Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +28 -0
- generation_config.json +14 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00014.safetensors +3 -0
- model-00002-of-00014.safetensors +3 -0
- model-00003-of-00014.safetensors +3 -0
- model-00004-of-00014.safetensors +3 -0
- model-00005-of-00014.safetensors +3 -0
- model-00006-of-00014.safetensors +3 -0
- model-00007-of-00014.safetensors +3 -0
- model-00008-of-00014.safetensors +3 -0
- model-00009-of-00014.safetensors +3 -0
- model-00010-of-00014.safetensors +3 -0
- model-00011-of-00014.safetensors +3 -0
- model-00012-of-00014.safetensors +3 -0
- model-00013-of-00014.safetensors +3 -0
- model-00014-of-00014.safetensors +3 -0
- model.safetensors.index.json +778 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- trainer_state.json +594 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 27648,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 40,
|
16 |
+
"num_hidden_layers": 64,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 131072,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.51.0",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 152064
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.51.0"
|
14 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step80
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:631546ca695dad58a1939115f4e16d506c75d33cab6d5676d484541f5df42f39
|
3 |
+
size 4891730992
|
model-00002-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a0da25d240614f184ad8b7ff8e9c2820627ad78919336004d3f2566abcfd96
|
3 |
+
size 4876059352
|
model-00003-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9e34334673401af751e977edd64cb41f19102aff578f6e6a8c4c41bd841e54a
|
3 |
+
size 4876059384
|
model-00004-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:727f732f125912f555dbd78cb687c20cea03f5ea835441b00ee6cb973fbd4023
|
3 |
+
size 4876059416
|
model-00005-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02ff013db8e5ac23f5d225873574ce4a6ff109f865af4ef36aa753a5cf6cc7d6
|
3 |
+
size 4876059416
|
model-00006-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac7566070474ca93885144d2f823fb4e266d0b1de49500ee4315c66cd642c9f5
|
3 |
+
size 4876059416
|
model-00007-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b05f481baa92857d0057c8d3c002e8d7f1ba794a22fff57a2dfba4d47d0658df
|
3 |
+
size 4876059416
|
model-00008-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e90a2443c59261e88619557b94c3d32234a018d19d4c9f66961292c2e1ba1d0
|
3 |
+
size 4876059416
|
model-00009-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03d7dcdf816db86b8ad30f507e68913770b65ec8a378f83cee0b605d681af69c
|
3 |
+
size 4876059416
|
model-00010-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4f404f7a0456ce5f850ff6897cd15c96e891876e784e809b59b7039498cdf07
|
3 |
+
size 4876059416
|
model-00011-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77c717e5998437ede7e3cfa8c009aaa9d5653dedf9ffb895ff5b212eddea2827
|
3 |
+
size 4876059416
|
model-00012-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63e2bff149c4b30cd384508043ef6561b6e1a7246f47ab4da49b33b3afcf1912
|
3 |
+
size 4876059416
|
model-00013-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3058b784ea68a8f3025d35726499c487072360cee2b3c16e87d7bdb7b20c298
|
3 |
+
size 4876059416
|
model-00014-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6775ea218cc18d458cc0fb8c0617237a815adcea1629910b1b08912e9ac4b45a
|
3 |
+
size 2123397800
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 65527752704
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00014-of-00014.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00014.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
524 |
+
"model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
525 |
+
"model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
526 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
527 |
+
"model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
528 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
529 |
+
"model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
530 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
531 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
532 |
+
"model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
533 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
534 |
+
"model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
535 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
536 |
+
"model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
537 |
+
"model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
538 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
539 |
+
"model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
540 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
541 |
+
"model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
542 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
543 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
544 |
+
"model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
545 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
546 |
+
"model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
547 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
548 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
549 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
550 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
551 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
552 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
553 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
554 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
555 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
556 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
557 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
558 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
559 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
560 |
+
"model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
561 |
+
"model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
562 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
563 |
+
"model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
564 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
565 |
+
"model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
566 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
567 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
568 |
+
"model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
569 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
570 |
+
"model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
571 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
572 |
+
"model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
573 |
+
"model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
574 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
575 |
+
"model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
576 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
577 |
+
"model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
578 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
579 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
580 |
+
"model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
581 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
582 |
+
"model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
583 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
584 |
+
"model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
585 |
+
"model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
586 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
587 |
+
"model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
588 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
589 |
+
"model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
590 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
591 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
592 |
+
"model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
593 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
594 |
+
"model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
595 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
596 |
+
"model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
597 |
+
"model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
598 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
599 |
+
"model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
600 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
601 |
+
"model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
602 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
603 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
604 |
+
"model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
605 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
606 |
+
"model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
607 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
608 |
+
"model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
609 |
+
"model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
610 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
611 |
+
"model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
612 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
613 |
+
"model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
614 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
615 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
616 |
+
"model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
617 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
618 |
+
"model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
619 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
620 |
+
"model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
621 |
+
"model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
622 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
623 |
+
"model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
624 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
625 |
+
"model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
626 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
627 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
628 |
+
"model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
629 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
630 |
+
"model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
631 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
632 |
+
"model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
633 |
+
"model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
634 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
635 |
+
"model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
636 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
637 |
+
"model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
638 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
639 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
640 |
+
"model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
641 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
642 |
+
"model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
643 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
644 |
+
"model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
645 |
+
"model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
646 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
647 |
+
"model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
648 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
649 |
+
"model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
650 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
651 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
652 |
+
"model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
653 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
654 |
+
"model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
655 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
656 |
+
"model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
657 |
+
"model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
658 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
659 |
+
"model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
660 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
661 |
+
"model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
662 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
663 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
664 |
+
"model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
665 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
666 |
+
"model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
667 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
668 |
+
"model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
669 |
+
"model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
670 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
671 |
+
"model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
672 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
673 |
+
"model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
674 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
675 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
676 |
+
"model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
677 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
678 |
+
"model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
679 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
680 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
681 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
682 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
683 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
684 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
685 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
686 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
687 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
688 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
689 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
690 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
691 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
692 |
+
"model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
693 |
+
"model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
694 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
695 |
+
"model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
696 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
697 |
+
"model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
698 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
699 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
700 |
+
"model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
701 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
702 |
+
"model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
703 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
704 |
+
"model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
705 |
+
"model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
706 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
707 |
+
"model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
708 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
709 |
+
"model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
710 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
711 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
712 |
+
"model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
713 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
714 |
+
"model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
715 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
716 |
+
"model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
717 |
+
"model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
718 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
719 |
+
"model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
720 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
721 |
+
"model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
722 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
723 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
724 |
+
"model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
725 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
726 |
+
"model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
727 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
728 |
+
"model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
729 |
+
"model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
730 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
731 |
+
"model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
732 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
733 |
+
"model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
734 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
735 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
736 |
+
"model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
737 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
738 |
+
"model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
739 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
740 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
741 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
742 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
743 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
744 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
745 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
746 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
747 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
748 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
749 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
750 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
751 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
752 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
753 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
754 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
755 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
756 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
757 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
758 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
759 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
760 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
761 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
762 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
763 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
764 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
765 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
766 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
767 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
768 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
769 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
770 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
771 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
772 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
773 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
774 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
775 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
776 |
+
"model.norm.weight": "model-00014-of-00014.safetensors"
|
777 |
+
}
|
778 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77a2616d7ee98b358af84eafc60e7653e699e8981b0f0b5e7dfe3018c1e59ce9
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "right",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.3716608594657375,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 80,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.004645760743321719,
|
14 |
+
"grad_norm": 5.007833918054177,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.3559,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.009291521486643438,
|
21 |
+
"grad_norm": 6.095402413693695,
|
22 |
+
"learning_rate": 2.3255813953488374e-07,
|
23 |
+
"loss": 0.4478,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.013937282229965157,
|
28 |
+
"grad_norm": 5.711860921252622,
|
29 |
+
"learning_rate": 4.651162790697675e-07,
|
30 |
+
"loss": 0.4202,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.018583042973286876,
|
35 |
+
"grad_norm": 4.919598888513217,
|
36 |
+
"learning_rate": 6.976744186046513e-07,
|
37 |
+
"loss": 0.3667,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.023228803716608595,
|
42 |
+
"grad_norm": 5.323101120637421,
|
43 |
+
"learning_rate": 9.30232558139535e-07,
|
44 |
+
"loss": 0.392,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.027874564459930314,
|
49 |
+
"grad_norm": 4.825973626019842,
|
50 |
+
"learning_rate": 1.1627906976744188e-06,
|
51 |
+
"loss": 0.3745,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.032520325203252036,
|
56 |
+
"grad_norm": 4.722030575751275,
|
57 |
+
"learning_rate": 1.3953488372093025e-06,
|
58 |
+
"loss": 0.372,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.03716608594657375,
|
63 |
+
"grad_norm": 3.204008987512321,
|
64 |
+
"learning_rate": 1.6279069767441862e-06,
|
65 |
+
"loss": 0.3266,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.041811846689895474,
|
70 |
+
"grad_norm": 3.462779060517298,
|
71 |
+
"learning_rate": 1.86046511627907e-06,
|
72 |
+
"loss": 0.3531,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.04645760743321719,
|
77 |
+
"grad_norm": 2.2912708740881493,
|
78 |
+
"learning_rate": 2.0930232558139536e-06,
|
79 |
+
"loss": 0.2766,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.05110336817653891,
|
84 |
+
"grad_norm": 2.360020281101277,
|
85 |
+
"learning_rate": 2.3255813953488376e-06,
|
86 |
+
"loss": 0.2708,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.05574912891986063,
|
91 |
+
"grad_norm": 2.210016095359394,
|
92 |
+
"learning_rate": 2.558139534883721e-06,
|
93 |
+
"loss": 0.2772,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.06039488966318235,
|
98 |
+
"grad_norm": 2.0430891492298042,
|
99 |
+
"learning_rate": 2.790697674418605e-06,
|
100 |
+
"loss": 0.2116,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.06504065040650407,
|
105 |
+
"grad_norm": 1.1937018297310904,
|
106 |
+
"learning_rate": 3.0232558139534885e-06,
|
107 |
+
"loss": 0.1785,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.06968641114982578,
|
112 |
+
"grad_norm": 2.293421959275872,
|
113 |
+
"learning_rate": 3.2558139534883724e-06,
|
114 |
+
"loss": 0.162,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.0743321718931475,
|
119 |
+
"grad_norm": 2.491793718040822,
|
120 |
+
"learning_rate": 3.4883720930232564e-06,
|
121 |
+
"loss": 0.1625,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.07897793263646923,
|
126 |
+
"grad_norm": 1.0576667987718384,
|
127 |
+
"learning_rate": 3.72093023255814e-06,
|
128 |
+
"loss": 0.2098,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.08362369337979095,
|
133 |
+
"grad_norm": 1.3362976538502087,
|
134 |
+
"learning_rate": 3.953488372093024e-06,
|
135 |
+
"loss": 0.2079,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.08826945412311266,
|
140 |
+
"grad_norm": 0.8210443873224946,
|
141 |
+
"learning_rate": 4.186046511627907e-06,
|
142 |
+
"loss": 0.1393,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.09291521486643438,
|
147 |
+
"grad_norm": 1.3763061922656377,
|
148 |
+
"learning_rate": 4.418604651162791e-06,
|
149 |
+
"loss": 0.1836,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.0975609756097561,
|
154 |
+
"grad_norm": 0.8540487861144667,
|
155 |
+
"learning_rate": 4.651162790697675e-06,
|
156 |
+
"loss": 0.1726,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.10220673635307782,
|
161 |
+
"grad_norm": 0.9965597925413834,
|
162 |
+
"learning_rate": 4.883720930232559e-06,
|
163 |
+
"loss": 0.1594,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.10685249709639953,
|
168 |
+
"grad_norm": 0.8124932586870112,
|
169 |
+
"learning_rate": 5.116279069767442e-06,
|
170 |
+
"loss": 0.1645,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.11149825783972125,
|
175 |
+
"grad_norm": 0.765248257044288,
|
176 |
+
"learning_rate": 5.348837209302326e-06,
|
177 |
+
"loss": 0.1689,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.11614401858304298,
|
182 |
+
"grad_norm": 0.6535802502844509,
|
183 |
+
"learning_rate": 5.58139534883721e-06,
|
184 |
+
"loss": 0.1221,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1207897793263647,
|
189 |
+
"grad_norm": 0.9332551865412465,
|
190 |
+
"learning_rate": 5.8139534883720935e-06,
|
191 |
+
"loss": 0.1441,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1254355400696864,
|
196 |
+
"grad_norm": 0.6281977004298958,
|
197 |
+
"learning_rate": 6.046511627906977e-06,
|
198 |
+
"loss": 0.145,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.13008130081300814,
|
203 |
+
"grad_norm": 0.6506862696473351,
|
204 |
+
"learning_rate": 6.279069767441861e-06,
|
205 |
+
"loss": 0.143,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.13472706155632985,
|
210 |
+
"grad_norm": 0.5925406859408308,
|
211 |
+
"learning_rate": 6.511627906976745e-06,
|
212 |
+
"loss": 0.114,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.13937282229965156,
|
217 |
+
"grad_norm": 0.6169180678569642,
|
218 |
+
"learning_rate": 6.744186046511628e-06,
|
219 |
+
"loss": 0.1468,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.1440185830429733,
|
224 |
+
"grad_norm": 0.6614089477540361,
|
225 |
+
"learning_rate": 6.976744186046513e-06,
|
226 |
+
"loss": 0.1499,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.148664343786295,
|
231 |
+
"grad_norm": 0.5308532041753055,
|
232 |
+
"learning_rate": 7.209302325581395e-06,
|
233 |
+
"loss": 0.1215,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.15331010452961671,
|
238 |
+
"grad_norm": 0.5280217992451164,
|
239 |
+
"learning_rate": 7.44186046511628e-06,
|
240 |
+
"loss": 0.1152,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.15795586527293845,
|
245 |
+
"grad_norm": 0.5648689606705951,
|
246 |
+
"learning_rate": 7.674418604651164e-06,
|
247 |
+
"loss": 0.1272,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.16260162601626016,
|
252 |
+
"grad_norm": 0.6245478572825075,
|
253 |
+
"learning_rate": 7.906976744186048e-06,
|
254 |
+
"loss": 0.1239,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.1672473867595819,
|
259 |
+
"grad_norm": 0.5730808630246532,
|
260 |
+
"learning_rate": 8.139534883720931e-06,
|
261 |
+
"loss": 0.1471,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.1718931475029036,
|
266 |
+
"grad_norm": 0.8015364328717397,
|
267 |
+
"learning_rate": 8.372093023255815e-06,
|
268 |
+
"loss": 0.1294,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.1765389082462253,
|
273 |
+
"grad_norm": 0.5068324361347291,
|
274 |
+
"learning_rate": 8.604651162790698e-06,
|
275 |
+
"loss": 0.1143,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.18118466898954705,
|
280 |
+
"grad_norm": 0.43809350886606024,
|
281 |
+
"learning_rate": 8.837209302325582e-06,
|
282 |
+
"loss": 0.1036,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.18583042973286876,
|
287 |
+
"grad_norm": 0.6474622607168083,
|
288 |
+
"learning_rate": 9.069767441860465e-06,
|
289 |
+
"loss": 0.1293,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.19047619047619047,
|
294 |
+
"grad_norm": 0.398228005633473,
|
295 |
+
"learning_rate": 9.30232558139535e-06,
|
296 |
+
"loss": 0.0795,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.1951219512195122,
|
301 |
+
"grad_norm": 0.5722673746771715,
|
302 |
+
"learning_rate": 9.534883720930234e-06,
|
303 |
+
"loss": 0.1195,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.1997677119628339,
|
308 |
+
"grad_norm": 0.6387829720867708,
|
309 |
+
"learning_rate": 9.767441860465117e-06,
|
310 |
+
"loss": 0.0944,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.20441347270615565,
|
315 |
+
"grad_norm": 0.7262386990022901,
|
316 |
+
"learning_rate": 1e-05,
|
317 |
+
"loss": 0.1238,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.20905923344947736,
|
322 |
+
"grad_norm": 0.6415131233839582,
|
323 |
+
"learning_rate": 9.999835253787472e-06,
|
324 |
+
"loss": 0.0962,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.21370499419279906,
|
329 |
+
"grad_norm": 0.49038910043998885,
|
330 |
+
"learning_rate": 9.99934102600642e-06,
|
331 |
+
"loss": 0.1138,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.2183507549361208,
|
336 |
+
"grad_norm": 0.4998657774910992,
|
337 |
+
"learning_rate": 9.998517349225698e-06,
|
338 |
+
"loss": 0.1167,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.2229965156794425,
|
343 |
+
"grad_norm": 0.5526423671759817,
|
344 |
+
"learning_rate": 9.997364277724362e-06,
|
345 |
+
"loss": 0.1139,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.22764227642276422,
|
350 |
+
"grad_norm": 0.6758176165629011,
|
351 |
+
"learning_rate": 9.99588188748808e-06,
|
352 |
+
"loss": 0.1228,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.23228803716608595,
|
357 |
+
"grad_norm": 0.4301604798832004,
|
358 |
+
"learning_rate": 9.994070276204115e-06,
|
359 |
+
"loss": 0.1064,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.23693379790940766,
|
364 |
+
"grad_norm": 0.46902072966952235,
|
365 |
+
"learning_rate": 9.991929563254913e-06,
|
366 |
+
"loss": 0.1108,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2415795586527294,
|
371 |
+
"grad_norm": 0.4794902114805145,
|
372 |
+
"learning_rate": 9.989459889710214e-06,
|
373 |
+
"loss": 0.1186,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.2462253193960511,
|
378 |
+
"grad_norm": 0.5285811649673939,
|
379 |
+
"learning_rate": 9.986661418317759e-06,
|
380 |
+
"loss": 0.1122,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.2508710801393728,
|
385 |
+
"grad_norm": 0.47633553231292913,
|
386 |
+
"learning_rate": 9.983534333492575e-06,
|
387 |
+
"loss": 0.1082,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.25551684088269455,
|
392 |
+
"grad_norm": 0.44801729878550234,
|
393 |
+
"learning_rate": 9.980078841304817e-06,
|
394 |
+
"loss": 0.099,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.2601626016260163,
|
399 |
+
"grad_norm": 0.5171140926967782,
|
400 |
+
"learning_rate": 9.97629516946618e-06,
|
401 |
+
"loss": 0.1325,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.26480836236933797,
|
406 |
+
"grad_norm": 0.5256667140476758,
|
407 |
+
"learning_rate": 9.97218356731491e-06,
|
408 |
+
"loss": 0.1182,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.2694541231126597,
|
413 |
+
"grad_norm": 0.5021698137895357,
|
414 |
+
"learning_rate": 9.967744305799358e-06,
|
415 |
+
"loss": 0.116,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.27409988385598144,
|
420 |
+
"grad_norm": 0.4524730076882164,
|
421 |
+
"learning_rate": 9.962977677460132e-06,
|
422 |
+
"loss": 0.105,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.2787456445993031,
|
427 |
+
"grad_norm": 0.4865312647490816,
|
428 |
+
"learning_rate": 9.957883996410821e-06,
|
429 |
+
"loss": 0.0996,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.28339140534262486,
|
434 |
+
"grad_norm": 0.6154932122623457,
|
435 |
+
"learning_rate": 9.952463598317286e-06,
|
436 |
+
"loss": 0.1032,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.2880371660859466,
|
441 |
+
"grad_norm": 0.5720328273849398,
|
442 |
+
"learning_rate": 9.946716840375552e-06,
|
443 |
+
"loss": 0.1235,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.2926829268292683,
|
448 |
+
"grad_norm": 0.5353383236460627,
|
449 |
+
"learning_rate": 9.940644101288259e-06,
|
450 |
+
"loss": 0.1319,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.29732868757259,
|
455 |
+
"grad_norm": 0.5699498931307571,
|
456 |
+
"learning_rate": 9.934245781239714e-06,
|
457 |
+
"loss": 0.1222,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.30197444831591175,
|
462 |
+
"grad_norm": 0.5041655852014973,
|
463 |
+
"learning_rate": 9.927522301869515e-06,
|
464 |
+
"loss": 0.1185,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.30662020905923343,
|
469 |
+
"grad_norm": 0.560593382940921,
|
470 |
+
"learning_rate": 9.920474106244764e-06,
|
471 |
+
"loss": 0.1258,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.31126596980255516,
|
476 |
+
"grad_norm": 0.47113303080753793,
|
477 |
+
"learning_rate": 9.913101658830879e-06,
|
478 |
+
"loss": 0.0992,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.3159117305458769,
|
483 |
+
"grad_norm": 0.4949311762244736,
|
484 |
+
"learning_rate": 9.905405445460972e-06,
|
485 |
+
"loss": 0.1086,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.3205574912891986,
|
490 |
+
"grad_norm": 0.5118809629828459,
|
491 |
+
"learning_rate": 9.897385973303845e-06,
|
492 |
+
"loss": 0.1115,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.3252032520325203,
|
497 |
+
"grad_norm": 0.45743773717890135,
|
498 |
+
"learning_rate": 9.889043770830566e-06,
|
499 |
+
"loss": 0.0981,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.32984901277584205,
|
504 |
+
"grad_norm": 0.41235204595203667,
|
505 |
+
"learning_rate": 9.880379387779637e-06,
|
506 |
+
"loss": 0.0966,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.3344947735191638,
|
511 |
+
"grad_norm": 0.4726483178511245,
|
512 |
+
"learning_rate": 9.871393395120774e-06,
|
513 |
+
"loss": 0.0956,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.33914053426248547,
|
518 |
+
"grad_norm": 0.4601067106108247,
|
519 |
+
"learning_rate": 9.862086385017283e-06,
|
520 |
+
"loss": 0.0988,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.3437862950058072,
|
525 |
+
"grad_norm": 0.4731203086011778,
|
526 |
+
"learning_rate": 9.852458970787027e-06,
|
527 |
+
"loss": 0.1149,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.34843205574912894,
|
532 |
+
"grad_norm": 0.5764782890777245,
|
533 |
+
"learning_rate": 9.842511786862018e-06,
|
534 |
+
"loss": 0.1327,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.3530778164924506,
|
539 |
+
"grad_norm": 0.48832588953944156,
|
540 |
+
"learning_rate": 9.832245488746612e-06,
|
541 |
+
"loss": 0.1019,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.35772357723577236,
|
546 |
+
"grad_norm": 0.44229595011423917,
|
547 |
+
"learning_rate": 9.821660752974294e-06,
|
548 |
+
"loss": 0.1067,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.3623693379790941,
|
553 |
+
"grad_norm": 0.4796942954547918,
|
554 |
+
"learning_rate": 9.81075827706312e-06,
|
555 |
+
"loss": 0.0825,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.3670150987224158,
|
560 |
+
"grad_norm": 0.40318849008254065,
|
561 |
+
"learning_rate": 9.799538779469734e-06,
|
562 |
+
"loss": 0.0998,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.3716608594657375,
|
567 |
+
"grad_norm": 0.5193073119324224,
|
568 |
+
"learning_rate": 9.78800299954203e-06,
|
569 |
+
"loss": 0.0857,
|
570 |
+
"step": 80
|
571 |
+
}
|
572 |
+
],
|
573 |
+
"logging_steps": 1,
|
574 |
+
"max_steps": 430,
|
575 |
+
"num_input_tokens_seen": 0,
|
576 |
+
"num_train_epochs": 2,
|
577 |
+
"save_steps": 20,
|
578 |
+
"stateful_callbacks": {
|
579 |
+
"TrainerControl": {
|
580 |
+
"args": {
|
581 |
+
"should_epoch_stop": false,
|
582 |
+
"should_evaluate": false,
|
583 |
+
"should_log": false,
|
584 |
+
"should_save": true,
|
585 |
+
"should_training_stop": false
|
586 |
+
},
|
587 |
+
"attributes": {}
|
588 |
+
}
|
589 |
+
},
|
590 |
+
"total_flos": 2.063277885531095e+17,
|
591 |
+
"train_batch_size": 1,
|
592 |
+
"trial_name": null,
|
593 |
+
"trial_params": null
|
594 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:450456e6c9ea7aadde8a24663b2c35fd8f3a76c20e05ccbcff28530de308f101
|
3 |
+
size 7800
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|