Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,124 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
### ONNXRuntime
|
8 |
+
|
9 |
+
<details>
|
10 |
+
|
11 |
+
<summary>
|
12 |
+
First, define the <em>read_gif_frames</em> helper function (click to expand):
|
13 |
+
</summary>
|
14 |
+
|
15 |
+
```py
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image, ImageSequence
|
18 |
+
import requests
|
19 |
+
from io import BytesIO
|
20 |
+
import os
|
21 |
+
|
22 |
+
def read_gif_frames(path_or_url, shortest_edge=None, center_crop=None):
|
23 |
+
# Load GIF from URL or local path
|
24 |
+
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
|
25 |
+
response = requests.get(path_or_url)
|
26 |
+
gif = Image.open(BytesIO(response.content))
|
27 |
+
elif os.path.exists(path_or_url):
|
28 |
+
gif = Image.open(path_or_url)
|
29 |
+
else:
|
30 |
+
raise ValueError("Invalid URL or file path")
|
31 |
+
|
32 |
+
# Ensure it's a GIF
|
33 |
+
if gif.format != "GIF":
|
34 |
+
raise ValueError("Not a GIF file")
|
35 |
+
|
36 |
+
# Extract frames and convert to RGB
|
37 |
+
frames = []
|
38 |
+
for frame in ImageSequence.Iterator(gif):
|
39 |
+
rgb_frame = frame.convert("RGB") # Force 3 channels
|
40 |
+
|
41 |
+
# Resize if specified
|
42 |
+
if shortest_edge is not None:
|
43 |
+
w, h = rgb_frame.size
|
44 |
+
if h < w:
|
45 |
+
new_h = shortest_edge
|
46 |
+
new_w = int(w * shortest_edge / h)
|
47 |
+
else:
|
48 |
+
new_w = shortest_edge
|
49 |
+
new_h = int(h * shortest_edge / w)
|
50 |
+
rgb_frame = rgb_frame.resize((new_w, new_h), Image.LANCZOS)
|
51 |
+
|
52 |
+
# Center crop if specified
|
53 |
+
if center_crop is not None:
|
54 |
+
w, h = rgb_frame.size
|
55 |
+
left = (w - center_crop) // 2
|
56 |
+
top = (h - center_crop) // 2
|
57 |
+
right = left + center_crop
|
58 |
+
bottom = top + center_crop
|
59 |
+
rgb_frame = rgb_frame.crop((left, top, right, bottom))
|
60 |
+
|
61 |
+
frame_np = np.array(rgb_frame, dtype=np.uint8)
|
62 |
+
frame_np = np.transpose(frame_np, (2, 0, 1)) # HWC -> CHW
|
63 |
+
frames.append(frame_np)
|
64 |
+
|
65 |
+
return np.stack(frames) # Shape: [num_frames, 3, height, width]
|
66 |
+
```
|
67 |
+
|
68 |
+
</details>
|
69 |
+
|
70 |
+
|
71 |
+
You can then run the model as follows:
|
72 |
+
```py
|
73 |
+
import onnxruntime as ort
|
74 |
+
from huggingface_hub import hf_hub_download
|
75 |
+
from transformers import AutoConfig
|
76 |
+
|
77 |
+
model_id = "onnx-community/vjepa2-vitl-fpc32-256-diving48-ONNX"
|
78 |
+
config = AutoConfig.from_pretrained(model_id)
|
79 |
+
path = hf_hub_download(
|
80 |
+
repo_id=model_id,
|
81 |
+
filename="onnx/model.onnx",
|
82 |
+
)
|
83 |
+
ort_session = ort.InferenceSession(path)
|
84 |
+
|
85 |
+
# Load and preprocess video frames
|
86 |
+
video = read_gif_frames(
|
87 |
+
"http://www.svcl.ucsd.edu/projects/resound/imgs/19.gif",
|
88 |
+
shortest_edge=292,
|
89 |
+
center_crop=256,
|
90 |
+
)
|
91 |
+
mean = np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)
|
92 |
+
std = np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)
|
93 |
+
inputs = {
|
94 |
+
"pixel_values_videos": ((video / 255 - mean) / std)[np.newaxis, ...].astype(np.float32)
|
95 |
+
}
|
96 |
+
|
97 |
+
# Run the model
|
98 |
+
logits = ort_session.run(
|
99 |
+
None,
|
100 |
+
input_feed=inputs,
|
101 |
+
)[0]
|
102 |
+
|
103 |
+
top_k = 5
|
104 |
+
indices = np.argsort(logits[0])[-top_k:][::-1]
|
105 |
+
|
106 |
+
# Calculate softmax probabilities
|
107 |
+
exp_logits = np.exp(logits[0] - np.max(logits[0]))
|
108 |
+
softmax_probs = exp_logits / np.sum(exp_logits)
|
109 |
+
|
110 |
+
print(f"Top {top_k} predicted class names:")
|
111 |
+
for idx in indices:
|
112 |
+
text_label = config.id2label[idx]
|
113 |
+
print(f" - {text_label}: {softmax_probs[idx]:.2f}")
|
114 |
+
```
|
115 |
+
|
116 |
+
Example output:
|
117 |
+
```
|
118 |
+
Top 5 predicted class names:
|
119 |
+
- ['Forward', '15som', 'NoTwis', 'PIKE']: 0.69
|
120 |
+
- ['Reverse', 'Dive', 'NoTwis', 'PIKE']: 0.22
|
121 |
+
- ['Inward', '15som', 'NoTwis', 'PIKE']: 0.06
|
122 |
+
- ['Reverse', '15som', '05Twis', 'FREE']: 0.01
|
123 |
+
- ['Forward', '25som', 'NoTwis', 'PIKE']: 0.00
|
124 |
+
```
|