test model
Browse files- .gitattributes +1 -0
- README.md +217 -0
- classifier_no_cross_val.skops +3 -0
- config.json +196 -0
- test.parquet +3 -0
- train.parquet +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
classifier_no_cross_val.skops filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: skops
|
8 |
+
model_file: classifier_no_cross_val.skops
|
9 |
+
widget:
|
10 |
+
- structuredData:
|
11 |
+
credibleSetConfidence:
|
12 |
+
- 0.75
|
13 |
+
- 0.75
|
14 |
+
- 0.25
|
15 |
+
distanceFootprintMean:
|
16 |
+
- 1.0
|
17 |
+
- 1.0
|
18 |
+
- 0.9948455095291138
|
19 |
+
distanceFootprintMeanNeighbourhood:
|
20 |
+
- 1.0
|
21 |
+
- 1.0
|
22 |
+
- 1.0
|
23 |
+
distanceSentinelFootprint:
|
24 |
+
- 1.0
|
25 |
+
- 1.0
|
26 |
+
- 0.9999213218688965
|
27 |
+
distanceSentinelFootprintNeighbourhood:
|
28 |
+
- 1.0
|
29 |
+
- 1.0
|
30 |
+
- 1.0
|
31 |
+
distanceSentinelTss:
|
32 |
+
- 0.9982281923294067
|
33 |
+
- 0.9999350309371948
|
34 |
+
- 0.9999213218688965
|
35 |
+
distanceSentinelTssNeighbourhood:
|
36 |
+
- 1.0
|
37 |
+
- 1.0
|
38 |
+
- 1.0
|
39 |
+
distanceTssMean:
|
40 |
+
- 0.9982281923294067
|
41 |
+
- 0.9999350309371948
|
42 |
+
- 0.9947366714477539
|
43 |
+
distanceTssMeanNeighbourhood:
|
44 |
+
- 1.0
|
45 |
+
- 1.0
|
46 |
+
- 1.0
|
47 |
+
eQtlColocClppMaximum:
|
48 |
+
- 0.949999988079071
|
49 |
+
- 0.0
|
50 |
+
- 0.06608512997627258
|
51 |
+
eQtlColocClppMaximumNeighbourhood:
|
52 |
+
- 1.0
|
53 |
+
- 0.0
|
54 |
+
- 1.0
|
55 |
+
eQtlColocH4Maximum:
|
56 |
+
- 1.0
|
57 |
+
- 0.0
|
58 |
+
- 0.0
|
59 |
+
eQtlColocH4MaximumNeighbourhood:
|
60 |
+
- 1.0
|
61 |
+
- 0.0
|
62 |
+
- 0.0
|
63 |
+
geneCount500kb:
|
64 |
+
- 20.0
|
65 |
+
- 15.0
|
66 |
+
- 8.0
|
67 |
+
geneId:
|
68 |
+
- ENSG00000087237
|
69 |
+
- ENSG00000169174
|
70 |
+
- ENSG00000084674
|
71 |
+
goldStandardSet:
|
72 |
+
- 1
|
73 |
+
- 1
|
74 |
+
- 1
|
75 |
+
pQtlColocClppMaximum:
|
76 |
+
- 0.0
|
77 |
+
- 1.0
|
78 |
+
- 0.0
|
79 |
+
pQtlColocClppMaximumNeighbourhood:
|
80 |
+
- 0.0
|
81 |
+
- 1.0
|
82 |
+
- 0.0
|
83 |
+
pQtlColocH4Maximum:
|
84 |
+
- 0.0
|
85 |
+
- 1.0
|
86 |
+
- 0.0
|
87 |
+
pQtlColocH4MaximumNeighbourhood:
|
88 |
+
- 0.0
|
89 |
+
- 1.0
|
90 |
+
- 0.0
|
91 |
+
proteinGeneCount500kb:
|
92 |
+
- 8.0
|
93 |
+
- 7.0
|
94 |
+
- 3.0
|
95 |
+
sQtlColocClppMaximum:
|
96 |
+
- 0.949999988079071
|
97 |
+
- 0.0
|
98 |
+
- 0.21970131993293762
|
99 |
+
sQtlColocClppMaximumNeighbourhood:
|
100 |
+
- 1.0
|
101 |
+
- 0.0
|
102 |
+
- 1.0
|
103 |
+
sQtlColocH4Maximum:
|
104 |
+
- 1.0
|
105 |
+
- 0.0
|
106 |
+
- 0.0
|
107 |
+
sQtlColocH4MaximumNeighbourhood:
|
108 |
+
- 1.0
|
109 |
+
- 0.0
|
110 |
+
- 0.0
|
111 |
+
studyLocusId:
|
112 |
+
- 005bc8624f8dd7f7c7bc63e651e9e59d
|
113 |
+
- 02c442ea4fa5ab80586a6d1ff6afa843
|
114 |
+
- 235e8ce166619f33e27582fff5bc0c94
|
115 |
+
vepMaximum:
|
116 |
+
- 0.33000001311302185
|
117 |
+
- 0.6600000262260437
|
118 |
+
- 0.6600000262260437
|
119 |
+
vepMaximumNeighbourhood:
|
120 |
+
- 1.0
|
121 |
+
- 1.0
|
122 |
+
- 1.0
|
123 |
+
vepMean:
|
124 |
+
- 0.33000001311302185
|
125 |
+
- 0.6600000262260437
|
126 |
+
- 0.0039977929554879665
|
127 |
+
vepMeanNeighbourhood:
|
128 |
+
- 1.0
|
129 |
+
- 1.0
|
130 |
+
- 1.0
|
131 |
+
---
|
132 |
+
|
133 |
+
# Model description
|
134 |
+
|
135 |
+
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
|
136 |
+
|
137 |
+
- Distance: (from credible set variants to gene)
|
138 |
+
- Molecular QTL Colocalization
|
139 |
+
- Variant Pathogenicity: (from VEP)
|
140 |
+
|
141 |
+
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
|
142 |
+
|
143 |
+
|
144 |
+
## Intended uses & limitations
|
145 |
+
|
146 |
+
[More Information Needed]
|
147 |
+
|
148 |
+
## Training Procedure
|
149 |
+
|
150 |
+
Gradient Boosting Classifier
|
151 |
+
|
152 |
+
### Hyperparameters
|
153 |
+
|
154 |
+
<details>
|
155 |
+
<summary> Click to expand </summary>
|
156 |
+
|
157 |
+
| Hyperparameter | Value |
|
158 |
+
|-------------------------|-----------------|
|
159 |
+
| objective | binary:logistic |
|
160 |
+
| base_score | |
|
161 |
+
| booster | |
|
162 |
+
| callbacks | |
|
163 |
+
| colsample_bylevel | |
|
164 |
+
| colsample_bynode | |
|
165 |
+
| colsample_bytree | 0.8 |
|
166 |
+
| device | |
|
167 |
+
| early_stopping_rounds | |
|
168 |
+
| enable_categorical | False |
|
169 |
+
| eval_metric | aucpr |
|
170 |
+
| feature_types | |
|
171 |
+
| feature_weights | |
|
172 |
+
| gamma | |
|
173 |
+
| grow_policy | |
|
174 |
+
| importance_type | |
|
175 |
+
| interaction_constraints | |
|
176 |
+
| learning_rate | |
|
177 |
+
| max_bin | |
|
178 |
+
| max_cat_threshold | |
|
179 |
+
| max_cat_to_onehot | |
|
180 |
+
| max_delta_step | |
|
181 |
+
| max_depth | 5 |
|
182 |
+
| max_leaves | |
|
183 |
+
| min_child_weight | 10 |
|
184 |
+
| missing | nan |
|
185 |
+
| monotone_constraints | |
|
186 |
+
| multi_strategy | |
|
187 |
+
| n_estimators | |
|
188 |
+
| n_jobs | |
|
189 |
+
| num_parallel_tree | |
|
190 |
+
| random_state | 777 |
|
191 |
+
| reg_alpha | 1 |
|
192 |
+
| reg_lambda | 1.0 |
|
193 |
+
| sampling_method | |
|
194 |
+
| scale_pos_weight | 0.8 |
|
195 |
+
| subsample | 0.8 |
|
196 |
+
| tree_method | |
|
197 |
+
| validate_parameters | |
|
198 |
+
| verbosity | |
|
199 |
+
| eta | 0.05 |
|
200 |
+
|
201 |
+
</details>
|
202 |
+
|
203 |
+
# How to Get Started with the Model
|
204 |
+
|
205 |
+
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
|
206 |
+
The model can then be used to make predictions using the `predict` method.
|
207 |
+
|
208 |
+
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
|
209 |
+
|
210 |
+
|
211 |
+
# Citation
|
212 |
+
|
213 |
+
https://doi.org/10.1038/s41588-021-00945-5
|
214 |
+
|
215 |
+
# License
|
216 |
+
|
217 |
+
MIT
|
classifier_no_cross_val.skops
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:477ea8d33c54a281fc707bbd1ece5d18102b2b294bcab07862d6e51037d17a5e
|
3 |
+
size 243893
|
config.json
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"studyLocusId",
|
5 |
+
"geneId",
|
6 |
+
"goldStandardSet",
|
7 |
+
"eQtlColocClppMaximum",
|
8 |
+
"pQtlColocClppMaximum",
|
9 |
+
"sQtlColocClppMaximum",
|
10 |
+
"eQtlColocH4Maximum",
|
11 |
+
"pQtlColocH4Maximum",
|
12 |
+
"sQtlColocH4Maximum",
|
13 |
+
"eQtlColocClppMaximumNeighbourhood",
|
14 |
+
"pQtlColocClppMaximumNeighbourhood",
|
15 |
+
"sQtlColocClppMaximumNeighbourhood",
|
16 |
+
"eQtlColocH4MaximumNeighbourhood",
|
17 |
+
"pQtlColocH4MaximumNeighbourhood",
|
18 |
+
"sQtlColocH4MaximumNeighbourhood",
|
19 |
+
"distanceSentinelFootprint",
|
20 |
+
"distanceSentinelFootprintNeighbourhood",
|
21 |
+
"distanceFootprintMean",
|
22 |
+
"distanceFootprintMeanNeighbourhood",
|
23 |
+
"distanceTssMean",
|
24 |
+
"distanceTssMeanNeighbourhood",
|
25 |
+
"distanceSentinelTss",
|
26 |
+
"distanceSentinelTssNeighbourhood",
|
27 |
+
"vepMaximum",
|
28 |
+
"vepMaximumNeighbourhood",
|
29 |
+
"vepMean",
|
30 |
+
"vepMeanNeighbourhood",
|
31 |
+
"geneCount500kb",
|
32 |
+
"proteinGeneCount500kb",
|
33 |
+
"credibleSetConfidence"
|
34 |
+
],
|
35 |
+
"environment": [
|
36 |
+
"xgboost=3.0.4"
|
37 |
+
],
|
38 |
+
"example_input": {
|
39 |
+
"credibleSetConfidence": [
|
40 |
+
0.75,
|
41 |
+
0.75,
|
42 |
+
0.25
|
43 |
+
],
|
44 |
+
"distanceFootprintMean": [
|
45 |
+
1.0,
|
46 |
+
1.0,
|
47 |
+
0.9948455095291138
|
48 |
+
],
|
49 |
+
"distanceFootprintMeanNeighbourhood": [
|
50 |
+
1.0,
|
51 |
+
1.0,
|
52 |
+
1.0
|
53 |
+
],
|
54 |
+
"distanceSentinelFootprint": [
|
55 |
+
1.0,
|
56 |
+
1.0,
|
57 |
+
0.9999213218688965
|
58 |
+
],
|
59 |
+
"distanceSentinelFootprintNeighbourhood": [
|
60 |
+
1.0,
|
61 |
+
1.0,
|
62 |
+
1.0
|
63 |
+
],
|
64 |
+
"distanceSentinelTss": [
|
65 |
+
0.9982281923294067,
|
66 |
+
0.9999350309371948,
|
67 |
+
0.9999213218688965
|
68 |
+
],
|
69 |
+
"distanceSentinelTssNeighbourhood": [
|
70 |
+
1.0,
|
71 |
+
1.0,
|
72 |
+
1.0
|
73 |
+
],
|
74 |
+
"distanceTssMean": [
|
75 |
+
0.9982281923294067,
|
76 |
+
0.9999350309371948,
|
77 |
+
0.9947366714477539
|
78 |
+
],
|
79 |
+
"distanceTssMeanNeighbourhood": [
|
80 |
+
1.0,
|
81 |
+
1.0,
|
82 |
+
1.0
|
83 |
+
],
|
84 |
+
"eQtlColocClppMaximum": [
|
85 |
+
0.949999988079071,
|
86 |
+
0.0,
|
87 |
+
0.06608512997627258
|
88 |
+
],
|
89 |
+
"eQtlColocClppMaximumNeighbourhood": [
|
90 |
+
1.0,
|
91 |
+
0.0,
|
92 |
+
1.0
|
93 |
+
],
|
94 |
+
"eQtlColocH4Maximum": [
|
95 |
+
1.0,
|
96 |
+
0.0,
|
97 |
+
0.0
|
98 |
+
],
|
99 |
+
"eQtlColocH4MaximumNeighbourhood": [
|
100 |
+
1.0,
|
101 |
+
0.0,
|
102 |
+
0.0
|
103 |
+
],
|
104 |
+
"geneCount500kb": [
|
105 |
+
20.0,
|
106 |
+
15.0,
|
107 |
+
8.0
|
108 |
+
],
|
109 |
+
"geneId": [
|
110 |
+
"ENSG00000087237",
|
111 |
+
"ENSG00000169174",
|
112 |
+
"ENSG00000084674"
|
113 |
+
],
|
114 |
+
"goldStandardSet": [
|
115 |
+
1,
|
116 |
+
1,
|
117 |
+
1
|
118 |
+
],
|
119 |
+
"pQtlColocClppMaximum": [
|
120 |
+
0.0,
|
121 |
+
1.0,
|
122 |
+
0.0
|
123 |
+
],
|
124 |
+
"pQtlColocClppMaximumNeighbourhood": [
|
125 |
+
0.0,
|
126 |
+
1.0,
|
127 |
+
0.0
|
128 |
+
],
|
129 |
+
"pQtlColocH4Maximum": [
|
130 |
+
0.0,
|
131 |
+
1.0,
|
132 |
+
0.0
|
133 |
+
],
|
134 |
+
"pQtlColocH4MaximumNeighbourhood": [
|
135 |
+
0.0,
|
136 |
+
1.0,
|
137 |
+
0.0
|
138 |
+
],
|
139 |
+
"proteinGeneCount500kb": [
|
140 |
+
8.0,
|
141 |
+
7.0,
|
142 |
+
3.0
|
143 |
+
],
|
144 |
+
"sQtlColocClppMaximum": [
|
145 |
+
0.949999988079071,
|
146 |
+
0.0,
|
147 |
+
0.21970131993293762
|
148 |
+
],
|
149 |
+
"sQtlColocClppMaximumNeighbourhood": [
|
150 |
+
1.0,
|
151 |
+
0.0,
|
152 |
+
1.0
|
153 |
+
],
|
154 |
+
"sQtlColocH4Maximum": [
|
155 |
+
1.0,
|
156 |
+
0.0,
|
157 |
+
0.0
|
158 |
+
],
|
159 |
+
"sQtlColocH4MaximumNeighbourhood": [
|
160 |
+
1.0,
|
161 |
+
0.0,
|
162 |
+
0.0
|
163 |
+
],
|
164 |
+
"studyLocusId": [
|
165 |
+
"005bc8624f8dd7f7c7bc63e651e9e59d",
|
166 |
+
"02c442ea4fa5ab80586a6d1ff6afa843",
|
167 |
+
"235e8ce166619f33e27582fff5bc0c94"
|
168 |
+
],
|
169 |
+
"vepMaximum": [
|
170 |
+
0.33000001311302185,
|
171 |
+
0.6600000262260437,
|
172 |
+
0.6600000262260437
|
173 |
+
],
|
174 |
+
"vepMaximumNeighbourhood": [
|
175 |
+
1.0,
|
176 |
+
1.0,
|
177 |
+
1.0
|
178 |
+
],
|
179 |
+
"vepMean": [
|
180 |
+
0.33000001311302185,
|
181 |
+
0.6600000262260437,
|
182 |
+
0.0039977929554879665
|
183 |
+
],
|
184 |
+
"vepMeanNeighbourhood": [
|
185 |
+
1.0,
|
186 |
+
1.0,
|
187 |
+
1.0
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"model": {
|
191 |
+
"file": "classifier_no_cross_val.skops"
|
192 |
+
},
|
193 |
+
"model_format": "skops",
|
194 |
+
"task": "tabular-classification"
|
195 |
+
}
|
196 |
+
}
|
test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6585458cb016200bad8ba1e59aec1ecce849bca20a4ee583b0eec1d4c856bfc
|
3 |
+
size 700711
|
train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6db0511a3bd4e16d4587d6a2fe9a6a9639304074f5deb151bc5ced9a7af7c09f
|
3 |
+
size 4737931
|