File size: 20,213 Bytes
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02857b0
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d2ded6
 
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0792b2
9b6553f
 
 
 
 
 
 
 
 
f0792b2
9b6553f
 
 
 
 
f0792b2
9b6553f
 
fba6000
9b6553f
 
 
 
f0792b2
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0792b2
9b6553f
 
f0792b2
9b6553f
 
f0792b2
9b6553f
 
 
 
 
 
 
f0792b2
 
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0792b2
 
9b6553f
 
 
f0792b2
 
 
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0792b2
9b6553f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""PyTorch OpenAI GPT-2 model modified with MultiQuery attention"""

from typing import Optional, Tuple, Union

import math
import torch
import torch.utils.checkpoint
from torch import nn

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
)
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel
from transformers.utils import logging
from .configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY

logger = logging.get_logger(__name__)


def make_causal_mask(
        input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
    """
    Make causal mask used for self-attention.
    """
    batch_size, target_length = input_ids_shape
    mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
    # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
    seq_ids = torch.arange(target_length, device=device)
    mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]

    if past_key_values_length > 0:
        mask[:, :past_key_values_length] = False

    expanded_mask = mask[None, :, :].expand(batch_size, target_length, target_length + past_key_values_length)
    return expanded_mask


def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
    """
    Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
    """
    batch_size, src_length = mask.shape
    tgt_length = tgt_length if tgt_length is not None else src_length

    expanded_mask = ~(mask[:, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, tgt_length, src_length)


def prepare_attn_mask(
        attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
) -> torch.BoolTensor:
    # create causal mask
    # [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
    combined_attention_mask = None
    device = attention_mask.device
    _, src_length = input_shape

    if src_length > 1:
        combined_attention_mask = make_causal_mask(
            input_shape, device=device, past_key_values_length=past_key_values_length
        )

    # [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
    expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length)
    combined_attention_mask = (
        expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
    )

    return combined_attention_mask


class LinearGPT2MLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        embed_dim = config.hidden_size
        self.c_fc = nn.Linear(embed_dim, intermediate_size)
        self.c_proj = nn.Linear(intermediate_size, embed_dim)
        self.act = ACT2FN[config.activation_function] if "gelu" not in config.activation_function else lambda \
            x: torch.nn.functional.gelu(x, approximate="tanh")
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class GPT2MQAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False, layer_idx=None):
        super().__init__()
        assert config.attention_head_type == MULTI_QUERY

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.split_size = self.embed_dim
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.scale_attn_weights = config.scale_attn_weights
        if is_cross_attention:
            raise NotImplementedError("Cross-attention not implemented for MQA")
        self.is_cross_attention = is_cross_attention

        # Layer-wise attention scaling, reordering, and upcasting
        self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
        self.layer_idx = layer_idx
        self.reorder_and_upcast_attn = config.reorder_and_upcast_attn

        if self.is_cross_attention:
            raise NotImplementedError("Cross-attention not implemented for MQA")
        else:
            self.attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.head_dim)
        self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.pruned_heads = set()
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # query: (b, sq * num_heads, head_dim)
        # key: (b, head_dim, sk)
        # value: (b, sk, head_dim)
        batch_size = query.size(0)
        query_length = query.size(1) // self.num_heads
        key_length = key.size(2)
        # (b, sq * num_heads, head_dim) x (b, head_dim, sk) -> (b, sq * num_heads, sk)

        if self.scale_attn_weights:
            query = query * self.inv_norm_factor

        attn_weights = torch.bmm(query, key)

        # -> (b, num_heads, sq, sk)
        attn_weights = attn_weights.view(batch_size, query_length, self.num_heads, key_length)

        # Layer-wise attention scaling
        if self.scale_attn_by_inverse_layer_idx:
            attn_weights = attn_weights / float(self.layer_idx + 1)

        if attention_mask is not None:
            attn_weights = attn_weights.masked_fill_(attention_mask, torch.finfo(attn_weights.dtype).min)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            raise NotImplementedError

        # (b, num_heads, sq, sk) -> (b, num_heads * sq, sk)
        _attn_weights = attn_weights.view(batch_size, query_length * self.num_heads, key_length)
        # (b, num_heads * sq, sk) x (b, sk, head_dim) -> (b, num_heads * sq, head_dim)
        attn_output = torch.bmm(_attn_weights, value)
        attn_output = attn_output.view(batch_size, query_length, self.num_heads, self.head_dim)

        return attn_output, attn_weights

    def _merge_heads(self, tensor):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden_size
        """
        batch_size, seq_length, num_heads, head_dim = tensor.shape
        return tensor.view(batch_size, seq_length, num_heads * head_dim)

    def forward(
            self,
            hidden_states: Optional[Tuple[torch.FloatTensor]],
            layer_past: Optional[Tuple[torch.Tensor]] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = False,
            output_attentions: Optional[bool] = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
        if encoder_hidden_states is not None:
            raise NotImplementedError("Cross-attention not implemented for MQA")
        else:
            qkv = self.attn(hidden_states)
            query, key, value = qkv.split([self.embed_dim, self.head_dim, self.head_dim], dim=2)

        batch_size, seq_length = query.shape[:2]

        # (batch, query_length, hidden_size) -> (batch, query_length * num_heads, head_dim)
        # forced to reshape here
        query = query.reshape(batch_size, seq_length * self.num_heads, self.head_dim)

        key = key.transpose(1, 2)  # (batch_size, head_dim, seq_length)

        if layer_past is not None:
            past_key, past_value = layer_past
            # Concatenate on sequence dimension
            key = torch.cat((past_key, key), dim=-1)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        if self.reorder_and_upcast_attn:
            raise NotImplementedError("Reorder and upcast attention not implemented for MQA")
        else:
            attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


# inherit from gpt_modeling.py, and override `attn` module
class GPT2CustomBlock(GPT2Block):

    def __init__(self, config: GPT2CustomConfig, layer_idx=None):
        super().__init__(config, layer_idx)
        # Override attention module if using multiquery
        if config.attention_head_type == MULTI_QUERY:
            self.attn = GPT2MQAttention(config, layer_idx=layer_idx)
            if config.add_cross_attention:
                raise NotImplementedError("Cross-attention not implemented for MQA")

        hidden_size = config.hidden_size
        inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
        self.mlp = LinearGPT2MLP(inner_dim, config)


# inherit from gpt_modeling.py and override `__init__` and `forward` methods
class GPT2CustomModel(GPT2Model):
    config_class = GPT2CustomConfig

    def __init__(self, config):
        GPT2PreTrainedModel.__init__(self, config)

        if config.attention_head_type != MULTI_QUERY:
            raise NotImplementedError("optimized gpt2 is not implemented for MHA")

        self.embed_dim = config.hidden_size

        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)

        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            token_type_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
            seq_length = input_ids.shape[1]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
            seq_length = input_ids.shape[1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))

        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[-1]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if position_ids is None:
            position_ids = torch.arange(past_key_values_length, input_shape[-1] + past_key_values_length,
                                        dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # GPT2Attention mask.
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length_with_past), device=input_ids.device)
        else:
            attention_mask = attention_mask.to(input_ids.device)

        attention_mask = prepare_attn_mask(
            attention_mask,
            input_shape=(batch_size, seq_length),
            past_key_values_length=past_key_values_length,
        )

        attention_mask = attention_mask.unsqueeze(2).expand(batch_size, attention_mask.shape[1], self.config.num_attention_heads, attention_mask.shape[2])

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.add_cross_attention and encoder_hidden_states is not None:
            raise NotImplementedError
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):

            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class GPT2LMHeadCustomModel(GPT2LMHeadModel):
    config_class = GPT2CustomConfig

    def __init__(self, config):
        GPT2PreTrainedModel.__init__(self, config)
        self.transformer = GPT2CustomModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()