Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,110 @@
|
|
1 |
---
|
2 |
-
base_model:
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
- unsloth
|
7 |
- llama
|
8 |
- trl
|
|
|
|
|
|
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
- en
|
12 |
---
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
1 |
---
|
2 |
+
base_model: Llama-3.2-3B-Instruct
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
- unsloth
|
7 |
- llama
|
8 |
- trl
|
9 |
+
- climate-policy
|
10 |
+
- query-interpretation
|
11 |
+
- lora
|
12 |
license: apache-2.0
|
13 |
language:
|
14 |
- en
|
15 |
---
|
16 |
+
# CLEAR Query Interpreter
|
17 |
|
18 |
+
This is the official implementation of the query interpretation model from our paper "CLEAR: Climate Policy Retrieval and Summarization Using LLMs" (WWW Companion '25).
|
19 |
|
20 |
+
## Model Description
|
|
|
|
|
21 |
|
22 |
+
The model is a LoRA adapter fine-tuned on Llama-3.2-3B to decompose natural language queries about climate policies into structured components for precise information retrieval.
|
23 |
+
|
24 |
+
### Task
|
25 |
+
Query interpretation for climate policy retrieval, decomposing natural queries into:
|
26 |
+
- Location (L): Geographic identification
|
27 |
+
- Topics (T): Climate-related themes
|
28 |
+
- Intent (I): Specific policy inquiries
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
### Training Details
|
33 |
+
- Base Model: Llama-3.2-3B
|
34 |
+
- Training Data: 330 manually annotated queries
|
35 |
+
- Annotators: Four Australia-based experts with media communication backgrounds
|
36 |
+
- Hardware: NVIDIA A100 GPU
|
37 |
+
- Parameters:
|
38 |
+
- Batch size: 6
|
39 |
+
- Sequence length: 1024
|
40 |
+
- Optimizer: AdamW (weight decay 0.05)
|
41 |
+
- Learning rate: 5e-5
|
42 |
+
- Epochs: 10
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
48 |
+
import torch
|
49 |
+
|
50 |
+
# Load model and tokenizer
|
51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
model_name = "oscarwu/Llama-3.2-3B-CLEAR"
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
model_name,
|
57 |
+
torch_dtype=torch.float16
|
58 |
+
).to(device)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
# Example query
|
64 |
+
query = "I live in Burwood (Vic) and want details on renewable energy initiatives. Are solar farms planned?"
|
65 |
+
|
66 |
+
# Format prompt
|
67 |
+
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Your response must be a valid JSON object, strictly following the requested format.
|
68 |
+
### Instruction:
|
69 |
+
Extract location, topics, and search queries from Australian climate policy questions. Your response must be a valid JSON object with the following structure:
|
70 |
+
{{
|
71 |
+
"rag_queries": ["query1", "query2", "query3"], // 1-3 policy search queries
|
72 |
+
"topics": ["topic1", "topic2", "topic3"], // 1-3 climate/environment topics
|
73 |
+
"location": {{
|
74 |
+
"query_suburb": "suburb_name or null",
|
75 |
+
"query_state": "state_code or null",
|
76 |
+
"query_lga": "lga_name or null"
|
77 |
+
}}
|
78 |
+
}}
|
79 |
+
### Input:
|
80 |
+
{query}
|
81 |
+
### Response (valid JSON only):
|
82 |
+
"""
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# Generate response
|
88 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
89 |
+
outputs = model.generate(**inputs, max_new_tokens=220)
|
90 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
91 |
+
|
92 |
+
```json
|
93 |
+
|
94 |
+
{
|
95 |
+
"rag_queries": [
|
96 |
+
"What renewable energy projects are planned for Burwood?",
|
97 |
+
"Are there solar farm initiatives in Burwood Victoria?"
|
98 |
+
],
|
99 |
+
"topics": [
|
100 |
+
"renewable energy",
|
101 |
+
"solar power"
|
102 |
+
],
|
103 |
+
"location": {
|
104 |
+
"query_suburb": "Burwood",
|
105 |
+
"query_state": "VIC",
|
106 |
+
"query_lga": null
|
107 |
+
}
|
108 |
+
}
|
109 |
+
```
|
110 |
|
|