Recall-Extend Dynamics: Enhancing Small Language Models through Controlled Exploration and Refined Offline Integration
Abstract
RED enhances small language models by balancing offline distillation and online reinforcement learning, addressing exploration and distribution discrepancies.
Many existing studies have achieved significant improvements in the reasoning capabilities of large language models (LLMs) through reinforcement learning with verifiable rewards (RLVR), while the enhancement of reasoning abilities in small language models (SLMs) has not yet been sufficiently explored. Combining distilled data from larger models with RLVR on small models themselves is a natural approach, but it still faces various challenges and issues. Therefore, we propose \underline{R}ecall-\underline{E}xtend \underline{D}ynamics(RED): Enhancing Small Language Models through Controlled Exploration and Refined Offline Integration. In this paper, we explore the perspective of varying exploration spaces, balancing offline distillation with online reinforcement learning. Simultaneously, we specifically design and optimize for the insertion problem within offline data. By monitoring the ratio of entropy changes in the model concerning offline and online data, we regulate the weight of offline-SFT, thereby addressing the issues of insufficient exploration space in small models and the redundancy and complexity during the distillation process. Furthermore, to tackle the distribution discrepancies between offline data and the current policy, we design a sample-accuracy-based policy shift mechanism that dynamically chooses between imitating offline distilled data and learning from its own policy.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper