: dutch split: test args: language: nl metrics: - name: Test WER (Nl) type: wer value: 12.78 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: polish split: test args: language: pl metrics: - name: Test WER (Pl) type: wer value: 7.28 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: portuguese split: test args: language: pt metrics: - name: Test WER (Pt) type: wer value: 7.50 # CoVoST2 ASR Results - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: de split: test args: language: de metrics: - name: Test WER (De) type: wer value: 4.84 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: en split: test args: language: en metrics: - name: Test WER (En) type: wer value: 6.80 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: es split: test args: language: es metrics: - name: Test WER (Es) type: wer value: 3.41 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: et split: test args: language: et metrics: - name: Test WER (Et) type: wer value: 22.04 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: fr split: test args: language: fr metrics: - name: Test WER (Fr) type: wer value: 6.05 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: it split: test args: language: it metrics: - name: Test WER (It) type: wer value: 3.69 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: lv split: test args: language: lv metrics: - name: Test WER (Lv) type: wer value: 38.36 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: nl split: test args: language: nl metrics: - name: Test WER (Nl) type: wer value: 6.50 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: pt split: test args: language: pt metrics: - name: Test WER (Pt) type: wer value: 3.96 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: ru split: test args: language: ru metrics: - name: Test WER (Ru) type: wer value: 3.00 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: sl split: test args: language: sl metrics: - name: Test WER (Sl) type: wer value: 31.80 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: sv split: test args: language: sv metrics: - name: Test WER (Sv) type: wer value: 20.16 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: CoVoST2 type: covost2 config: uk split: test args: language: uk metrics: - name: Test WER (Uk) type: wer value: 5.10 metrics: - wer --- # **🦜 parakeet-tdt-0.6b-v3: Multilingual Speech-to-Text Model** [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-blue#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-0.6B-green#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-EU_Languages-blue#model-badge)](#datasets) ## Description: `parakeet-tdt-0.6b-v3` is a 600-million-parameter multilingual automatic speech recognition (ASR) model designed for high-throughput speech-to-text transcription. It extends the [parakeet-tdt-0.6b-v2](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) model by expanding language support from English to 25 European languages. The model automatically detects the language of the audio and transcribes it without requiring additional prompting. It is part of a series of models that leverage the [Granary](https://huggingface.co/datasets/nvidia/Granary) [1, 2] multilingual corpus as their primary training dataset. 🗣️ Try Demo here: https://huggingface.co/spaces/nvidia/parakeet-tdt-0.6b-v3 **Supported Languages:** Bulgarian (**bg**), Croatian (**hr**), Czech (**cs**), Danish (**da**), Dutch (**nl**), English (**en**), Estonian (**et**), Finnish (**fi**), French (**fr**), German (**de**), Greek (**el**), Hungarian (**hu**), Italian (**it**), Latvian (**lv**), Lithuanian (**lt**), Maltese (**mt**), Polish (**pl**), Portuguese (**pt**), Romanian (**ro**), Slovak (**sk**), Slovenian (**sl**), Spanish (**es**), Swedish (**sv**), Russian (**ru**), Ukrainian (**uk**) This model is ready for commercial/non-commercial use. ## Key Features: `parakeet-tdt-0.6b-v3`'s key features are built on the foundation of its predecessor, [parakeet-tdt-0.6b-v2](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2), and include: * Automatic **punctuation** and **capitalization** * Accurate **word-level** and **segment-level** timestamps * **Long audio** transcription, supporting audio **up to 24 minutes** long with full attention (on A100 80GB) or up to 3 hours with local attention. * Released under a **permissive CC BY 4.0 license** ## License/Terms of Use: GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license. ## Automatic Speech Recognition (ASR) Performance ![ASR WER Comparison](plots/asr.png) *Figure 1: ASR WER comparison across different models. This does not include Punctuation and Capitalisation errors.* --- ### Evaluation Notes **Note 1:** The above evaluations are conducted for 24 supported languages, excluding Latvian since `seamless-m4t-v2-large` and `seamless-m4t-medium` do not support it. **Note 2:** Performance differences may be partly attributed to Portuguese variant differences - our training data uses European Portuguese while most benchmarks use Brazilian Portuguese. ### Deployment Geography: Global ### Use Case: This model serves developers, researchers, academics, and industries building applications that require speech-to-text capabilities, including but not limited to: conversational AI, voice assistants, transcription services, subtitle generation, and voice analytics platforms. ### Release Date: Huggingface [08/14/2025](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3) ### Model Architecture: **Architecture Type**: FastConformer-TDT **Network Architecture**: * This model was developed based on [FastConformer encoder](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) architecture[3] and TDT decoder[4] * This model has 600 million model parameters. ### Input: **Input Type(s):** 16kHz Audio **Input Format(s):** `.wav` and `.flac` audio formats **Input Parameters:** 1D (audio signal) **Other Properties Related to Input:** Monochannel audio ### Output: **Output Type(s):** Text **Output Format:** String **Output Parameters:** 1D (text) **Other Properties Related to Output:** Punctuations and Capitalizations included. Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. For more information, refer to the [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer). ## How to Use this Model: To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version. ```bash pip install -U nemo_toolkit['asr'] ``` The model is available for use in the NeMo toolkit [5], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. #### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v3") ``` #### Transcribing using Python First, let's get a sample ```bash wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ```python output = asr_model.transcribe(['2086-149220-0033.wav']) print(output[0].text) ``` #### Transcribing with timestamps To transcribe with timestamps: ```python output = asr_model.transcribe(['2086-149220-0033.wav'], timestamps=True) # by default, timestamps are enabled for char, word and segment level word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample segment_timestamps = output[0].timestamp['segment'] # segment level timestamps char_timestamps = output[0].timestamp['char'] # char level timestamps for stamp in segment_timestamps: print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}") ``` #### Transcribing long-form audio ```python #updating self-attention model of fast-conformer encoder #setting attention left and right context sizes to 256 asr_model.change_attention_model(self_attention_model="rel_pos_local_attn", att_context_size=[256, 256]) output = asr_model.transcribe(['2086-149220-0033.wav']) print(output[0].text) ``` #### Streaming with Parakeet models To use parakeet models in streaming mode use this [script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_chunked_inference/rnnt/speech_to_text_streaming_infer_rnnt.py) as shown below: ```bash python NeMo/main/examples/asr/asr_chunked_inference/rnnt/speech_to_text_streaming_infer_rnnt.py \ pretrained_name="nvidia/parakeet-tdt-0.6b-v3" \ model_path=null \ audio_dir="" \ dataset_manifest="" \ output_filename="" \ right_context_secs=2.0 \ chunk_secs=2 \ left_context_secs=10.0 \ batch_size=32 \ clean_groundtruth_text=False ``` NVIDIA NIM for v2 parakeet model is available at [https://build.nvidia.com/nvidia/parakeet-tdt-0_6b-v2](https://build.nvidia.com/nvidia/parakeet-tdt-0_6b-v2). ## Software Integration: **Runtime Engine(s):** * NeMo 2.4 **Supported Hardware Microarchitecture Compatibility:** * NVIDIA Ampere * NVIDIA Blackwell * NVIDIA Hopper * NVIDIA Volta **[Preferred/Supported] Operating System(s):** - Linux **Hardware Specific Requirements:** Atleast 2GB RAM for model to load. The bigger the RAM, the larger audio input it supports. #### Model Version Current version: `parakeet-tdt-0.6b-v3`. Previous versions can be [accessed](https://huggingface.co/collections/nvidia/parakeet-659711f49d1469e51546e021) here. ## Training and Evaluation Datasets: ### Training This model was trained using the NeMo toolkit [5], following the strategies below: - Initialized from a CTC multilingual checkpoint pretrained on the Granary dataset \[1] \[2]. - Trained for 150,000 steps on 128 A100 GPUs. - Dataset corpora and languages were balanced using a temperature sampling value of 0.5. - Stage 2 fine-tuning was performed for 5,000 steps on 4 A100 GPUs using approximately 7,500 hours of high-quality, human-transcribed data of NeMo ASR Set 3.0. Training was conducted using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and [TDT configuration](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_tdt_ctc_bpe.yaml). During the training, a unified SentencePiece Tokenizer \[6] with a vocabulary of **8,192 tokens** was used. The unified tokenizer was constructed from the training set transcripts using this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py) and was optimized across all 25 supported languages. ### Training Dataset The model was trained on the combination of [Granary dataset's ASR subset](https://huggingface.co/datasets/nvidia/Granary) and in-house dataset NeMo ASR Set 3.0: - 10,000 hours from human-transcribed NeMo ASR Set 3.0, including: - LibriSpeech (960 hours) - Fisher Corpus - National Speech Corpus Part 1 - VCTK - Europarl-ASR - Multilingual LibriSpeech - Mozilla Common Voice (v7.0) - AMI - 660,000 hours of pseudo-labeled data from Granary \[1] \[2], including: - [YTC](https://huggingface.co/datasets/FBK-MT/mosel) \[7] - [MOSEL](https://huggingface.co/datasets/FBK-MT/mosel) \[8] - [YODAS](https://huggingface.co/datasets/espnet/yodas-granary) \[9] All transcriptions preserve punctuation and capitalization. The Granary dataset will be made publicly available after presentation at Interspeech 2025. **Data Collection Method by dataset** * Hybrid: Automated, Human **Labeling Method by dataset** * Hybrid: Synthetic, Human **Properties:** * Noise robust data from various sources * Single channel, 16kHz sampled data #### Evaluation Datasets For multilingual ASR performance evaluation: - Fleurs [10] - MLS [11] - CoVoST [12] For English ASR performance evaluation: - Hugging Face Open ASR Leaderboard [13] datasets **Data Collection Method by dataset** * Human **Labeling Method by dataset** * Human **Properties:** * All are commonly used for benchmarking English ASR systems. * Audio data is typically processed into a 16kHz mono channel format for ASR evaluation, consistent with benchmarks like the [Open ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard). ## Performance #### Multilingual ASR The tables below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model): | Language | Fleurs | MLS | CoVoST | |----------|--------|-----|--------| | **Average WER ↓** | *11.97%* | *7.83%* | *11.98%* | | **bg** | 12.64% | - | - | | **cs** | 11.01% | - | - | | **da** | 18.41% | - | - | | **de** | 5.04% | - | 4.84% | | **el** | 20.70% | - | - | | **en** | 4.85% | - | 6.80% | | **es** | 3.45% | 4.39% | 3.41% | | **et** | 17.73% | - | 22.04% | | **fi** | 13.21% | - | - | | **fr** | 5.15% | 4.97% | 6.05% | | **hr** | 12.46% | - | - | | **hu** | 15.72% | - | - | | **it** | 3.00% | 10.08% | 3.69% | | **lt** | 20.35% | - | - | | **lv** | 22.84% | - | 38.36% | | **mt** | 20.46% | - | - | | **nl** | 7.48% | 12.78% | 6.50% | | **pl** | 7.31% | 7.28% | - | | **pt** | 4.76% | 7.50% | 3.96% | | **ro** | 12.44% | - | - | | **ru** | 5.51% | - | 3.00% | | **sk** | 8.82% | - | - | | **sl** | 24.03% | - | 31.80% | | **sv** | 15.08% | - | 20.16% | | **uk** | 6.79% | - | 5.10% | **Note:** WERs are calculated after removing Punctuation and Capitalization from reference and predicted text. #### Huggingface Open-ASR-Leaderboard | **Model** | **Avg WER** | **AMI** | **Earnings-22** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI Speech** | **TEDLIUM-v3** | **VoxPopuli** | |:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:| | `parakeet-tdt-0.6b-v3` | 6.34% | 11.31% | 11.42% | 9.59% | 1.93% | 3.59% | 3.97% | 2.75% | 6.14% | Additional evaluation details are available on the [Hugging Face ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).[13] ### Noise Robustness Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples [14]: | **SNR Level** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** | |:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:| | Clean | 6.34% | 11.31% | 11.42% | 9.59% | 1.93% | 3.59% | 3.97% | 2.75% | 6.14% | - | | SNR 10 | 7.12% | 13.99% | 11.79% | 9.96% | 2.15% | 4.55% | 4.45% | 3.05% | 6.99% | -12.28% | | SNR 5 | 8.23% | 17.59% | 13.01% | 10.69% | 2.62% | 6.05% | 5.23% | 3.33% | 7.31% | -29.81% | | SNR 0 | 11.66% | 24.44% | 17.34% | 13.60% | 4.82% | 10.38% | 8.41% | 5.39% | 8.91% | -83.97% | | SNR -5 | 19.88% | 34.91% | 26.92% | 21.41% | 12.21% | 19.98% | 16.96% | 11.36% | 15.30% | -213.64% | ## References [1] [Granary: Speech Recognition and Translation Dataset in 25 European Languages](https://arxiv.org/abs/2505.13404) [2] [NVIDIA Granary Dataset Card](https://huggingface.co/datasets/nvidia/Granary) [3] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084) [4] [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795) [5] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [6] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [7] [Youtube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons) [8] [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/abs/2410.01036) [9] [YODAS: Youtube-Oriented Dataset for Audio and Speech](https://arxiv.org/pdf/2406.00899) [10] [FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech](https://arxiv.org/abs/2205.12446) [11] [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411) [12] [CoVoST 2 and Massively Multilingual Speech-to-Text Translation](https://arxiv.org/abs/2007.10310) [13] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) [14] [MUSAN: A Music, Speech, and Noise Corpus](https://arxiv.org/abs/1510.08484) ## Inference: **Engine**: * NVIDIA NeMo **Test Hardware**: * NVIDIA A10 * NVIDIA A100 * NVIDIA A30 * NVIDIA H100 * NVIDIA L4 * NVIDIA L40 * NVIDIA Turing T4 * NVIDIA Volta V100 ## Ethical Considerations: NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [here](https://developer.nvidia.com/blog/enhancing-ai-transparency-and-ethical-considerations-with-model-card/). Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## Bias: Field | Response ---------------------------------------------------------------------------------------------------|--------------- Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing | None Measures taken to mitigate against unwanted bias | None ## Explainability: Field | Response ------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------- Intended Domain | Speech to Text Transcription Model Type | FastConformer Intended Users | This model is intended for developers, researchers, academics, and industries building conversational based applications. Output | Text Describe how the model works | Speech input is encoded into embeddings and passed into conformer-based model and output a text response. Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of | Not Applicable Technical Limitations & Mitigation | Transcripts may be not 100% accurate. Accuracy varies based on language and characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etc.) Verified to have met prescribed NVIDIA quality standards | Yes Performance Metrics | Word Error Rate Potential Known Risks | If a word is not trained in the language model and not presented in vocabulary, the word is not likely to be recognized. Not recommended for word-for-word/incomplete sentences as accuracy varies based on the context of input text Licensing | GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license. ## Privacy: Field | Response ----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------- Generatable or reverse engineerable personal data? | None Personal data used to create this model? | None Is there provenance for all datasets used in training? | Yes Does data labeling (annotation, metadata) comply with privacy laws? | Yes Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data. Applicable Privacy Policy | https://www.nvidia.com/en-us/about-nvidia/privacy-policy/ ## Safety: Field | Response ---------------------------------------------------|---------------------------------- Model Application(s) | Speech to Text Transcription Describe the life critical impact | None Use Case Restrictions | Abide by [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) License Model and dataset restrictions | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.