Commit
·
62829c3
1
Parent(s):
ea81c28
set license
Browse files
README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_9_0
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- mozilla-foundation/common_voice_9_0
|
11 |
+
model-index:
|
12 |
+
- name: wav2vec2-base-german-cv9
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: Common Voice 6.1
|
19 |
+
type: common_voice
|
20 |
+
args: de
|
21 |
+
metrics:
|
22 |
+
- name: Test WER
|
23 |
+
type: wer
|
24 |
+
value: 10.565782902002716
|
25 |
+
- name: Test CER
|
26 |
+
type: cer
|
27 |
+
value: 2.6226824852959657
|
28 |
+
- task:
|
29 |
+
name: Automatic Speech Recognition
|
30 |
+
type: automatic-speech-recognition
|
31 |
+
dataset:
|
32 |
+
name: Common Voice 6.1
|
33 |
+
type: common_voice
|
34 |
+
args: de
|
35 |
+
metrics:
|
36 |
+
- name: Test WER (+LM)
|
37 |
+
type: wer
|
38 |
+
value: 7.996088831362508
|
39 |
+
- name: Test CER (+LM)
|
40 |
+
type: cer
|
41 |
+
value: 2.1515717711623326
|
42 |
+
---
|
43 |
+
|
44 |
+
|
45 |
+
# wav2vec2-base-german-cv9
|
46 |
+
|
47 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset.
|
48 |
+
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.1742
|
50 |
+
- Wer: 0.1209
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.0001
|
70 |
+
- train_batch_size: 16
|
71 |
+
- eval_batch_size: 32
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 8
|
74 |
+
- total_train_batch_size: 128
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 50.0
|
79 |
+
- mixed_precision_training: Native AMP
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
84 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|
|
85 |
+
| 0.6827 | 1.0 | 3557 | 0.6695 | 0.6247 |
|
86 |
+
| 0.3992 | 2.0 | 7114 | 0.3738 | 0.3936 |
|
87 |
+
| 0.2611 | 3.0 | 10671 | 0.3011 | 0.3177 |
|
88 |
+
| 0.2536 | 4.0 | 14228 | 0.2672 | 0.2749 |
|
89 |
+
| 0.1943 | 5.0 | 17785 | 0.2487 | 0.2480 |
|
90 |
+
| 0.2004 | 6.0 | 21342 | 0.2246 | 0.2268 |
|
91 |
+
| 0.1605 | 7.0 | 24899 | 0.2176 | 0.2120 |
|
92 |
+
| 0.1579 | 8.0 | 28456 | 0.2046 | 0.2024 |
|
93 |
+
| 0.1668 | 9.0 | 32013 | 0.2027 | 0.1944 |
|
94 |
+
| 0.1338 | 10.0 | 35570 | 0.1968 | 0.1854 |
|
95 |
+
| 0.1478 | 11.0 | 39127 | 0.1963 | 0.1823 |
|
96 |
+
| 0.1177 | 12.0 | 42684 | 0.1956 | 0.1800 |
|
97 |
+
| 0.1245 | 13.0 | 46241 | 0.1889 | 0.1732 |
|
98 |
+
| 0.1124 | 14.0 | 49798 | 0.1868 | 0.1714 |
|
99 |
+
| 0.1112 | 15.0 | 53355 | 0.1805 | 0.1650 |
|
100 |
+
| 0.1209 | 16.0 | 56912 | 0.1860 | 0.1614 |
|
101 |
+
| 0.1002 | 17.0 | 60469 | 0.1828 | 0.1604 |
|
102 |
+
| 0.118 | 18.0 | 64026 | 0.1832 | 0.1580 |
|
103 |
+
| 0.0974 | 19.0 | 67583 | 0.1771 | 0.1555 |
|
104 |
+
| 0.1007 | 20.0 | 71140 | 0.1812 | 0.1532 |
|
105 |
+
| 0.0866 | 21.0 | 74697 | 0.1752 | 0.1504 |
|
106 |
+
| 0.0901 | 22.0 | 78254 | 0.1690 | 0.1477 |
|
107 |
+
| 0.0964 | 23.0 | 81811 | 0.1773 | 0.1489 |
|
108 |
+
| 0.085 | 24.0 | 85368 | 0.1776 | 0.1456 |
|
109 |
+
| 0.0945 | 25.0 | 88925 | 0.1786 | 0.1428 |
|
110 |
+
| 0.0804 | 26.0 | 92482 | 0.1737 | 0.1429 |
|
111 |
+
| 0.0832 | 27.0 | 96039 | 0.1789 | 0.1394 |
|
112 |
+
| 0.0683 | 28.0 | 99596 | 0.1741 | 0.1390 |
|
113 |
+
| 0.0761 | 29.0 | 103153 | 0.1688 | 0.1379 |
|
114 |
+
| 0.0833 | 30.0 | 106710 | 0.1726 | 0.1370 |
|
115 |
+
| 0.0753 | 31.0 | 110267 | 0.1774 | 0.1353 |
|
116 |
+
| 0.08 | 32.0 | 113824 | 0.1734 | 0.1344 |
|
117 |
+
| 0.0644 | 33.0 | 117381 | 0.1737 | 0.1334 |
|
118 |
+
| 0.0745 | 34.0 | 120938 | 0.1763 | 0.1335 |
|
119 |
+
| 0.0629 | 35.0 | 124495 | 0.1761 | 0.1311 |
|
120 |
+
| 0.0654 | 36.0 | 128052 | 0.1718 | 0.1302 |
|
121 |
+
| 0.0656 | 37.0 | 131609 | 0.1697 | 0.1301 |
|
122 |
+
| 0.0643 | 38.0 | 135166 | 0.1716 | 0.1279 |
|
123 |
+
| 0.0683 | 39.0 | 138723 | 0.1777 | 0.1279 |
|
124 |
+
| 0.0587 | 40.0 | 142280 | 0.1735 | 0.1271 |
|
125 |
+
| 0.0693 | 41.0 | 145837 | 0.1780 | 0.1260 |
|
126 |
+
| 0.0532 | 42.0 | 149394 | 0.1724 | 0.1245 |
|
127 |
+
| 0.0594 | 43.0 | 152951 | 0.1736 | 0.1250 |
|
128 |
+
| 0.0544 | 44.0 | 156508 | 0.1744 | 0.1238 |
|
129 |
+
| 0.0559 | 45.0 | 160065 | 0.1770 | 0.1232 |
|
130 |
+
| 0.0557 | 46.0 | 163622 | 0.1766 | 0.1231 |
|
131 |
+
| 0.0521 | 47.0 | 167179 | 0.1751 | 0.1220 |
|
132 |
+
| 0.0591 | 48.0 | 170736 | 0.1724 | 0.1217 |
|
133 |
+
| 0.0507 | 49.0 | 174293 | 0.1753 | 0.1212 |
|
134 |
+
| 0.0577 | 50.0 | 177850 | 0.1742 | 0.1209 |
|
135 |
+
|
136 |
+
|
137 |
+
### Framework versions
|
138 |
+
|
139 |
+
- Transformers 4.20.1
|
140 |
+
- Pytorch 1.11.0+cu113
|
141 |
+
- Datasets 2.0.0
|
142 |
+
- Tokenizers 0.11.6
|