English
Eval Results
amant555 commited on
Commit
86e9869
·
1 Parent(s): 2acec6c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -7
README.md CHANGED
@@ -2,12 +2,33 @@
2
  tags:
3
  - spacy
4
  - token-classification
 
 
 
5
  language:
6
  - en
7
  license: mit
8
  model-index:
9
  - name: en_legal_ner_sm
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
  Indian Legal Named Entity Recognition: Identifying relevant entities in an Indian legal document
13
 
@@ -16,12 +37,41 @@ Indian Legal Named Entity Recognition: Identifying relevant entities in an India
16
  | **Name** | `en_legal_ner_sm` |
17
  | **Version** | `3.2.0` |
18
  | **spaCy** | `>=3.2.2,<3.3.0` |
19
- | **Default Pipeline** | `tok2vec`, `ner` |
20
- | **Components** | `tok2vec`, `ner` |
21
  | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
22
- | **Sources** | n/a |
23
  | **License** | `MIT` |
24
- | **Author** | [Aman Tiwari](https://github.com/Legal-NLP-EkStep/legal_NER) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ### Label Scheme
27
 
@@ -29,9 +79,22 @@ Indian Legal Named Entity Recognition: Identifying relevant entities in an India
29
 
30
  <summary>View label scheme (14 labels for 1 components)</summary>
31
 
32
- | Component | Labels |
33
  | --- | --- |
34
- | **`ner`** | `CASE_NUMBER`, `COURT`, `DATE`, `GPE`, `JUDGE`, `LAWYER`, `ORG`, `OTHER_PERSON`, `PETITIONER`, `PRECEDENT`, `PROVISION`, `RESPONDENT`, `STATUTE`, `WITNESS` |
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  </details>
37
 
@@ -39,3 +102,13 @@ Indian Legal Named Entity Recognition: Identifying relevant entities in an India
39
 
40
  | Type | Score |
41
  | --- | --- |
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - spacy
4
  - token-classification
5
+ widget:
6
+ - text: "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
7
+ - text: "In The High Court Of Kerala At Ernakulam\n\nCrl Mc No. 1622 of 2006()\n\n\n1. T.R.Ajayan, S/O. O.Raman,\n ... Petitioner\n\n Vs\n\n\n\n1. M.Ravindran,\n ... Respondent\n\n2. Mrs. Nirmala Dinesh, W/O. Dinesh,\n\n For Petitioner :Sri.A.Kumar\n\n For Respondent :Smt.M.K.Pushpalatha\n\nThe Hon'ble Mr. Justice P.R.Raman\nThe Hon'ble Mr. Justice V.K.Mohanan\n\n Dated :07/01/2008\n\n O R D E R\n"
8
  language:
9
  - en
10
  license: mit
11
  model-index:
12
  - name: en_legal_ner_sm
13
+ results:
14
+ - task:
15
+ type: token-classification
16
+ name: Named Entity Recognition
17
+ dataset:
18
+ type: Named Entity Recognition
19
+ name: InLegalNER
20
+ split: Test
21
+ metrics:
22
+ - type: F1-Score
23
+ value: 75.078
24
+ name: Test F1-Score
25
+ ---
26
+ ## This model is for efficiency purposes for better accuracy refer to [en_legal_ner_trf](https://huggingface.co/opennyaiorg/en_legal_ner_tr)
27
+ ---
28
+ # To Update
29
+
30
+ [AUTHORS] "[PAPER NAME]". [PAPER DETAILS] [PAPER LINK]
31
+
32
  ---
33
  Indian Legal Named Entity Recognition: Identifying relevant entities in an Indian legal document
34
 
 
37
  | **Name** | `en_legal_ner_sm` |
38
  | **Version** | `3.2.0` |
39
  | **spaCy** | `>=3.2.2,<3.3.0` |
40
+ | **Default Pipeline** | `token2vec`, `ner` |
41
+ | **Components** | `token2vec`, `ner` |
42
  | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
43
+ | **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)|
44
  | **License** | `MIT` |
45
+ | **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) |
46
+
47
+ ## Load Pretrained Model
48
+
49
+ Install the model using pip
50
+
51
+ ```sh
52
+ pip install https://huggingface.co/opennyaiorg/en_legal_ner_sm/resolve/main/en_legal_ner_sm-any-py3-none-any.whl
53
+ ```
54
+
55
+ Using pretrained NER model
56
+
57
+ ```python
58
+ # Using spacy.load().
59
+ import spacy
60
+ nlp = spacy.load("en_legal_ner_sm")
61
+ text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
62
+ doc = nlp(text)
63
+
64
+ # Print indentified entites
65
+ for ent in doc.ents:
66
+ print(ent,ent.label_)
67
+
68
+ ##OUTPUT
69
+ #Section 319 PROVISION
70
+ #Cr.P.C. STATUTE
71
+ #G. Sambiah RESPONDENT
72
+ #20th June 1984 DATE
73
+ ```
74
+
75
 
76
  ### Label Scheme
77
 
 
79
 
80
  <summary>View label scheme (14 labels for 1 components)</summary>
81
 
82
+ | ENTITY | BELONGS TO |
83
  | --- | --- |
84
+ | `LAWYER` | PREAMBLE |
85
+ | `COURT` | PREAMBLE, JUDGEMENT |
86
+ | `JUDGE` | PREAMBLE, JUDGEMENT |
87
+ | `PETITIONER` | PREAMBLE, JUDGEMENT |
88
+ | `RESPONDENT` | PREAMBLE, JUDGEMENT |
89
+ | `CASE_NUMBER` | JUDGEMENT |
90
+ | `GPE` | JUDGEMENT |
91
+ | `DATE` | JUDGEMENT |
92
+ | `ORG` | JUDGEMENT |
93
+ | `STATUTE` | JUDGEMENT |
94
+ | `WITNESS` | JUDGEMENT |
95
+ | `PRECEDENT` | JUDGEMENT |
96
+ | `PROVISION` | JUDGEMENT |
97
+ | `OTHER_PERSON` | JUDGEMENT |
98
 
99
  </details>
100
 
 
102
 
103
  | Type | Score |
104
  | --- | --- |
105
+ | **F1-Score** | **75.078** |
106
+ | `Precision` | 73.043 |
107
+ | `Recall` | 77.229 |
108
+
109
+
110
+ ## Author - Publication
111
+
112
+ ```
113
+ [CITATION DETAILS]
114
+ ```