MCPVerse: An Expansive, Real-World Benchmark for Agentic Tool Use
Abstract
MCPVerse, a real-world benchmark with over 550 tools and 140k tokens, evaluates LLMs' agentic tool use, highlighting performance differences and establishing a critical standard for advancement.
Large Language Models (LLMs) are evolving from text generators into reasoning agents. This transition makes their ability to use external tools a critical capability. However, evaluating this skill presents a significant challenge. Existing benchmarks are often limited by their reliance on synthetic tools and severely constrained action spaces. To address these limitations, we introduce MCPVerse, an expansive, real-world benchmark for evaluating agentic tool use. MCPVerse integrates more than 550 real-world, executable tools to create an unprecedented action space exceeding 140k tokens, and employs outcome-based evaluation with real-time ground truth for time-sensitive tasks. We benchmarked the state-of-the-art LLMs across three modes (Oracle, Standard, and Max-Scale), revealing that while most models suffer performance degradation when confronted with larger tool sets, the agentic models, such as Claude-4-Sonnet, can effectively leverage expanded exploration spaces to improve accuracy. This finding not only exposes the limitations of state-of-the-art models in complex, real-world scenarios but also establishes MCPVerse as a critical benchmark for measuring and advancing agentic tool use capabilities.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper