Papers
arxiv:1806.05298

Apuntes de Redes Neuronales Artificiales

Published on Jun 13, 2018

Abstract

These handouts are designed for people who is just starting involved with the topic artificial neural networks. We show how it works a single artificial neuron (McCulloch & Pitt model), mathematically and graphically. We do explain the delta rule, a learning algorithm to find the neuron weights. We also present some examples in MATLAB/Octave. There are examples for classification task for lineal and non-lineal problems. At the end, we present an artificial neural network, a feed-forward neural network along its learning algorithm backpropagation. ----- Estos apuntes est\'an dise\~nados para personas que por primera vez se introducen en el tema de las redes neuronales artificiales. Se muestra el funcionamiento b\'asico de una neurona, matem\'aticamente y gr\'aficamente. Se explica la Regla Delta, algoritmo deaprendizaje para encontrar los pesos de una neurona. Tambi\'en se muestran ejemplos en MATLAB/Octave. Hay ejemplos para problemas de clasificaci\'on, para problemas lineales y no-lineales. En la parte final se muestra la arquitectura de red neuronal artificial conocida como backpropagation.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1806.05298 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1806.05298 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1806.05298 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.