- Pre-Training BERT on Arabic Tweets: Practical Considerations Pretraining Bidirectional Encoder Representations from Transformers (BERT) for downstream NLP tasks is a non-trival task. We pretrained 5 BERT models that differ in the size of their training sets, mixture of formal and informal Arabic, and linguistic preprocessing. All are intended to support Arabic dialects and social media. The experiments highlight the centrality of data diversity and the efficacy of linguistically aware segmentation. They also highlight that more data or more training step do not necessitate better models. Our new models achieve new state-of-the-art results on several downstream tasks. The resulting models are released to the community under the name QARiB. 5 authors · Feb 21, 2021
- ASAD: A Twitter-based Benchmark Arabic Sentiment Analysis Dataset This paper provides a detailed description of a new Twitter-based benchmark dataset for Arabic Sentiment Analysis (ASAD), which is launched in a competition3, sponsored by KAUST for awarding 10000 USD, 5000 USD and 2000 USD to the first, second and third place winners, respectively. Compared to other publicly released Arabic datasets, ASAD is a large, high-quality annotated dataset(including 95K tweets), with three-class sentiment labels (positive, negative and neutral). We presents the details of the data collection process and annotation process. In addition, we implement several baseline models for the competition task and report the results as a reference for the participants to the competition. 7 authors · Nov 1, 2020
2 Native vs Non-Native Language Prompting: A Comparative Analysis Large language models (LLMs) have shown remarkable abilities in different fields, including standard Natural Language Processing (NLP) tasks. To elicit knowledge from LLMs, prompts play a key role, consisting of natural language instructions. Most open and closed source LLMs are trained on available labeled and unlabeled resources--digital content such as text, images, audio, and videos. Hence, these models have better knowledge for high-resourced languages but struggle with low-resourced languages. Since prompts play a crucial role in understanding their capabilities, the language used for prompts remains an important research question. Although there has been significant research in this area, it is still limited, and less has been explored for medium to low-resourced languages. In this study, we investigate different prompting strategies (native vs. non-native) on 11 different NLP tasks associated with 12 different Arabic datasets (9.7K data points). In total, we conducted 197 experiments involving 3 LLMs, 12 datasets, and 3 prompting strategies. Our findings suggest that, on average, the non-native prompt performs the best, followed by mixed and native prompts. 6 authors · Sep 11, 2024
1 SARD: A Large-Scale Synthetic Arabic OCR Dataset for Book-Style Text Recognition Arabic Optical Character Recognition (OCR) is essential for converting vast amounts of Arabic print media into digital formats. However, training modern OCR models, especially powerful vision-language models, is hampered by the lack of large, diverse, and well-structured datasets that mimic real-world book layouts. Existing Arabic OCR datasets often focus on isolated words or lines or are limited in scale, typographic variety, or structural complexity found in books. To address this significant gap, we introduce SARD (Large-Scale Synthetic Arabic OCR Dataset). SARD is a massive, synthetically generated dataset specifically designed to simulate book-style documents. It comprises 843,622 document images containing 690 million words, rendered across ten distinct Arabic fonts to ensure broad typographic coverage. Unlike datasets derived from scanned documents, SARD is free from real-world noise and distortions, offering a clean and controlled environment for model training. Its synthetic nature provides unparalleled scalability and allows for precise control over layout and content variation. We detail the dataset's composition and generation process and provide benchmark results for several OCR models, including traditional and deep learning approaches, highlighting the challenges and opportunities presented by this dataset. SARD serves as a valuable resource for developing and evaluating robust OCR and vision-language models capable of processing diverse Arabic book-style texts. 5 authors · May 30
4 From Guidelines to Practice: A New Paradigm for Arabic Language Model Evaluation This paper addresses critical gaps in Arabic language model evaluation by establishing comprehensive theoretical guidelines and introducing a novel evaluation framework. We first analyze existing Arabic evaluation datasets, identifying significant issues in linguistic accuracy, cultural alignment, and methodological rigor. To address these limitations in LLMs, we present the Arabic Depth Mini Dataset (ADMD), a carefully curated collection of 490 challenging questions spanning ten major domains (42 sub-domains, see Figure 1. Using ADMD, we evaluate five leading language models: GPT-4, Claude 3.5 Sonnet, Gemini Flash 1.5, CommandR 100B, and Qwen-Max. Our results reveal significant variations in model performance across different domains, with particular challenges in areas requiring deep cultural understanding and specialized knowledge. Claude 3.5 Sonnet demonstrated the highest overall accuracy at 30\%, showing relative strength in mathematical theory in Arabic, Arabic language, and islamic domains. This work provides both theoretical foundations and practical insights for improving Arabic language model evaluation, emphasizing the importance of cultural competence alongside technical capabilities. 6 authors · Jun 2 3
1 HATFormer: Historic Handwritten Arabic Text Recognition with Transformers Arabic handwritten text recognition (HTR) is challenging, especially for historical texts, due to diverse writing styles and the intrinsic features of Arabic script. Additionally, Arabic handwriting datasets are smaller compared to English ones, making it difficult to train generalizable Arabic HTR models. To address these challenges, we propose HATFormer, a transformer-based encoder-decoder architecture that builds on a state-of-the-art English HTR model. By leveraging the transformer's attention mechanism, HATFormer captures spatial contextual information to address the intrinsic challenges of Arabic script through differentiating cursive characters, decomposing visual representations, and identifying diacritics. Our customization to historical handwritten Arabic includes an image processor for effective ViT information preprocessing, a text tokenizer for compact Arabic text representation, and a training pipeline that accounts for a limited amount of historic Arabic handwriting data. HATFormer achieves a character error rate (CER) of 8.6% on the largest public historical handwritten Arabic dataset, with a 51% improvement over the best baseline in the literature. HATFormer also attains a comparable CER of 4.2% on the largest private non-historical dataset. Our work demonstrates the feasibility of adapting an English HTR method to a low-resource language with complex, language-specific challenges, contributing to advancements in document digitization, information retrieval, and cultural preservation. 5 authors · Oct 2, 2024
- Masader: Metadata Sourcing for Arabic Text and Speech Data Resources The NLP pipeline has evolved dramatically in the last few years. The first step in the pipeline is to find suitable annotated datasets to evaluate the tasks we are trying to solve. Unfortunately, most of the published datasets lack metadata annotations that describe their attributes. Not to mention, the absence of a public catalogue that indexes all the publicly available datasets related to specific regions or languages. When we consider low-resource dialectical languages, for example, this issue becomes more prominent. In this paper we create Masader, the largest public catalogue for Arabic NLP datasets, which consists of 200 datasets annotated with 25 attributes. Furthermore, We develop a metadata annotation strategy that could be extended to other languages. We also make remarks and highlight some issues about the current status of Arabic NLP datasets and suggest recommendations to address them. 4 authors · Oct 13, 2021
3 GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Matryoshka Representation Learning and Hybrid Loss Training Semantic textual similarity (STS) is a critical task in natural language processing (NLP), enabling applications in retrieval, clustering, and understanding semantic relationships between texts. However, research in this area for the Arabic language remains limited due to the lack of high-quality datasets and pre-trained models. This scarcity of resources has restricted the accurate evaluation and advance of semantic similarity in Arabic text. This paper introduces General Arabic Text Embedding (GATE) models that achieve state-of-the-art performance on the Semantic Textual Similarity task within the MTEB benchmark. GATE leverages Matryoshka Representation Learning and a hybrid loss training approach with Arabic triplet datasets for Natural Language Inference, which are essential for enhancing model performance in tasks that demand fine-grained semantic understanding. GATE outperforms larger models, including OpenAI, with a 20-25% performance improvement on STS benchmarks, effectively capturing the unique semantic nuances of Arabic. 6 authors · May 30 2
- MyVoice: Arabic Speech Resource Collaboration Platform We introduce MyVoice, a crowdsourcing platform designed to collect Arabic speech to enhance dialectal speech technologies. This platform offers an opportunity to design large dialectal speech datasets; and makes them publicly available. MyVoice allows contributors to select city/country-level fine-grained dialect and record the displayed utterances. Users can switch roles between contributors and annotators. The platform incorporates a quality assurance system that filters out low-quality and spurious recordings before sending them for validation. During the validation phase, contributors can assess the quality of recordings, annotate them, and provide feedback which is then reviewed by administrators. Furthermore, the platform offers flexibility to admin roles to add new data or tasks beyond dialectal speech and word collection, which are displayed to contributors. Thus, enabling collaborative efforts in gathering diverse and large Arabic speech data. 4 authors · Jul 23, 2023
2 MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community. 3 authors · May 26 1
2 Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce our dataset, a year-long community-driven project covering all 22 Arab countries. The dataset includes instructions (input, response pairs) in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world, all of whom are authors of this paper, our dataset offers a broad, inclusive perspective. We use our dataset to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations. For instance, while closed-source LLMs generally exhibit strong performance, they are not without flaws, and smaller open-source models face greater challenges. Moreover, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data for reproducibility are publicly available. 44 authors · Feb 28
6 101 Billion Arabic Words Dataset In recent years, Large Language Models have revolutionized the field of natural language processing, showcasing an impressive rise predominantly in English-centric domains. These advancements have set a global benchmark, inspiring significant efforts toward developing Arabic LLMs capable of understanding and generating the Arabic language with remarkable accuracy. Despite these advancements, a critical challenge persists: the potential bias in Arabic LLMs, primarily attributed to their reliance on datasets comprising English data that has been translated into Arabic. This reliance not only compromises the authenticity of the generated content but also reflects a broader issue -the scarcity of original quality Arabic linguistic data. This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models that are true to both the linguistic and nuances of the region. We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files, specifically targeting Arabic content. The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset. The result is the 101 Billion Arabic Words Dataset, the largest Arabic dataset available to date, which can significantly contribute to the development of authentic Arabic LLMs. This study not only highlights the potential for creating linguistically and culturally accurate Arabic LLMs but also sets a precedent for future research in enhancing the authenticity of Arabic language models. 5 authors · Apr 29, 2024
- ArabicaQA: A Comprehensive Dataset for Arabic Question Answering In this paper, we address the significant gap in Arabic natural language processing (NLP) resources by introducing ArabicaQA, the first large-scale dataset for machine reading comprehension and open-domain question answering in Arabic. This comprehensive dataset, consisting of 89,095 answerable and 3,701 unanswerable questions created by crowdworkers to look similar to answerable ones, along with additional labels of open-domain questions marks a crucial advancement in Arabic NLP resources. We also present AraDPR, the first dense passage retrieval model trained on the Arabic Wikipedia corpus, specifically designed to tackle the unique challenges of Arabic text retrieval. Furthermore, our study includes extensive benchmarking of large language models (LLMs) for Arabic question answering, critically evaluating their performance in the Arabic language context. In conclusion, ArabicaQA, AraDPR, and the benchmarking of LLMs in Arabic question answering offer significant advancements in the field of Arabic NLP. The dataset and code are publicly accessible for further research https://github.com/DataScienceUIBK/ArabicaQA. 7 authors · Mar 26, 2024
6 Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning This work presents a novel framework for training Arabic nested embedding models through Matryoshka Embedding Learning, leveraging multilingual, Arabic-specific, and English-based models, to highlight the power of nested embeddings models in various Arabic NLP downstream tasks. Our innovative contribution includes the translation of various sentence similarity datasets into Arabic, enabling a comprehensive evaluation framework to compare these models across different dimensions. We trained several nested embedding models on the Arabic Natural Language Inference triplet dataset and assessed their performance using multiple evaluation metrics, including Pearson and Spearman correlations for cosine similarity, Manhattan distance, Euclidean distance, and dot product similarity. The results demonstrate the superior performance of the Matryoshka embedding models, particularly in capturing semantic nuances unique to the Arabic language. Results demonstrated that Arabic Matryoshka embedding models have superior performance in capturing semantic nuances unique to the Arabic language, significantly outperforming traditional models by up to 20-25\% across various similarity metrics. These results underscore the effectiveness of language-specific training and highlight the potential of Matryoshka models in enhancing semantic textual similarity tasks for Arabic NLP. 2 authors · Jul 30, 2024 2
220 Mutarjim: Advancing Bidirectional Arabic-English Translation with a Small Language Model We introduce Mutarjim, a compact yet powerful language model for bidirectional Arabic-English translation. While large-scale LLMs have shown impressive progress in natural language processing tasks, including machine translation, smaller models. Leveraging this insight, we developed Mutarjim based on Kuwain-1.5B , a language model tailored for both Arabic and English. Despite its modest size, Mutarjim outperforms much larger models on several established benchmarks, achieved through an optimized two-phase training approach and a carefully curated, high-quality training corpus.. Experimental results show that Mutarjim rivals models up to 20 times larger while significantly reducing computational costs and training requirements. We also introduce Tarjama-25, a new benchmark designed to overcome limitations in existing Arabic-English benchmarking datasets, such as domain narrowness, short sentence lengths, and English-source bias. Tarjama-25 comprises 5,000 expert-reviewed sentence pairs and spans a wide range of domains, offering a more comprehensive and balanced evaluation framework. Notably, Mutarjim achieves state-of-the-art performance on the English-to-Arabic task in Tarjama-25, surpassing even significantly larger and proprietary models like GPT-4o mini. We publicly release Tarjama-25 to support future research and advance the evaluation of Arabic-English translation systems. 6 authors · May 23 7
- Context-Gloss Augmentation for Improving Arabic Target Sense Verification Arabic language lacks semantic datasets and sense inventories. The most common semantically-labeled dataset for Arabic is the ArabGlossBERT, a relatively small dataset that consists of 167K context-gloss pairs (about 60K positive and 107K negative pairs), collected from Arabic dictionaries. This paper presents an enrichment to the ArabGlossBERT dataset, by augmenting it using (Arabic-English-Arabic) machine back-translation. Augmentation increased the dataset size to 352K pairs (149K positive and 203K negative pairs). We measure the impact of augmentation using different data configurations to fine-tune BERT on target sense verification (TSV) task. Overall, the accuracy ranges between 78% to 84% for different data configurations. Although our approach performed at par with the baseline, we did observe some improvements for some POS tags in some experiments. Furthermore, our fine-tuned models are trained on a larger dataset covering larger vocabulary and contexts. We provide an in-depth analysis of the accuracy for each part-of-speech (POS). 3 authors · Feb 6, 2023
- ARCOQ: Arabic Closest Opposite Questions Dataset This paper presents a dataset for closest opposite questions in Arabic language. The dataset is the first of its kind for the Arabic language. It is beneficial for the assessment of systems on the aspect of antonymy detection. The structure is similar to that of the Graduate Record Examination (GRE) closest opposite questions dataset for the English language. The introduced dataset consists of 500 questions, each contains a query word for which the closest opposite needs to be determined from among a set of candidate words. Each question is also associated with the correct answer. We publish the dataset publicly in addition to providing standard splits of the dataset into development and test sets. Moreover, the paper provides a benchmark for the performance of different Arabic word embedding models on the introduced dataset. 3 authors · Oct 22, 2023
- Casablanca: Data and Models for Multidialectal Arabic Speech Recognition In spite of the recent progress in speech processing, the majority of world languages and dialects remain uncovered. This situation only furthers an already wide technological divide, thereby hindering technological and socioeconomic inclusion. This challenge is largely due to the absence of datasets that can empower diverse speech systems. In this paper, we seek to mitigate this obstacle for a number of Arabic dialects by presenting Casablanca, a large-scale community-driven effort to collect and transcribe a multi-dialectal Arabic dataset. The dataset covers eight dialects: Algerian, Egyptian, Emirati, Jordanian, Mauritanian, Moroccan, Palestinian, and Yemeni, and includes annotations for transcription, gender, dialect, and code-switching. We also develop a number of strong baselines exploiting Casablanca. The project page for Casablanca is accessible at: www.dlnlp.ai/speech/casablanca. 27 authors · Oct 6, 2024
- Ashaar: Automatic Analysis and Generation of Arabic Poetry Using Deep Learning Approaches Poetry holds immense significance within the cultural and traditional fabric of any nation. It serves as a vehicle for poets to articulate their emotions, preserve customs, and convey the essence of their culture. Arabic poetry is no exception, having played a cherished role in the heritage of the Arabic community throughout history and maintaining its relevance in the present era. Typically, comprehending Arabic poetry necessitates the expertise of a linguist who can analyze its content and assess its quality. This paper presents the introduction of a framework called Ashaar https://github.com/ARBML/Ashaar, which encompasses a collection of datasets and pre-trained models designed specifically for the analysis and generation of Arabic poetry. The pipeline established within our proposed approach encompasses various aspects of poetry, such as meter, theme, and era classification. It also incorporates automatic poetry diacritization, enabling more intricate analyses like automated extraction of the Arudi style. Additionally, we explore the feasibility of generating conditional poetry through the pre-training of a character-based GPT model. Furthermore, as part of this endeavor, we provide four datasets: one for poetry generation, another for diacritization, and two for Arudi-style prediction. These datasets aim to facilitate research and development in the field of Arabic poetry by enabling researchers and enthusiasts to delve into the nuances of this rich literary tradition. 3 authors · Jul 12, 2023
- Commonsense Reasoning in Arab Culture Despite progress in Arabic large language models, such as Jais and AceGPT, their evaluation on commonsense reasoning has largely relied on machine-translated datasets, which lack cultural depth and may introduce Anglocentric biases. Commonsense reasoning is shaped by geographical and cultural contexts, and existing English datasets fail to capture the diversity of the Arab world. To address this, we introduce \datasetname, a commonsense reasoning dataset in Modern Standard Arabic (MSA), covering cultures of 13 countries across the Gulf, Levant, North Africa, and the Nile Valley. The dataset was built from scratch by engaging native speakers to write and validate culturally relevant questions for their respective countries. \datasetname spans 12 daily life domains with 54 fine-grained subtopics, reflecting various aspects of social norms, traditions, and everyday experiences. Zero-shot evaluations show that open-weight language models with up to 32B parameters struggle to comprehend diverse Arab cultures, with performance varying across regions. These findings highlight the need for more culturally aware models and datasets tailored to the Arabic-speaking world. 10 authors · Feb 18
2 Muharaf: Manuscripts of Handwritten Arabic Dataset for Cursive Text Recognition We present the Manuscripts of Handwritten Arabic~(Muharaf) dataset, which is a machine learning dataset consisting of more than 1,600 historic handwritten page images transcribed by experts in archival Arabic. Each document image is accompanied by spatial polygonal coordinates of its text lines as well as basic page elements. This dataset was compiled to advance the state of the art in handwritten text recognition (HTR), not only for Arabic manuscripts but also for cursive text in general. The Muharaf dataset includes diverse handwriting styles and a wide range of document types, including personal letters, diaries, notes, poems, church records, and legal correspondences. In this paper, we describe the data acquisition pipeline, notable dataset features, and statistics. We also provide a preliminary baseline result achieved by training convolutional neural networks using this data. 9 authors · Jun 13, 2024
- Arabic Offensive Language on Twitter: Analysis and Experiments Detecting offensive language on Twitter has many applications ranging from detecting/predicting bullying to measuring polarization. In this paper, we focus on building a large Arabic offensive tweet dataset. We introduce a method for building a dataset that is not biased by topic, dialect, or target. We produce the largest Arabic dataset to date with special tags for vulgarity and hate speech. We thoroughly analyze the dataset to determine which topics, dialects, and gender are most associated with offensive tweets and how Arabic speakers use offensive language. Lastly, we conduct many experiments to produce strong results (F1 = 83.2) on the dataset using SOTA techniques. 5 authors · Apr 5, 2020
21 ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation Classical Arabic represents a significant era, encompassing the golden age of Arab culture, philosophy, and scientific literature. With a broad consensus on the importance of translating these literatures to enrich knowledge dissemination across communities, the advent of large language models (LLMs) and translation systems offers promising tools to facilitate this goal. However, we have identified a scarcity of translation datasets in Classical Arabic, which are often limited in scope and topics, hindering the development of high-quality translation systems. In response, we present the ATHAR dataset, comprising 66,000 high-quality Classical Arabic to English translation samples that cover a wide array of subjects including science, culture, and philosophy. Furthermore, we assess the performance of current state-of-the-art LLMs under various settings, concluding that there is a need for such datasets in current systems. Our findings highlight how models can benefit from fine-tuning or incorporating this dataset into their pretraining pipelines. The dataset is publicly available on the HuggingFace Data Hub at https://huggingface.co/datasets/mohamed-khalil/ATHAR. 2 authors · Jul 29, 2024 1
- GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning Large language models (LLMs) have greatly impacted the natural language processing (NLP) field, particularly for the English language. These models have demonstrated capabilities in understanding and generating human-like text. The success of language models largely depends on the availability of high-quality instruction datasets, which consist of detailed task descriptions and corresponding responses that are essential for training the models to address a variety of prompts accurately. However, the availability and quality of these resources vary by language. While models perform well in English, they often need help with languages like Arabic, due to the lack of datasets for fine-tuning Arabic-specific tasks. To address this issue, we introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content that covers several domains and instruction types. We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality. Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks. These outcomes emphasize the effectiveness of our dataset in elevating the capabilities of language models for Arabic. Our instruction dataset bridges the performance gap between English and Arabic language models by providing resources that amplify Arabic NLP development. Building on this foundation, we developed a model, GemmAr-7B-V1, specifically tuned to excel at a wide range of Arabic NLP tasks. 6 authors · Jul 2, 2024
- ASMDD: Arabic Speech Mispronunciation Detection Dataset The largest dataset of Arabic speech mispronunciation detections in Egyptian dialogues is introduced. The dataset is composed of annotated audio files representing the top 100 words that are most frequently used in the Arabic language, pronounced by 100 Egyptian children (aged between 2 and 8 years old). The dataset is collected and annotated on segmental pronunciation error detections by expert listeners. 3 authors · Nov 1, 2021
1 LinTO Audio and Textual Datasets to Train and Evaluate Automatic Speech Recognition in Tunisian Arabic Dialect Developing Automatic Speech Recognition (ASR) systems for Tunisian Arabic Dialect is challenging due to the dialect's linguistic complexity and the scarcity of annotated speech datasets. To address these challenges, we propose the LinTO audio and textual datasets -- comprehensive resources that capture phonological and lexical features of Tunisian Arabic Dialect. These datasets include a variety of texts from numerous sources and real-world audio samples featuring diverse speakers and code-switching between Tunisian Arabic Dialect and English or French. By providing high-quality audio paired with precise transcriptions, the LinTO audio and textual datasets aim to provide qualitative material to build and benchmark ASR systems for the Tunisian Arabic Dialect. Keywords -- Tunisian Arabic Dialect, Speech-to-Text, Low-Resource Languages, Audio Data Augmentation 3 authors · Apr 3
- Arabic Dialect Identification in the Wild We present QADI, an automatically collected dataset of tweets belonging to a wide range of country-level Arabic dialects -covering 18 different countries in the Middle East and North Africa region. Our method for building this dataset relies on applying multiple filters to identify users who belong to different countries based on their account descriptions and to eliminate tweets that are either written in Modern Standard Arabic or contain inappropriate language. The resultant dataset contains 540k tweets from 2,525 users who are evenly distributed across 18 Arab countries. Using intrinsic evaluation, we show that the labels of a set of randomly selected tweets are 91.5% accurate. For extrinsic evaluation, we are able to build effective country-level dialect identification on tweets with a macro-averaged F1-score of 60.6% across 18 classes. 5 authors · May 13, 2020
- Arabic Text Diacritization Using Deep Neural Networks Diacritization of Arabic text is both an interesting and a challenging problem at the same time with various applications ranging from speech synthesis to helping students learning the Arabic language. Like many other tasks or problems in Arabic language processing, the weak efforts invested into this problem and the lack of available (open-source) resources hinder the progress towards solving this problem. This work provides a critical review for the currently existing systems, measures and resources for Arabic text diacritization. Moreover, it introduces a much-needed free-for-all cleaned dataset that can be easily used to benchmark any work on Arabic diacritization. Extracted from the Tashkeela Corpus, the dataset consists of 55K lines containing about 2.3M words. After constructing the dataset, existing tools and systems are tested on it. The results of the experiments show that the neural Shakkala system significantly outperforms traditional rule-based approaches and other closed-source tools with a Diacritic Error Rate (DER) of 2.88% compared with 13.78%, which the best DER for the non-neural approach (obtained by the Mishkal tool). 4 authors · Apr 25, 2019
6 Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition Wikipedia articles (content pages) are commonly used corpora in Natural Language Processing (NLP) research, especially in low-resource languages other than English. Yet, a few research studies have studied the three Arabic Wikipedia editions, Arabic Wikipedia (AR), Egyptian Arabic Wikipedia (ARZ), and Moroccan Arabic Wikipedia (ARY), and documented issues in the Egyptian Arabic Wikipedia edition regarding the massive automatic creation of its articles using template-based translation from English to Arabic without human involvement, overwhelming the Egyptian Arabic Wikipedia with articles that do not only have low-quality content but also with articles that do not represent the Egyptian people, their culture, and their dialect. In this paper, we aim to mitigate the problem of template translation that occurred in the Egyptian Arabic Wikipedia by identifying these template-translated articles and their characteristics through exploratory analysis and building automatic detection systems. We first explore the content of the three Arabic Wikipedia editions in terms of density, quality, and human contributions and utilize the resulting insights to build multivariate machine learning classifiers leveraging articles' metadata to detect the template-translated articles automatically. We then publicly deploy and host the best-performing classifier, XGBoost, as an online application called EGYPTIAN WIKIPEDIA SCANNER and release the extracted, filtered, and labeled datasets to the research community to benefit from our datasets and the online, web-based detection system. 5 authors · Mar 31, 2024
3 LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content Large Language Models (LLMs) have demonstrated remarkable success as general-purpose task solvers across various fields, including NLP, healthcare, finance, and law. However, their capabilities remain limited when addressing domain-specific problems, particularly in downstream NLP tasks. Research has shown that models fine-tuned on instruction-based downstream NLP datasets outperform those that are not fine-tuned. While most efforts in this area have primarily focused on resource-rich languages like English and broad domains, little attention has been given to multilingual settings and specific domains. To address this gap, this study focuses on developing a specialized LLM, LlamaLens, for analyzing news and social media content in a multilingual context. To the best of our knowledge, this is the first attempt to tackle both domain specificity and multilinguality, with a particular focus on news and social media. Our experimental setup includes 19 tasks, represented by 52 datasets covering Arabic, English, and Hindi. We demonstrate that LlamaLens outperforms the current state-of-the-art (SOTA) on 16 testing sets, and achieves comparable performance on 10 sets. We make the models and resources publicly available for the research community.(https://huggingface.co/QCRI) 6 authors · Oct 20, 2024
8 Advancing Arabic Reverse Dictionary Systems: A Transformer-Based Approach with Dataset Construction Guidelines This study addresses the critical gap in Arabic natural language processing by developing an effective Arabic Reverse Dictionary (RD) system that enables users to find words based on their descriptions or meanings. We present a novel transformer-based approach with a semi-encoder neural network architecture featuring geometrically decreasing layers that achieves state-of-the-art results for Arabic RD tasks. Our methodology incorporates a comprehensive dataset construction process and establishes formal quality standards for Arabic lexicographic definitions. Experiments with various pre-trained models demonstrate that Arabic-specific models significantly outperform general multilingual embeddings, with ARBERTv2 achieving the best ranking score (0.0644). Additionally, we provide a formal abstraction of the reverse dictionary task that enhances theoretical understanding and develop a modular, extensible Python library (RDTL) with configurable training pipelines. Our analysis of dataset quality reveals important insights for improving Arabic definition construction, leading to eight specific standards for building high-quality reverse dictionary resources. This work contributes significantly to Arabic computational linguistics and provides valuable tools for language learning, academic writing, and professional communication in Arabic. 7 authors · Apr 30 2
- Arabic Dialect Classification using RNNs, Transformers, and Large Language Models: A Comparative Analysis The Arabic language is among the most popular languages in the world with a huge variety of dialects spoken in 22 countries. In this study, we address the problem of classifying 18 Arabic dialects of the QADI dataset of Arabic tweets. RNN models, Transformer models, and large language models (LLMs) via prompt engineering are created and tested. Among these, MARBERTv2 performed best with 65% accuracy and 64% F1-score. Through the use of state-of-the-art preprocessing techniques and the latest NLP models, this paper identifies the most significant linguistic issues in Arabic dialect identification. The results corroborate applications like personalized chatbots that respond in users' dialects, social media monitoring, and greater accessibility for Arabic communities. 4 authors · Jun 24
- ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets Sentiment analysis is a highly subjective and challenging task. Its complexity further increases when applied to the Arabic language, mainly because of the large variety of dialects that are unstandardized and widely used in the Web, especially in social media. While many datasets have been released to train sentiment classifiers in Arabic, most of these datasets contain shallow annotation, only marking the sentiment of the text unit, as a word, a sentence or a document. In this paper, we present the Arabic Sentiment Twitter Dataset for the Levantine dialect (ArSenTD-LEV). Based on findings from analyzing tweets from the Levant region, we created a dataset of 4,000 tweets with the following annotations: the overall sentiment of the tweet, the target to which the sentiment was expressed, how the sentiment was expressed, and the topic of the tweet. Results confirm the importance of these annotations at improving the performance of a baseline sentiment classifier. They also confirm the gap of training in a certain domain, and testing in another domain. 5 authors · May 25, 2019
- Is this sentence valid? An Arabic Dataset for Commonsense Validation The commonsense understanding and validation remains a challenging task in the field of natural language understanding. Therefore, several research papers have been published that studied the capability of proposed systems to evaluate the models ability to validate commonsense in text. In this paper, we present a benchmark Arabic dataset for commonsense understanding and validation as well as a baseline research and models trained using the same dataset. To the best of our knowledge, this dataset is considered as the first in the field of Arabic text commonsense validation. The dataset is distributed under the Creative Commons BY-SA 4.0 license and can be found on GitHub. 2 authors · Aug 25, 2020
- HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/. 12 authors · Jul 10, 2024
- QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. 4 authors · Jun 24, 2021
- RGB Arabic Alphabets Sign Language Dataset This paper introduces the RGB Arabic Alphabet Sign Language (AASL) dataset. AASL comprises 7,856 raw and fully labelled RGB images of the Arabic sign language alphabets, which to our best knowledge is the first publicly available RGB dataset. The dataset is aimed to help those interested in developing real-life Arabic sign language classification models. AASL was collected from more than 200 participants and with different settings such as lighting, background, image orientation, image size, and image resolution. Experts in the field supervised, validated and filtered the collected images to ensure a high-quality dataset. AASL is made available to the public on Kaggle. 7 authors · Jan 30, 2023
4 Swan and ArabicMTEB: Dialect-Aware, Arabic-Centric, Cross-Lingual, and Cross-Cultural Embedding Models and Benchmarks We introduce Swan, a family of embedding models centred around the Arabic language, addressing both small-scale and large-scale use cases. Swan includes two variants: Swan-Small, based on ARBERTv2, and Swan-Large, built on ArMistral, a pretrained Arabic large language model. To evaluate these models, we propose ArabicMTEB, a comprehensive benchmark suite that assesses cross-lingual, multi-dialectal, multi-domain, and multi-cultural Arabic text embedding performance, covering eight diverse tasks and spanning 94 datasets. Swan-Large achieves state-of-the-art results, outperforming Multilingual-E5-large in most Arabic tasks, while the Swan-Small consistently surpasses Multilingual-E5 base. Our extensive evaluations demonstrate that Swan models are both dialectally and culturally aware, excelling across various Arabic domains while offering significant monetary efficiency. This work significantly advances the field of Arabic language modelling and provides valuable resources for future research and applications in Arabic natural language processing. Our models and benchmark will be made publicly accessible for research. 5 authors · Nov 2, 2024 3
- An Amharic News Text classification Dataset In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments. 2 authors · Mar 10, 2021
1 On the importance of Data Scale in Pretraining Arabic Language Models Pretraining monolingual language models have been proven to be vital for performance in Arabic Natural Language Processing (NLP) tasks. In this paper, we conduct a comprehensive study on the role of data in Arabic Pretrained Language Models (PLMs). More precisely, we reassess the performance of a suite of state-of-the-art Arabic PLMs by retraining them on massive-scale, high-quality Arabic corpora. We have significantly improved the performance of the leading Arabic encoder-only BERT-base and encoder-decoder T5-base models on the ALUE and ORCA leaderboards, thereby reporting state-of-the-art results in their respective model categories. In addition, our analysis strongly suggests that pretraining data by far is the primary contributor to performance, surpassing other factors. Our models and source code are publicly available at https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch. 4 authors · Jan 15, 2024
2 Enhanced Arabic Text Retrieval with Attentive Relevance Scoring Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at https://github.com/Bekhouche/APR{GitHub}. 5 authors · Jul 31 2
- ArBanking77: Intent Detection Neural Model and a New Dataset in Modern and Dialectical Arabic This paper presents the ArBanking77, a large Arabic dataset for intent detection in the banking domain. Our dataset was arabized and localized from the original English Banking77 dataset, which consists of 13,083 queries to ArBanking77 dataset with 31,404 queries in both Modern Standard Arabic (MSA) and Palestinian dialect, with each query classified into one of the 77 classes (intents). Furthermore, we present a neural model, based on AraBERT, fine-tuned on ArBanking77, which achieved an F1-score of 0.9209 and 0.8995 on MSA and Palestinian dialect, respectively. We performed extensive experimentation in which we simulated low-resource settings, where the model is trained on a subset of the data and augmented with noisy queries to simulate colloquial terms, mistakes and misspellings found in real NLP systems, especially live chat queries. The data and the models are publicly available at https://sina.birzeit.edu/arbanking77. 5 authors · Oct 29, 2023
- Arabic Automatic Story Generation with Large Language Models Large language models (LLMs) have recently emerged as a powerful tool for a wide range of language generation tasks. Nevertheless, this progress has been slower in Arabic. In this work, we focus on the task of generating stories from LLMs. For our training, we use stories acquired through machine translation (MT) as well as GPT-4. For the MT data, we develop a careful pipeline that ensures we acquire high-quality stories. For our GPT-41 data, we introduce crafted prompts that allow us to generate data well-suited to the Arabic context in both Modern Standard Arabic (MSA) and two Arabic dialects (Egyptian and Moroccan). For example, we generate stories tailored to various Arab countries on a wide host of topics. Our manual evaluation shows that our model fine-tuned on these training datasets can generate coherent stories that adhere to our instructions. We also conduct an extensive automatic and human evaluation comparing our models against state-of-the-art proprietary and open-source models. Our datasets and models will be made publicly available at https: //github.com/UBC-NLP/arastories. 3 authors · Jul 10, 2024
- AraDIC: Arabic Document Classification using Image-Based Character Embeddings and Class-Balanced Loss Classical and some deep learning techniques for Arabic text classification often depend on complex morphological analysis, word segmentation, and hand-crafted feature engineering. These could be eliminated by using character-level features. We propose a novel end-to-end Arabic document classification framework, Arabic document image-based classifier (AraDIC), inspired by the work on image-based character embeddings. AraDIC consists of an image-based character encoder and a classifier. They are trained in an end-to-end fashion using the class balanced loss to deal with the long-tailed data distribution problem. To evaluate the effectiveness of AraDIC, we created and published two datasets, the Arabic Wikipedia title (AWT) dataset and the Arabic poetry (AraP) dataset. To the best of our knowledge, this is the first image-based character embedding framework addressing the problem of Arabic text classification. We also present the first deep learning-based text classifier widely evaluated on modern standard Arabic, colloquial Arabic and classical Arabic. AraDIC shows performance improvement over classical and deep learning baselines by 12.29% and 23.05% for the micro and macro F-score, respectively. 3 authors · Jun 20, 2020
- Command R7B Arabic: A Small, Enterprise Focused, Multilingual, and Culturally Aware Arabic LLM Building high-quality large language models (LLMs) for enterprise Arabic applications remains challenging due to the limited availability of digitized Arabic data. In this work, we present a data synthesis and refinement strategy to help address this problem, namely, by leveraging synthetic data generation and human-in-the-loop annotation to expand our Arabic training corpus. We further present our iterative post training recipe that is essential to achieving state-of-the-art performance in aligning the model with human preferences, a critical aspect to enterprise use cases. The culmination of this effort is the release of a small, 7B, open-weight model that outperforms similarly sized peers in head-to-head comparisons and on Arabic-focused benchmarks covering cultural knowledge, instruction following, RAG, and contextual faithfulness. 12 authors · Mar 18
- The Evolution of Darija Open Dataset: Introducing Version 2 Darija Open Dataset (DODa) represents an open-source project aimed at enhancing Natural Language Processing capabilities for the Moroccan dialect, Darija. With approximately 100,000 entries, DODa stands as the largest collaborative project of its kind for Darija-English translation. The dataset features semantic and syntactic categorizations, variations in spelling, verb conjugations across multiple tenses, as well as tens of thousands of translated sentences. The dataset includes entries written in both Latin and Arabic alphabets, reflecting the linguistic variations and preferences found in different sources and applications. The availability of such dataset is critical for developing applications that can accurately understand and generate Darija, thus supporting the linguistic needs of the Moroccan community and potentially extending to similar dialects in neighboring regions. This paper explores the strategic importance of DODa, its current achievements, and the envisioned future enhancements that will continue to promote its use and expansion in the global NLP landscape. 2 authors · May 14, 2024
- Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages. 1 authors · Dec 5, 2023
- AraSTEM: A Native Arabic Multiple Choice Question Benchmark for Evaluating LLMs Knowledge In STEM Subjects Large Language Models (LLMs) have shown remarkable capabilities, not only in generating human-like text, but also in acquiring knowledge. This highlights the need to go beyond the typical Natural Language Processing downstream benchmarks and asses the various aspects of LLMs including knowledge and reasoning. Numerous benchmarks have been developed to evaluate LLMs knowledge, but they predominantly focus on the English language. Given that many LLMs are multilingual, relying solely on benchmarking English knowledge is insufficient. To address this issue, we introduce AraSTEM, a new Arabic multiple-choice question dataset aimed at evaluating LLMs knowledge in STEM subjects. The dataset spans a range of topics at different levels which requires models to demonstrate a deep understanding of scientific Arabic in order to achieve high accuracy. Our findings show that publicly available models of varying sizes struggle with this dataset, and underscores the need for more localized language models. The dataset is freely accessible on Hugging Face. 8 authors · Dec 31, 2024
7 CIDAR: Culturally Relevant Instruction Dataset For Arabic Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias significantly impacts the linguistic structures of non-English languages such as Arabic, which has a distinct grammar reflective of the diverse cultures across the Arab region. This paper addresses this limitation by introducing CIDAR: https://hf.co/datasets/arbml/CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers. CIDAR contains 10,000 instruction and output pairs that represent the Arab region. We discuss the cultural relevance of CIDAR via the analysis and comparison to other models fine-tuned on other datasets. Our experiments show that CIDAR can help enrich research efforts in aligning LLMs with the Arabic culture. All the code is available at https://github.com/ARBML/CIDAR. 12 authors · Feb 5, 2024 1
3 Arabic-Nougat: Fine-Tuning Vision Transformers for Arabic OCR and Markdown Extraction We present Arabic-Nougat, a suite of OCR models for converting Arabic book pages into structured Markdown text. Based on Meta's Nougat architecture, Arabic-Nougat includes three specialized models: arabic-small-nougat, arabic-base-nougat, and arabic-large-nougat. These models are fine-tuned on a synthetic dataset, arabic-img2md, comprising 13.7k pairs of Arabic book pages and their Markdown representations. Key contributions include the Aranizer-PBE-86k tokenizer, designed for efficient tokenization, and the use of torch.bfloat16 precision with Flash Attention 2 for optimized training and inference. Our models achieve state-of-the-art performance, with arabic-large-nougat delivering the highest Markdown Structure Accuracy and the lowest Character Error Rate. Additionally, we release a large-scale dataset containing 1.1 billion Arabic tokens extracted from over 8,500 books using our best-performing model, providing a valuable resource for Arabic OCR research. All models, datasets, and code are open-sourced and available at https://github.com/MohamedAliRashad/arabic-nougat. 1 authors · Nov 19, 2024 2
- Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly. 14 authors · May 21, 2022
- ArMeme: Propagandistic Content in Arabic Memes With the rise of digital communication, memes have become a significant medium for cultural and political expression that is often used to mislead audiences. Identification of such misleading and persuasive multimodal content has become more important among various stakeholders, including social media platforms, policymakers, and the broader society as they often cause harm to individuals, organizations, and/or society. While there has been effort to develop AI-based automatic systems for resource-rich languages (e.g., English), it is relatively little to none for medium to low resource languages. In this study, we focused on developing an Arabic memes dataset with manual annotations of propagandistic content. We annotated ~6K Arabic memes collected from various social media platforms, which is a first resource for Arabic multimodal research. We provide a comprehensive analysis aiming to develop computational tools for their detection. We will make them publicly available for the community. 5 authors · Jun 6, 2024
- AraSpider: Democratizing Arabic-to-SQL This study presents AraSpider, the first Arabic version of the Spider dataset, aimed at improving natural language processing (NLP) in the Arabic-speaking community. Four multilingual translation models were tested for their effectiveness in translating English to Arabic. Additionally, two models were assessed for their ability to generate SQL queries from Arabic text. The results showed that using back translation significantly improved the performance of both ChatGPT 3.5 and SQLCoder models, which are considered top performers on the Spider dataset. Notably, ChatGPT 3.5 demonstrated high-quality translation, while SQLCoder excelled in text-to-SQL tasks. The study underscores the importance of incorporating contextual schema and employing back translation strategies to enhance model performance in Arabic NLP tasks. Moreover, the provision of detailed methodologies for reproducibility and translation of the dataset into other languages highlights the research's commitment to promoting transparency and collaborative knowledge sharing in the field. Overall, these contributions advance NLP research, empower Arabic-speaking researchers, and enrich the global discourse on language comprehension and database interrogation. 3 authors · Feb 12, 2024
- AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages Africa is home to over 2000 languages from over six language families and has the highest linguistic diversity among all continents. This includes 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial in enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, which consists of 14 sentiment datasets of 110,000+ tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a) from four language families annotated by native speakers. The data is used in SemEval 2023 Task 12, the first Afro-centric SemEval shared task. We describe the data collection methodology, annotation process, and related challenges when curating each of the datasets. We conduct experiments with different sentiment classification baselines and discuss their usefulness. We hope AfriSenti enables new work on under-represented languages. The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023 and can also be loaded as a huggingface datasets (https://huggingface.co/datasets/shmuhammad/AfriSenti). 26 authors · Feb 17, 2023
- AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on dialect comprehension and generation, focusing specifically on low-resource Arabic dialects. Additionally, we introduce the first-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions, providing a novel dimension to LLM evaluation. Our findings demonstrate that while Arabic-specific models like Jais and AceGPT outperform multilingual models on dialectal tasks, significant challenges persist in dialect identification, generation, and translation. This work contributes ~45K post-edited samples, a cultural benchmark, and highlights the importance of tailored training to improve LLM performance in capturing the nuances of diverse Arabic dialects and cultural contexts. We will release the dialectal translation models and benchmarks curated in this study. 9 authors · Sep 17, 2024
- GLARE: Google Apps Arabic Reviews Dataset This paper introduces GLARE an Arabic Apps Reviews dataset collected from Saudi Google PlayStore. It consists of 76M reviews, 69M of which are Arabic reviews of 9,980 Android Applications. We present the data collection methodology, along with a detailed Exploratory Data Analysis (EDA) and Feature Engineering on the gathered reviews. We also highlight possible use cases and benefits of the dataset. 4 authors · Dec 16, 2024
- To Distill or Not to Distill? On the Robustness of Robust Knowledge Distillation Arabic is known to present unique challenges for Automatic Speech Recognition (ASR). On one hand, its rich linguistic diversity and wide range of dialects complicate the development of robust, inclusive models. On the other, current multilingual ASR models are compute-intensive and lack proper comprehensive evaluations. In light of these challenges, we distill knowledge from large teacher models into smaller student variants that are more efficient. We also introduce a novel human-annotated dataset covering five under-represented Arabic dialects for evaluation. We further evaluate both our models and existing SoTA multilingual models on both standard available benchmarks and our new dialectal data. Our best-distilled model's overall performance (45.0\% WER) surpasses that of a SoTA model twice its size (SeamlessM4T-large-v2, WER=47.0\%) and its teacher model (Whisper-large-v2, WER=55.1\%), and its average performance on our new dialectal data (56.9\% WER) outperforms all other models. To gain more insight into the poor performance of these models on dialectal data, we conduct an error analysis and report the main types of errors the different models tend to make. The GitHub repository for the project is available at https://github.com/UBC-NLP/distill-whisper-ar. 3 authors · Jun 6, 2024
1 The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks. 5 authors · Mar 11, 2021
3 AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding Advances in English language representation enabled a more sample-efficient pre-training task by Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELECTRA). Which, instead of training a model to recover masked tokens, it trains a discriminator model to distinguish true input tokens from corrupted tokens that were replaced by a generator network. On the other hand, current Arabic language representation approaches rely only on pretraining via masked language modeling. In this paper, we develop an Arabic language representation model, which we name AraELECTRA. Our model is pretrained using the replaced token detection objective on large Arabic text corpora. We evaluate our model on multiple Arabic NLP tasks, including reading comprehension, sentiment analysis, and named-entity recognition and we show that AraELECTRA outperforms current state-of-the-art Arabic language representation models, given the same pretraining data and with even a smaller model size. 3 authors · Dec 31, 2020
- ArabGlossBERT: Fine-Tuning BERT on Context-Gloss Pairs for WSD Using pre-trained transformer models such as BERT has proven to be effective in many NLP tasks. This paper presents our work to fine-tune BERT models for Arabic Word Sense Disambiguation (WSD). We treated the WSD task as a sentence-pair binary classification task. First, we constructed a dataset of labeled Arabic context-gloss pairs (~167k pairs) we extracted from the Arabic Ontology and the large lexicographic database available at Birzeit University. Each pair was labeled as True or False and target words in each context were identified and annotated. Second, we used this dataset for fine-tuning three pre-trained Arabic BERT models. Third, we experimented the use of different supervised signals used to emphasize target words in context. Our experiments achieved promising results (accuracy of 84%) although we used a large set of senses in the experiment. 2 authors · May 19, 2022
- Learning meters of Arabic and English poems with Recurrent Neural Networks: a step forward for language understanding and synthesis Recognizing a piece of writing as a poem or prose is usually easy for the majority of people; however, only specialists can determine which meter a poem belongs to. In this paper, we build Recurrent Neural Network (RNN) models that can classify poems according to their meters from plain text. The input text is encoded at the character level and directly fed to the models without feature handcrafting. This is a step forward for machine understanding and synthesis of languages in general, and Arabic language in particular. Among the 16 poem meters of Arabic and the 4 meters of English the networks were able to correctly classify poem with an overall accuracy of 96.38\% and 82.31\% respectively. The poem datasets used to conduct this research were massive, over 1.5 million of verses, and were crawled from different nontechnical sources, almost Arabic and English literature sites, and in different heterogeneous and unstructured formats. These datasets are now made publicly available in clean, structured, and documented format for other future research. To the best of the authors' knowledge, this research is the first to address classifying poem meters in a machine learning approach, in general, and in RNN featureless based approach, in particular. In addition, the dataset is the first publicly available dataset ready for the purpose of future computational research. 4 authors · May 7, 2019
- Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing This paper presents a novel approach to fine-tuning the Qwen2-1.5B model for Arabic language processing using Quantized Low-Rank Adaptation (QLoRA) on a system with only 4GB VRAM. We detail the process of adapting this large language model to the Arabic domain, using diverse datasets including Bactrian, OpenAssistant, and Wikipedia Arabic corpora. Our methodology involves custom data preprocessing, model configuration, and training optimization techniques such as gradient accumulation and mixed-precision training. We address specific challenges in Arabic NLP, including morphological complexity, dialectal variations, and diacritical mark handling. Experimental results over 10,000 training steps show significant performance improvements, with the final loss converging to 0.1083. We provide comprehensive analysis of GPU memory usage, training dynamics, and model evaluation across various Arabic language tasks, including text classification, question answering, and dialect identification. The fine-tuned model demonstrates robustness to input perturbations and improved handling of Arabic-specific linguistic phenomena. This research contributes to multilingual AI by demonstrating a resource-efficient approach for creating specialized language models, potentially democratizing access to advanced NLP technologies for diverse linguistic communities. Our work paves the way for future research in low-resource language adaptation and efficient fine-tuning of large language models. 1 authors · Dec 23, 2024
- Octopus: A Multitask Model and Toolkit for Arabic Natural Language Generation Understanding Arabic text and generating human-like responses is a challenging endeavor. While many researchers have proposed models and solutions for individual problems, there is an acute shortage of a comprehensive Arabic natural language generation toolkit that is capable of handling a wide range of tasks. In this work, we present a novel Arabic text-to-text Transformer model, namely AraT5v2. Our new model is methodically trained on extensive and diverse data, utilizing an extended sequence length of 2,048 tokens. We explore various pretraining strategies including unsupervised, supervised, and joint pertaining, under both single and multitask settings. Our models outperform competitive baselines with large margins. We take our work one step further by developing and publicly releasing Octopus, a Python-based package and command-line toolkit tailored for eight Arabic generation tasks all exploiting a single model. We release the models and the toolkit on our public repository. 3 authors · Oct 24, 2023
2 Pearl: A Multimodal Culturally-Aware Arabic Instruction Dataset Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce Pearl, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 45 annotators from across the Arab world, Pearl comprises over K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks Pearl and Pearl-Lite along with a specialized subset Pearl-X explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. Pearl establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available. 45 authors · May 28
- ArEEG_Chars: Dataset for Envisioned Speech Recognition using EEG for Arabic Characters Brain-Computer-Interface (BCI) has been a hot research topic in the last few years that could help paralyzed people in their lives. Several researches were done to classify electroencephalography (EEG) signals automatically into English characters and words. Arabic language is one of the most used languages around the world. However, to the best of our knowledge, there is no dataset for Arabic characters EEG signals. In this paper, we have created an EEG dataset for Arabic characters and named it ArEEG_Chars. Moreover, several experiments were done on ArEEG_Chars using deep learning. Best results were achieved using LSTM and reached an accuracy of 97%. ArEEG_Chars dataset will be public for researchers. 4 authors · Feb 24, 2024
- Nabra: Syrian Arabic Dialects with Morphological Annotations This paper presents Nabra, a corpora of Syrian Arabic dialects with morphological annotations. A team of Syrian natives collected more than 6K sentences containing about 60K words from several sources including social media posts, scripts of movies and series, lyrics of songs and local proverbs to build Nabra. Nabra covers several local Syrian dialects including those of Aleppo, Damascus, Deir-ezzur, Hama, Homs, Huran, Latakia, Mardin, Raqqah, and Suwayda. A team of nine annotators annotated the 60K tokens with full morphological annotations across sentence contexts. We trained the annotators to follow methodological annotation guidelines to ensure unique morpheme annotations, and normalized the annotations. F1 and kappa agreement scores ranged between 74% and 98% across features, showing the excellent quality of Nabra annotations. Our corpora are open-source and publicly available as part of the Currasat portal https://sina.birzeit.edu/currasat. 5 authors · Oct 26, 2023
- Arabic Multi-Dialect Segmentation: bi-LSTM-CRF vs. SVM Arabic word segmentation is essential for a variety of NLP applications such as machine translation and information retrieval. Segmentation entails breaking words into their constituent stems, affixes and clitics. In this paper, we compare two approaches for segmenting four major Arabic dialects using only several thousand training examples for each dialect. The two approaches involve posing the problem as a ranking problem, where an SVM ranker picks the best segmentation, and as a sequence labeling problem, where a bi-LSTM RNN coupled with CRF determines where best to segment words. We are able to achieve solid segmentation results for all dialects using rather limited training data. We also show that employing Modern Standard Arabic data for domain adaptation and assuming context independence improve overall results. 7 authors · Aug 19, 2017
- Speech Resources in the Tamasheq Language In this paper we present two datasets for Tamasheq, a developing language mainly spoken in Mali and Niger. These two datasets were made available for the IWSLT 2022 low-resource speech translation track, and they consist of collections of radio recordings from daily broadcast news in Niger (Studio Kalangou) and Mali (Studio Tamani). We share (i) a massive amount of unlabeled audio data (671 hours) in five languages: French from Niger, Fulfulde, Hausa, Tamasheq and Zarma, and (ii) a smaller 17 hours parallel corpus of audio recordings in Tamasheq, with utterance-level translations in the French language. All this data is shared under the Creative Commons BY-NC-ND 3.0 license. We hope these resources will inspire the speech community to develop and benchmark models using the Tamasheq language. 7 authors · Jan 13, 2022
- Gazelle: An Instruction Dataset for Arabic Writing Assistance Writing has long been considered a hallmark of human intelligence and remains a pinnacle task for artificial intelligence (AI) due to the intricate cognitive processes involved. Recently, rapid advancements in generative AI, particularly through the development of Large Language Models (LLMs), have significantly transformed the landscape of writing assistance. However, underrepresented languages like Arabic encounter significant challenges in the development of advanced AI writing tools, largely due to the limited availability of data. This scarcity constrains the training of effective models, impeding the creation of sophisticated writing assistance technologies. To address these issues, we present Gazelle, a comprehensive dataset for Arabic writing assistance. In addition, we offer an evaluation framework designed to enhance Arabic writing assistance tools. Our human evaluation of leading LLMs, including GPT-4, GPT-4o, Cohere Command R+, and Gemini 1.5 Pro, highlights their respective strengths and limitations in addressing the challenges of Arabic writing. Our findings underscore the need for continuous model training and dataset enrichment to manage the complexities of Arabic language processing, paving the way for more effective AI-powered Arabic writing tools. 5 authors · Oct 23, 2024
3 3LM: Bridging Arabic, STEM, and Code through Benchmarking Arabic is one of the most widely spoken languages in the world, yet efforts to develop and evaluate Large Language Models (LLMs) for Arabic remain relatively limited. Most existing Arabic benchmarks focus on linguistic, cultural, or religious content, leaving a significant gap in domains like STEM and code which are increasingly relevant for real-world LLM applications. To help bridge this gap, we present 3LM, a suite of three benchmarks designed specifically for Arabic. The first is a set of STEM-related question-answer pairs, naturally sourced from Arabic textbooks and educational worksheets. The second consists of synthetically generated STEM questions, created using the same sources. The third benchmark focuses on code generation, built through a careful translation of two widely used code benchmarks, incorporating a human-in-the-loop process with several rounds of review to ensure high-quality and faithful translations. We release all three benchmarks publicly to support the growth of Arabic LLM research in these essential but underrepresented areas. 8 authors · Jul 21
- Qabas: An Open-Source Arabic Lexicographic Database We present Qabas, a novel open-source Arabic lexicon designed for NLP applications. The novelty of Qabas lies in its synthesis of 110 lexicons. Specifically, Qabas lexical entries (lemmas) are assembled by linking lemmas from 110 lexicons. Furthermore, Qabas lemmas are also linked to 12 morphologically annotated corpora (about 2M tokens), making it the first Arabic lexicon to be linked to lexicons and corpora. Qabas was developed semi-automatically, utilizing a mapping framework and a web-based tool. Compared with other lexicons, Qabas stands as the most extensive Arabic lexicon, encompassing about 58K lemmas (45K nominal lemmas, 12.5K verbal lemmas, and 473 functional-word lemmas). Qabas is open-source and accessible online at https://sina.birzeit.edu/qabas. 2 authors · Jun 6, 2024
- Google Crowdsourced Speech Corpora and Related Open-Source Resources for Low-Resource Languages and Dialects: An Overview This paper presents an overview of a program designed to address the growing need for developing freely available speech resources for under-represented languages. At present we have released 38 datasets for building text-to-speech and automatic speech recognition applications for languages and dialects of South and Southeast Asia, Africa, Europe and South America. The paper describes the methodology used for developing such corpora and presents some of our findings that could benefit under-represented language communities. 21 authors · Oct 13, 2020
- JABER and SABER: Junior and Senior Arabic BERt Language-specific pre-trained models have proven to be more accurate than multilingual ones in a monolingual evaluation setting, Arabic is no exception. However, we found that previously released Arabic BERT models were significantly under-trained. In this technical report, we present JABER and SABER, Junior and Senior Arabic BERt respectively, our pre-trained language model prototypes dedicated for Arabic. We conduct an empirical study to systematically evaluate the performance of models across a diverse set of existing Arabic NLU tasks. Experimental results show that JABER and SABER achieve state-of-the-art performances on ALUE, a new benchmark for Arabic Language Understanding Evaluation, as well as on a well-established NER benchmark. 13 authors · Dec 8, 2021
- NADI 2021: The Second Nuanced Arabic Dialect Identification Shared Task We present the findings and results of the Second Nuanced Arabic Dialect Identification Shared Task (NADI 2021). This Shared Task includes four subtasks: country-level Modern Standard Arabic (MSA) identification (Subtask 1.1), country-level dialect identification (Subtask 1.2), province-level MSA identification (Subtask 2.1), and province-level sub-dialect identification (Subtask 2.2). The shared task dataset covers a total of 100 provinces from 21 Arab countries, collected from the Twitter domain. A total of 53 teams from 23 countries registered to participate in the tasks, thus reflecting the interest of the community in this area. We received 16 submissions for Subtask 1.1 from five teams, 27 submissions for Subtask 1.2 from eight teams, 12 submissions for Subtask 2.1 from four teams, and 13 Submissions for subtask 2.2 from four teams. 5 authors · Mar 3, 2021
- ORCA: A Challenging Benchmark for Arabic Language Understanding Due to their crucial role in all NLP, several benchmarks have been proposed to evaluate pretrained language models. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluation of Arabic. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and varieties. In this work, we introduce ORCA, a publicly available benchmark for Arabic language understanding evaluation. ORCA is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets across seven NLU task clusters. To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research. 3 authors · Dec 20, 2022
29 Atlas-Chat: Adapting Large Language Models for Low-Resource Moroccan Arabic Dialect We introduce Atlas-Chat, the first-ever collection of large language models specifically developed for dialectal Arabic. Focusing on Moroccan Arabic, also known as Darija, we construct our instruction dataset by consolidating existing Darija language resources, creating novel datasets both manually and synthetically, and translating English instructions with stringent quality control. Atlas-Chat-9B and 2B models, fine-tuned on the dataset, exhibit superior ability in following Darija instructions and performing standard NLP tasks. Notably, our models outperform both state-of-the-art and Arabic-specialized LLMs like LLaMa, Jais, and AceGPT, e.g., achieving a 13% performance boost over a larger 13B model on DarijaMMLU, in our newly introduced evaluation suite for Darija covering both discriminative and generative tasks. Furthermore, we perform an experimental analysis of various fine-tuning strategies and base model choices to determine optimal configurations. All our resources are publicly accessible, and we believe our work offers comprehensive design methodologies of instruction-tuning for low-resource language variants, which are often neglected in favor of data-rich languages by contemporary LLMs. 12 authors · Sep 26, 2024 2
- MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare. 6 authors · May 6
- Taxi1500: A Multilingual Dataset for Text Classification in 1500 Languages While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue by creating a text classification dataset encompassing a large number of languages, many of which currently have little to no annotated data available. We leverage parallel translations of the Bible to construct such a dataset by first developing applicable topics and employing a crowdsourcing tool to collect annotated data. By annotating the English side of the data and projecting the labels onto other languages through aligned verses, we generate text classification datasets for more than 1500 languages. We extensively benchmark several existing multilingual language models using our dataset. To facilitate the advancement of research in this area, we will release our dataset and code. 5 authors · May 15, 2023
1 Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models The rise of social media and online communication platforms has led to the spread of Arabic textual posts and memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic text and memes. This paper explores the potential of large language models to effectively identify hope, hate speech, offensive language, and emotional expressions within such content. We evaluate the performance of base LLMs, fine-tuned LLMs, and pre-trained embedding models. The evaluation is conducted using a dataset of Arabic textual speech and memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of LLMs such as GPT-4o-mini, fine-tuned with Arabic textual speech, and Gemini Flash 2.5, fine-tuned with Arabic memes, to deliver the superior performance. They achieve up to 72.1%, 57.8%, and 79.6% macro F1 scores for tasks 1, 2, and 3, respectively, and secure first place overall in the Mahed 2025 challenge. The proposed solutions offer a more nuanced understanding of both text and memes for accurate and efficient Arabic content moderation systems. 2 authors · Aug 15
- From Arabic Text to Puzzles: LLM-Driven Development of Arabic Educational Crosswords We present an Arabic crossword puzzle generator from a given text that utilizes advanced language models such as GPT-4-Turbo, GPT-3.5-Turbo and Llama3-8B-Instruct, specifically developed for educational purposes, this innovative generator leverages a meticulously compiled dataset named Arabic-Clue-Instruct with over 50,000 entries encompassing text, answers, clues, and categories. This dataset is intricately designed to aid in the generation of pertinent clues linked to specific texts and keywords within defined categories. This project addresses the scarcity of advanced educational tools tailored for the Arabic language, promoting enhanced language learning and cognitive development. By providing a culturally and linguistically relevant tool, our objective is to make learning more engaging and effective through gamification and interactivity. Integrating state-of-the-art artificial intelligence with contemporary learning methodologies, this tool can generate crossword puzzles from any given educational text, thereby facilitating an interactive and enjoyable learning experience. This tool not only advances educational paradigms but also sets a new standard in interactive and cognitive learning technologies. The model and dataset are publicly available. 4 authors · Jan 19
- Speech Recognition Challenge in the Wild: Arabic MGB-3 This paper describes the Arabic MGB-3 Challenge - Arabic Speech Recognition in the Wild. Unlike last year's Arabic MGB-2 Challenge, for which the recognition task was based on more than 1,200 hours broadcast TV news recordings from Aljazeera Arabic TV programs, MGB-3 emphasises dialectal Arabic using a multi-genre collection of Egyptian YouTube videos. Seven genres were used for the data collection: comedy, cooking, family/kids, fashion, drama, sports, and science (TEDx). A total of 16 hours of videos, split evenly across the different genres, were divided into adaptation, development and evaluation data sets. The Arabic MGB-Challenge comprised two tasks: A) Speech transcription, evaluated on the MGB-3 test set, along with the 10 hour MGB-2 test set to report progress on the MGB-2 evaluation; B) Arabic dialect identification, introduced this year in order to distinguish between four major Arabic dialects - Egyptian, Levantine, North African, Gulf, as well as Modern Standard Arabic. Two hours of audio per dialect were released for development and a further two hours were used for evaluation. For dialect identification, both lexical features and i-vector bottleneck features were shared with participants in addition to the raw audio recordings. Overall, thirteen teams submitted ten systems to the challenge. We outline the approaches adopted in each system, and summarise the evaluation results. 3 authors · Sep 21, 2017
1 Tell me Habibi, is it Real or Fake? Deepfake generation methods are evolving fast, making fake media harder to detect and raising serious societal concerns. Most deepfake detection and dataset creation research focuses on monolingual content, often overlooking the challenges of multilingual and code-switched speech, where multiple languages are mixed within the same discourse. Code-switching, especially between Arabic and English, is common in the Arab world and is widely used in digital communication. This linguistic mixing poses extra challenges for deepfake detection, as it can confuse models trained mostly on monolingual data. To address this, we introduce ArEnAV, the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-utterance code-switching, dialectal variation, and monolingual Arabic content. It contains 387k videos and over 765 hours of real and fake videos. Our dataset is generated using a novel pipeline integrating four Text-To-Speech and two lip-sync models, enabling comprehensive analysis of multilingual multimodal deepfake detection. We benchmark our dataset against existing monolingual and multilingual datasets, state-of-the-art deepfake detection models, and a human evaluation, highlighting its potential to advance deepfake research. The dataset can be accessed https://huggingface.co/datasets/kartik060702/ArEnAV-Full{here}. 6 authors · May 28
- Improving Yorùbá Diacritic Restoration Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology. 7 authors · Mar 23, 2020
1 Can a Multichoice Dataset be Repurposed for Extractive Question Answering? The rapid evolution of Natural Language Processing (NLP) has favored major languages such as English, leaving a significant gap for many others due to limited resources. This is especially evident in the context of data annotation, a task whose importance cannot be underestimated, but which is time-consuming and costly. Thus, any dataset for resource-poor languages is precious, in particular when it is task-specific. Here, we explore the feasibility of repurposing existing datasets for a new NLP task: we repurposed the Belebele dataset (Bandarkar et al., 2023), which was designed for multiple-choice question answering (MCQA), to enable extractive QA (EQA) in the style of machine reading comprehension. We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic (MSA). We also present QA evaluation results for several monolingual and cross-lingual QA pairs including English, MSA, and five Arabic dialects. Our aim is to enable others to adapt our approach for the 120+ other language variants in Belebele, many of which are deemed under-resourced. We also conduct a thorough analysis and share our insights from the process, which we hope will contribute to a deeper understanding of the challenges and the opportunities associated with task reformulation in NLP research. 13 authors · Apr 26, 2024
- A Survey on non-English Question Answering Dataset Research in question answering datasets and models has gained a lot of attention in the research community. Many of them release their own question answering datasets as well as the models. There is tremendous progress that we have seen in this area of research. The aim of this survey is to recognize, summarize and analyze the existing datasets that have been released by many researchers, especially in non-English datasets as well as resources such as research code, and evaluation metrics. In this paper, we review question answering datasets that are available in common languages other than English such as French, German, Japanese, Chinese, Arabic, Russian, as well as the multilingual and cross-lingual question-answering datasets. 4 authors · Dec 27, 2021
1 Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks Multimodal large language models (MLLMs) have proven effective in a wide range of tasks requiring complex reasoning and linguistic comprehension. However, due to a lack of high-quality multimodal resources in languages other than English, success of MLLMs remains relatively limited to English-based settings. This poses significant challenges in developing comparable models for other languages, including even those with large speaker populations such as Arabic. To alleviate this challenge, we introduce a comprehensive family of Arabic MLLMs, dubbed Peacock, with strong vision and language capabilities. Through comprehensive qualitative and quantitative analysis, we demonstrate the solid performance of our models on various visual reasoning tasks and further show their emerging dialectal potential. Additionally, we introduce ~Henna, a new benchmark specifically designed for assessing MLLMs on aspects related to Arabic culture, setting the first stone for culturally-aware Arabic MLLMs.The GitHub repository for the Peacock project is available at https://github.com/UBC-NLP/peacock. 5 authors · Mar 1, 2024 2
3 AraBERT: Transformer-based Model for Arabic Language Understanding The Arabic language is a morphologically rich language with relatively few resources and a less explored syntax compared to English. Given these limitations, Arabic Natural Language Processing (NLP) tasks like Sentiment Analysis (SA), Named Entity Recognition (NER), and Question Answering (QA), have proven to be very challenging to tackle. Recently, with the surge of transformers based models, language-specific BERT based models have proven to be very efficient at language understanding, provided they are pre-trained on a very large corpus. Such models were able to set new standards and achieve state-of-the-art results for most NLP tasks. In this paper, we pre-trained BERT specifically for the Arabic language in the pursuit of achieving the same success that BERT did for the English language. The performance of AraBERT is compared to multilingual BERT from Google and other state-of-the-art approaches. The results showed that the newly developed AraBERT achieved state-of-the-art performance on most tested Arabic NLP tasks. The pretrained araBERT models are publicly available on https://github.com/aub-mind/arabert hoping to encourage research and applications for Arabic NLP. 3 authors · Feb 28, 2020 6
- Supporting Undotted Arabic with Pre-trained Language Models We observe a recent behaviour on social media, in which users intentionally remove consonantal dots from Arabic letters, in order to bypass content-classification algorithms. Content classification is typically done by fine-tuning pre-trained language models, which have been recently employed by many natural-language-processing applications. In this work we study the effect of applying pre-trained Arabic language models on "undotted" Arabic texts. We suggest several ways of supporting undotted texts with pre-trained models, without additional training, and measure their performance on two Arabic natural-language-processing downstream tasks. The results are encouraging; in one of the tasks our method shows nearly perfect performance. 2 authors · Nov 18, 2021
- WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0 23 authors · Jan 24
- Open Universal Arabic ASR Leaderboard In recent years, the enhanced capabilities of ASR models and the emergence of multi-dialect datasets have increasingly pushed Arabic ASR model development toward an all-dialect-in-one direction. This trend highlights the need for benchmarking studies that evaluate model performance on multiple dialects, providing the community with insights into models' generalization capabilities. In this paper, we introduce Open Universal Arabic ASR Leaderboard, a continuous benchmark project for open-source general Arabic ASR models across various multi-dialect datasets. We also provide a comprehensive analysis of the model's robustness, speaker adaptation, inference efficiency, and memory consumption. This work aims to offer the Arabic ASR community a reference for models' general performance and also establish a common evaluation framework for multi-dialectal Arabic ASR models. 3 authors · Dec 18, 2024
- Mukayese: Turkish NLP Strikes Back Having sufficient resources for language X lifts it from the under-resourced languages class, but not necessarily from the under-researched class. In this paper, we address the problem of the absence of organized benchmarks in the Turkish language. We demonstrate that languages such as Turkish are left behind the state-of-the-art in NLP applications. As a solution, we present Mukayese, a set of NLP benchmarks for the Turkish language that contains several NLP tasks. We work on one or more datasets for each benchmark and present two or more baselines. Moreover, we present four new benchmarking datasets in Turkish for language modeling, sentence segmentation, and spell checking. All datasets and baselines are available under: https://github.com/alisafaya/mukayese 4 authors · Mar 2, 2022
- 1.5 billion words Arabic Corpus This study is an attempt to build a contemporary linguistic corpus for Arabic language. The corpus produced, is a text corpus includes more than five million newspaper articles. It contains over a billion and a half words in total, out of which, there is about three million unique words. The data were collected from newspaper articles in ten major news sources from eight Arabic countries, over a period of fourteen years. The corpus was encoded with two types of encoding, namely: UTF-8, and Windows CP-1256. Also it was marked with two mark-up languages, namely: SGML, and XML. 1 authors · Nov 12, 2016
- The Arabic AI Fingerprint: Stylometric Analysis and Detection of Large Language Models Text Large Language Models (LLMs) have achieved unprecedented capabilities in generating human-like text, posing subtle yet significant challenges for information integrity across critical domains, including education, social media, and academia, enabling sophisticated misinformation campaigns, compromising healthcare guidance, and facilitating targeted propaganda. This challenge becomes severe, particularly in under-explored and low-resource languages like Arabic. This paper presents a comprehensive investigation of Arabic machine-generated text, examining multiple generation strategies (generation from the title only, content-aware generation, and text refinement) across diverse model architectures (ALLaM, Jais, Llama, and GPT-4) in academic, and social media domains. Our stylometric analysis reveals distinctive linguistic patterns differentiating human-written from machine-generated Arabic text across these varied contexts. Despite their human-like qualities, we demonstrate that LLMs produce detectable signatures in their Arabic outputs, with domain-specific characteristics that vary significantly between different contexts. Based on these insights, we developed BERT-based detection models that achieved exceptional performance in formal contexts (up to 99.9\% F1-score) with strong precision across model architectures. Our cross-domain analysis confirms generalization challenges previously reported in the literature. To the best of our knowledge, this work represents the most comprehensive investigation of Arabic machine-generated text to date, uniquely combining multiple prompt generation methods, diverse model architectures, and in-depth stylometric analysis across varied textual domains, establishing a foundation for developing robust, linguistically-informed detection systems essential for preserving information integrity in Arabic-language contexts. 2 authors · May 29
1 Fann or Flop: A Multigenre, Multiera Benchmark for Arabic Poetry Understanding in LLMs Arabic poetry is one of the richest and most culturally rooted forms of expression in the Arabic language, known for its layered meanings, stylistic diversity, and deep historical continuity. Although large language models (LLMs) have demonstrated strong performance across languages and tasks, their ability to understand Arabic poetry remains largely unexplored. In this work, we introduce Fann or Flop, the first benchmark designed to assess the comprehension of Arabic poetry by LLMs in 12 historical eras, covering 14 core poetic genres and a variety of metrical forms, from classical structures to contemporary free verse. The benchmark comprises a curated corpus of poems with explanations that assess semantic understanding, metaphor interpretation, prosodic awareness, and cultural context. We argue that poetic comprehension offers a strong indicator for testing how good the LLM understands classical Arabic through Arabic poetry. Unlike surface-level tasks, this domain demands deeper interpretive reasoning and cultural sensitivity. Our evaluation of state-of-the-art LLMs shows that most models struggle with poetic understanding despite strong results on standard Arabic benchmarks. We release "Fann or Flop" along with the evaluation suite as an open-source resource to enable rigorous evaluation and advancement for Arabic language models. Code is available at: https://github.com/mbzuai-oryx/FannOrFlop. 8 authors · May 23
- A Novel Speech Analysis and Correction Tool for Arabic-Speaking Children This paper introduces a new application named ArPA for Arabic kids who have trouble with pronunciation. Our application comprises two key components: the diagnostic module and the therapeutic module. The diagnostic process involves capturing the child's speech signal, preprocessing, and analyzing it using different machine learning classifiers like K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Decision Trees as well as deep neural network classifiers like ResNet18. The therapeutic module offers eye-catching gamified interfaces in which each correctly spoken letter earns a higher avatar level, providing positive reinforcement for the child's pronunciation improvement. Two datasets were used for experimental evaluation: one from a childcare centre and the other including Arabic alphabet pronunciation recordings. Our work uses a novel technique for speech recognition using Melspectrogram and MFCC images. The results show that the ResNet18 classifier on speech-to-image converted data effectively identifies mispronunciations in Arabic speech with an accuracy of 99.015\% with Mel-Spectrogram images outperforming ResNet18 with MFCC images. 6 authors · Nov 18, 2024
57 Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the finetuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages. In total, we contribute four key resources: we develop and open-source the Aya Annotation Platform, the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as a valuable framework for future research collaborations that aim to bridge gaps in resources. 33 authors · Feb 9, 2024 1
- AraT5: Text-to-Text Transformers for Arabic Language Generation Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects--Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with ~49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5. 3 authors · Aug 30, 2021
- ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large (~ 3.4 x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository. 3 authors · Dec 27, 2020
- Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers This paper addresses the challenge of learning to recite the Quran for non-Arabic speakers. We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process. In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets. We integrated the API into an existing mobile application called NamazApp to collect audio recitations. We developed a crowdsourcing platform called Quran Voice for annotating the gathered audio assets. As a result, we have collected around 7000 Quranic recitations from a pool of 1287 participants across more than 11 non-Arabic countries, and we have annotated 1166 recitations from the dataset in six categories. We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments. 4 authors · May 4, 2024
- JASMINE: Arabic GPT Models for Few-Shot Learning Scholarship on generative pretraining (GPT) remains acutely Anglocentric, leaving serious gaps in our understanding of the whole class of autoregressive models. For example, we have little knowledge about the potential of these models and their societal impacts in diverse linguistic and cultural settings. We alleviate this issue for Arabic, a wide collection of languages and dialectal varieties with more than 400 million population, by introducing JASMINE. JASMINE is a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-6.7 billion parameters pretrained on a large and diverse dataset (~ 235 GB of text). We also carefully design and release a comprehensive benchmark for both automated and human evaluation of Arabic autoregressive models, with coverage of potential social biases, harms, and toxicity. Using our novel benchmark, we evaluate JASMINE extensively showing powerful performance intrinsically as well as in few-shot learning on a wide range of NLP tasks. We aim to responsibly release our models and evaluation benchmark with interested researchers, along with code for experimenting with them. 5 authors · Dec 20, 2022
2 ArabianGPT: Native Arabic GPT-based Large Language Model The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP. 5 authors · Feb 23, 2024
1 Arabic Handwritten Text for Person Biometric Identification: A Deep Learning Approach This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification. 4 authors · Jun 1, 2024
1 Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC by using two newly developed Transformer-based pretrained sequence-to-sequence models. We address the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve state-of-the-art results on two Arabic GEC shared tasks datasets and establish a strong benchmark on a newly created dataset. 4 authors · May 24, 2023
- Dolphin: A Challenging and Diverse Benchmark for Arabic NLG We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several models on our benchmark, allowing us to set strong baselines against which researchers can compare. 4 authors · May 24, 2023
1 NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages Democratizing access to natural language processing (NLP) technology is crucial, especially for underrepresented and extremely low-resource languages. Previous research has focused on developing labeled and unlabeled corpora for these languages through online scraping and document translation. While these methods have proven effective and cost-efficient, we have identified limitations in the resulting corpora, including a lack of lexical diversity and cultural relevance to local communities. To address this gap, we conduct a case study on Indonesian local languages. We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets. Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content. In addition, we present the benchmark, encompassing 12 underrepresented and extremely low-resource languages spoken by millions of individuals in Indonesia. Our empirical experiment results using existing multilingual large language models conclude the need to extend these models to more underrepresented languages. We release the NusaWrites dataset at https://github.com/IndoNLP/nusa-writes. 18 authors · Sep 19, 2023
2 Datasets for Large Language Models: A Comprehensive Survey This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets. 5 authors · Feb 27, 2024 1
- AI4D -- African Language Program Advances in speech and language technologies enable tools such as voice-search, text-to-speech, speech recognition and machine translation. These are however only available for high resource languages like English, French or Chinese. Without foundational digital resources for African languages, which are considered low-resource in the digital context, these advanced tools remain out of reach. This work details the AI4D - African Language Program, a 3-part project that 1) incentivised the crowd-sourcing, collection and curation of language datasets through an online quantitative and qualitative challenge, 2) supported research fellows for a period of 3-4 months to create datasets annotated for NLP tasks, and 3) hosted competitive Machine Learning challenges on the basis of these datasets. Key outcomes of the work so far include 1) the creation of 9+ open source, African language datasets annotated for a variety of ML tasks, and 2) the creation of baseline models for these datasets through hosting of competitive ML challenges. 18 authors · Apr 6, 2021
59 Sadeed: Advancing Arabic Diacritization Through Small Language Model Arabic text diacritization remains a persistent challenge in natural language processing due to the language's morphological richness. In this paper, we introduce Sadeed, a novel approach based on a fine-tuned decoder-only language model adapted from Kuwain 1.5B Hennara et al. [2025], a compact model originally trained on diverse Arabic corpora. Sadeed is fine-tuned on carefully curated, high-quality diacritized datasets, constructed through a rigorous data-cleaning and normalization pipeline. Despite utilizing modest computational resources, Sadeed achieves competitive results compared to proprietary large language models and outperforms traditional models trained on similar domains. Additionally, we highlight key limitations in current benchmarking practices for Arabic diacritization. To address these issues, we introduce SadeedDiac-25, a new benchmark designed to enable fairer and more comprehensive evaluation across diverse text genres and complexity levels. Together, Sadeed and SadeedDiac-25 provide a robust foundation for advancing Arabic NLP applications, including machine translation, text-to-speech, and language learning tools. 6 authors · Apr 30 2
6 QARI-OCR: High-Fidelity Arabic Text Recognition through Multimodal Large Language Model Adaptation The inherent complexities of Arabic script; its cursive nature, diacritical marks (tashkeel), and varied typography, pose persistent challenges for Optical Character Recognition (OCR). We present Qari-OCR, a series of vision-language models derived from Qwen2-VL-2B-Instruct, progressively optimized for Arabic through iterative fine-tuning on specialized synthetic datasets. Our leading model, QARI v0.2, establishes a new open-source state-of-the-art with a Word Error Rate (WER) of 0.160, Character Error Rate (CER) of 0.061, and BLEU score of 0.737 on diacritically-rich texts. Qari-OCR demonstrates superior handling of tashkeel, diverse fonts, and document layouts, alongside impressive performance on low-resolution images. Further explorations (QARI v0.3) showcase strong potential for structural document understanding and handwritten text. This work delivers a marked improvement in Arabic OCR accuracy and efficiency, with all models and datasets released to foster further research. 7 authors · Jun 2 2
2 Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach achieves state-of-the-art (SOTA) results in Arabic ASR, surpassing both open and closed-source models on standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings. 6 authors · Apr 16
2 CATT: Character-based Arabic Tashkeel Transformer Tashkeel, or Arabic Text Diacritization (ATD), greatly enhances the comprehension of Arabic text by removing ambiguity and minimizing the risk of misinterpretations caused by its absence. It plays a crucial role in improving Arabic text processing, particularly in applications such as text-to-speech and machine translation. This paper introduces a new approach to training ATD models. First, we finetuned two transformers, encoder-only and encoder-decoder, that were initialized from a pretrained character-based BERT. Then, we applied the Noisy-Student approach to boost the performance of the best model. We evaluated our models alongside 11 commercial and open-source models using two manually labeled benchmark datasets: WikiNews and our CATT dataset. Our findings show that our top model surpasses all evaluated models by relative Diacritic Error Rates (DERs) of 30.83\% and 35.21\% on WikiNews and CATT, respectively, achieving state-of-the-art in ATD. In addition, we show that our model outperforms GPT-4-turbo on CATT dataset by a relative DER of 9.36\%. We open-source our CATT models and benchmark dataset for the research communityhttps://github.com/abjadai/catt. 3 authors · Jul 3, 2024
- Sina at FigNews 2024: Multilingual Datasets Annotated with Bias and Propaganda The proliferation of bias and propaganda on social media is an increasingly significant concern, leading to the development of techniques for automatic detection. This article presents a multilingual corpus of 12, 000 Facebook posts fully annotated for bias and propaganda. The corpus was created as part of the FigNews 2024 Shared Task on News Media Narratives for framing the Israeli War on Gaza. It covers various events during the War from October 7, 2023 to January 31, 2024. The corpus comprises 12, 000 posts in five languages (Arabic, Hebrew, English, French, and Hindi), with 2, 400 posts for each language. The annotation process involved 10 graduate students specializing in Law. The Inter-Annotator Agreement (IAA) was used to evaluate the annotations of the corpus, with an average IAA of 80.8% for bias and 70.15% for propaganda annotations. Our team was ranked among the bestperforming teams in both Bias and Propaganda subtasks. The corpus is open-source and available at https://sina.birzeit.edu/fada 5 authors · Jul 12, 2024
- Benchmarking Arabic AI with Large Language Models With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort by comparing FMs performance with the state-of-the-art (SOTA) task-specific models. With that goal, past work focused on the English language and included a few efforts with multiple languages. Our study contributes to ongoing research by evaluating FMs performance for standard Arabic NLP and Speech processing, including a range of tasks from sequence tagging to content classification across diverse domains. We start with zero-shot learning using GPT-3.5-turbo, Whisper, and USM, addressing 33 unique tasks using 59 publicly available datasets resulting in 96 test setups. For a few tasks, FMs performs on par or exceeds the performance of the SOTA models but for the majority it under-performs. Given the importance of prompt for the FMs performance, we discuss our prompt strategies in detail and elaborate on our findings. Our future work on Arabic AI will explore few-shot prompting, expand the range of tasks, and investigate additional open-source models. 16 authors · May 24, 2023
- KazNERD: Kazakh Named Entity Recognition Dataset We present the development of a dataset for Kazakh named entity recognition. The dataset was built as there is a clear need for publicly available annotated corpora in Kazakh, as well as annotation guidelines containing straightforward--but rigorous--rules and examples. The dataset annotation, based on the IOB2 scheme, was carried out on television news text by two native Kazakh speakers under the supervision of the first author. The resulting dataset contains 112,702 sentences and 136,333 annotations for 25 entity classes. State-of-the-art machine learning models to automatise Kazakh named entity recognition were also built, with the best-performing model achieving an exact match F1-score of 97.22% on the test set. The annotated dataset, guidelines, and codes used to train the models are freely available for download under the CC BY 4.0 licence from https://github.com/IS2AI/KazNERD. 3 authors · Nov 26, 2021
9 KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies. 10 authors · Feb 20 2
1 ChatGPT for Arabic Grammatical Error Correction Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with 72.19% and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively. 4 authors · Aug 8, 2023
- From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages -- English, Arabic and Spanish -- we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets. 6 authors · Apr 27, 2024
- Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark. 2 authors · Oct 23, 2023
- AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset Along with the COVID-19 pandemic, an "infodemic" of false and misleading information has emerged and has complicated the COVID-19 response efforts. Social networking sites such as Facebook and Twitter have contributed largely to the spread of rumors, conspiracy theories, hate, xenophobia, racism, and prejudice. To combat the spread of fake news, researchers around the world have and are still making considerable efforts to build and share COVID-19 related research articles, models, and datasets. This paper releases "AraCOVID19-MFH" a manually annotated multi-label Arabic COVID-19 fake news and hate speech detection dataset. Our dataset contains 10,828 Arabic tweets annotated with 10 different labels. The labels have been designed to consider some aspects relevant to the fact-checking task, such as the tweet's check worthiness, positivity/negativity, and factuality. To confirm our annotated dataset's practical utility, we used it to train and evaluate several classification models and reported the obtained results. Though the dataset is mainly designed for fake news detection, it can also be used for hate speech detection, opinion/news classification, dialect identification, and many other tasks. 2 authors · May 7, 2021
- ArCOV-19: The First Arabic COVID-19 Twitter Dataset with Propagation Networks In this paper, we present ArCOV-19, an Arabic COVID-19 Twitter dataset that spans one year, covering the period from 27th of January 2020 till 31st of January 2021. ArCOV-19 is the first publicly-available Arabic Twitter dataset covering COVID-19 pandemic that includes about 2.7M tweets alongside the propagation networks of the most-popular subset of them (i.e., most-retweeted and -liked). The propagation networks include both retweets and conversational threads (i.e., threads of replies). ArCOV-19 is designed to enable research under several domains including natural language processing, information retrieval, and social computing. Preliminary analysis shows that ArCOV-19 captures rising discussions associated with the first reported cases of the disease as they appeared in the Arab world. In addition to the source tweets and propagation networks, we also release the search queries and language-independent crawler used to collect the tweets to encourage the curation of similar datasets. 4 authors · Apr 13, 2020
- ALDi: Quantifying the Arabic Level of Dialectness of Text Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17% from news articles and 83% from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers' stylistic choices in different situations, a useful property for sociolinguistic analyses. 3 authors · Oct 20, 2023
- ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development We introduce "ivrit.ai", a comprehensive Hebrew speech dataset, addressing the distinct lack of extensive, high-quality resources for advancing Automated Speech Recognition (ASR) technology in Hebrew. With over 3,300 speech hours and a over a thousand diverse speakers, ivrit.ai offers a substantial compilation of Hebrew speech across various contexts. It is delivered in three forms to cater to varying research needs: raw unprocessed audio; data post-Voice Activity Detection, and partially transcribed data. The dataset stands out for its legal accessibility, permitting use at no cost, thereby serving as a crucial resource for researchers, developers, and commercial entities. ivrit.ai opens up numerous applications, offering vast potential to enhance AI capabilities in Hebrew. Future efforts aim to expand ivrit.ai further, thereby advancing Hebrew's standing in AI research and technology. 3 authors · Jul 17, 2023
1 SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages Exploring and quantifying semantic relatedness is central to representing language. It holds significant implications across various NLP tasks, including offering insights into the capabilities and performance of Large Language Models (LLMs). While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present SemRel, a new semantic relatedness dataset collection annotated by native speakers across 14 languages:Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, related challenges when building the datasets, and their impact and utility in NLP. We further report experiments for each language and across the different languages. 27 authors · Feb 13, 2024
1 Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F_{1} score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines. 4 authors · Dec 13, 2023 2
- AraStance: A Multi-Country and Multi-Domain Dataset of Arabic Stance Detection for Fact Checking With the continuing spread of misinformation and disinformation online, it is of increasing importance to develop combating mechanisms at scale in the form of automated systems that support multiple languages. One task of interest is claim veracity prediction, which can be addressed using stance detection with respect to relevant documents retrieved online. To this end, we present our new Arabic Stance Detection dataset (AraStance) of 4,063 claim--article pairs from a diverse set of sources comprising three fact-checking websites and one news website. AraStance covers false and true claims from multiple domains (e.g., politics, sports, health) and several Arab countries, and it is well-balanced between related and unrelated documents with respect to the claims. We benchmark AraStance, along with two other stance detection datasets, using a number of BERT-based models. Our best model achieves an accuracy of 85\% and a macro F1 score of 78\%, which leaves room for improvement and reflects the challenging nature of AraStance and the task of stance detection in general. 5 authors · Apr 27, 2021
1 ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA), and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%. 13 authors · Feb 20, 2024 1
- Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning In Islam, readers must apply a set of pronunciation rules called Tajweed rules to recite the Quran in the same way that the angel Jibrael taught the Prophet, Muhammad. The traditional process of learning the correct application of these rules requires a human who must have a license and great experience to detect mispronunciation. Due to the increasing number of Muslims around the world, the number of Tajweed teachers is not enough nowadays for daily recitation practice for every Muslim. Therefore, lots of work has been done for automatic Tajweed rules' mispronunciation detection to help readers recite Quran correctly in an easier way and shorter time than traditional learning ways. All previous works have three common problems. First, most of them focused on machine learning algorithms only. Second, they used private datasets with no benchmark to compare with. Third, they did not take into consideration the sequence of input data optimally, although the speech signal is time series. To overcome these problems, we proposed a solution that consists of Mel-Frequency Cepstral Coefficient (MFCC) features with Long Short-Term Memory (LSTM) neural networks which use the time series, to detect mispronunciation in Tajweed rules. In addition, our experiments were performed on a public dataset, the QDAT dataset, which contains more than 1500 voices of the correct and incorrect recitation of three Tajweed rules (Separate stretching , Tight Noon , and Hide ). To the best of our knowledge, the QDAT dataset has not been used by any research paper yet. We compared the performance of the proposed LSTM model with traditional machine learning algorithms used in SoTA. The LSTM model with time series showed clear superiority over traditional machine learning. The accuracy achieved by LSTM on the QDAT dataset was 96%, 95%, and 96% for the three rules (Separate stretching, Tight Noon, and Hide), respectively. 2 authors · May 10, 2023
- Multi-Dialect Arabic BERT for Country-Level Dialect Identification Arabic dialect identification is a complex problem for a number of inherent properties of the language itself. In this paper, we present the experiments conducted, and the models developed by our competing team, Mawdoo3 AI, along the way to achieving our winning solution to subtask 1 of the Nuanced Arabic Dialect Identification (NADI) shared task. The dialect identification subtask provides 21,000 country-level labeled tweets covering all 21 Arab countries. An unlabeled corpus of 10M tweets from the same domain is also presented by the competition organizers for optional use. Our winning solution itself came in the form of an ensemble of different training iterations of our pre-trained BERT model, which achieved a micro-averaged F1-score of 26.78% on the subtask at hand. We publicly release the pre-trained language model component of our winning solution under the name of Multi-dialect-Arabic-BERT model, for any interested researcher out there. 8 authors · Jul 10, 2020
- ParaShoot: A Hebrew Question Answering Dataset NLP research in Hebrew has largely focused on morphology and syntax, where rich annotated datasets in the spirit of Universal Dependencies are available. Semantic datasets, however, are in short supply, hindering crucial advances in the development of NLP technology in Hebrew. In this work, we present ParaShoot, the first question answering dataset in modern Hebrew. The dataset follows the format and crowdsourcing methodology of SQuAD, and contains approximately 3000 annotated examples, similar to other question-answering datasets in low-resource languages. We provide the first baseline results using recently-released BERT-style models for Hebrew, showing that there is significant room for improvement on this task. 2 authors · Sep 23, 2021
- MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.) 4 authors · Jul 16, 2018
- Audio-Language Datasets of Scenes and Events: A Survey Audio-language models (ALMs) process sounds to provide a linguistic description of sound-producing events and scenes. Recent advances in computing power and dataset creation have led to significant progress in this domain. This paper surveys existing datasets used for training audio-language models, emphasizing the recent trend towards using large, diverse datasets to enhance model performance. Key sources of these datasets include the Freesound platform and AudioSet that have contributed to the field's rapid growth. Although prior surveys primarily address techniques and training details, this survey categorizes and evaluates a wide array of datasets, addressing their origins, characteristics, and use cases. It also performs a data leak analysis to ensure dataset integrity and mitigate bias between datasets. This survey was conducted by analyzing research papers up to and including December 2023, and does not contain any papers after that period. 4 authors · Jul 9, 2024
- KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi Recent progress in text classification has been focused on high-resource languages such as English and Chinese. For low-resource languages, amongst them most African languages, the lack of well-annotated data and effective preprocessing, is hindering the progress and the transfer of successful methods. In this paper, we introduce two news datasets (KINNEWS and KIRNEWS) for multi-class classification of news articles in Kinyarwanda and Kirundi, two low-resource African languages. The two languages are mutually intelligible, but while Kinyarwanda has been studied in Natural Language Processing (NLP) to some extent, this work constitutes the first study on Kirundi. Along with the datasets, we provide statistics, guidelines for preprocessing, and monolingual and cross-lingual baseline models. Our experiments show that training embeddings on the relatively higher-resourced Kinyarwanda yields successful cross-lingual transfer to Kirundi. In addition, the design of the created datasets allows for a wider use in NLP beyond text classification in future studies, such as representation learning, cross-lingual learning with more distant languages, or as base for new annotations for tasks such as parsing, POS tagging, and NER. The datasets, stopwords, and pre-trained embeddings are publicly available at https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus . 4 authors · Oct 23, 2020
- Pilgrims Face Recognition Dataset -- HUFRD In this work, we define a new pilgrims face recognition dataset, called HUFRD dataset. The new developed dataset presents various pilgrims' images taken from outside the Holy Masjid El-Harram in Makkah during the 2011-2012 Hajj and Umrah seasons. Such dataset will be used to test our developed facial recognition and detection algorithms, as well as assess in the missing and found recognition system crowdsensing. 1 authors · May 20, 2012
- VoxArabica: A Robust Dialect-Aware Arabic Speech Recognition System Arabic is a complex language with many varieties and dialects spoken by over 450 millions all around the world. Due to the linguistic diversity and variations, it is challenging to build a robust and generalized ASR system for Arabic. In this work, we address this gap by developing and demoing a system, dubbed VoxArabica, for dialect identification (DID) as well as automatic speech recognition (ASR) of Arabic. We train a wide range of models such as HuBERT (DID), Whisper, and XLS-R (ASR) in a supervised setting for Arabic DID and ASR tasks. Our DID models are trained to identify 17 different dialects in addition to MSA. We finetune our ASR models on MSA, Egyptian, Moroccan, and mixed data. Additionally, for the remaining dialects in ASR, we provide the option to choose various models such as Whisper and MMS in a zero-shot setting. We integrate these models into a single web interface with diverse features such as audio recording, file upload, model selection, and the option to raise flags for incorrect outputs. Overall, we believe VoxArabica will be useful for a wide range of audiences concerned with Arabic research. Our system is currently running at https://cdce-206-12-100-168.ngrok.io/. 5 authors · Oct 17, 2023
- TUNIZI: a Tunisian Arabizi sentiment analysis Dataset On social media, Arabic people tend to express themselves in their own local dialects. More particularly, Tunisians use the informal way called "Tunisian Arabizi". Analytical studies seek to explore and recognize online opinions aiming to exploit them for planning and prediction purposes such as measuring the customer satisfaction and establishing sales and marketing strategies. However, analytical studies based on Deep Learning are data hungry. On the other hand, African languages and dialects are considered low resource languages. For instance, to the best of our knowledge, no annotated Tunisian Arabizi dataset exists. In this paper, we introduce TUNIZI a sentiment analysis Tunisian Arabizi Dataset, collected from social networks, preprocessed for analytical studies and annotated manually by Tunisian native speakers. 3 authors · Apr 29, 2020
- Alloprof: a new French question-answer education dataset and its use in an information retrieval case study Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting. 3 authors · Feb 10, 2023
- KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media In this paper, we describe our approach to utilize pre-trained BERT models with Convolutional Neural Networks for sub-task A of the Multilingual Offensive Language Identification shared task (OffensEval 2020), which is a part of the SemEval 2020. We show that combining CNN with BERT is better than using BERT on its own, and we emphasize the importance of utilizing pre-trained language models for downstream tasks. Our system, ranked 4th with macro averaged F1-Score of 0.897 in Arabic, 4th with score of 0.843 in Greek, and 3rd with score of 0.814 in Turkish. Additionally, we present ArabicBERT, a set of pre-trained transformer language models for Arabic that we share with the community. 3 authors · Jul 26, 2020
- PEYMA: A Tagged Corpus for Persian Named Entities The goal in the NER task is to classify proper nouns of a text into classes such as person, location, and organization. This is an important preprocessing step in many NLP tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art NER systems have reached performances of higher than 90 percent in terms of F1 measure, there are very few research studies for this task in Persian. One of the main important causes of this may be the lack of a standard Persian NER dataset to train and test NER systems. In this research we create a standard, big-enough tagged Persian NER dataset which will be distributed for free for research purposes. In order to construct such a standard dataset, we studied standard NER datasets which are constructed for English researches and found out that almost all of these datasets are constructed using news texts. So we collected documents from ten news websites. Later, in order to provide annotators with some guidelines to tag these documents, after studying guidelines used for constructing CoNLL and MUC standard English datasets, we set our own guidelines considering the Persian linguistic rules. 4 authors · Jan 30, 2018
- StoryDB: Broad Multi-language Narrative Dataset This paper presents StoryDB - a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories. Every story is indexed across languages and labeled with tags such as a genre or a topic. The corpus shows rich topical and language variation and can serve as a resource for the study of the role of narrative in natural language processing across various languages including low resource ones. We also demonstrate how the dataset could be used to benchmark three modern multilanguage models, namely, mDistillBERT, mBERT, and XLM-RoBERTa. 3 authors · Sep 29, 2021
- FaMTEB: Massive Text Embedding Benchmark in Persian Language In this paper, we introduce a comprehensive benchmark for Persian (Farsi) text embeddings, built upon the Massive Text Embedding Benchmark (MTEB). Our benchmark includes 63 datasets spanning seven different tasks: classification, clustering, pair classification, reranking, retrieval, summary retrieval, and semantic textual similarity. The datasets are formed as a combination of existing, translated, and newly generated data, offering a diverse evaluation framework for Persian language models. Given the increasing use of text embedding models in chatbots, evaluation datasets are becoming inseparable ingredients in chatbot challenges and Retrieval-Augmented Generation systems. As a contribution, we include chatbot evaluation datasets in the MTEB benchmark for the first time. In addition, in this paper, we introduce the new task of summary retrieval which is not part of the tasks included in standard MTEB. Another contribution of this paper is the introduction of a substantial number of new Persian language NLP datasets suitable for training and evaluation, some of which have no previous counterparts in Persian. We evaluate the performance of several Persian and multilingual embedding models in a range of tasks. This work introduces an open-source benchmark with datasets, code and a public leaderboard. 7 authors · Feb 17
1 IDPL-PFOD2: A New Large-Scale Dataset for Printed Farsi Optical Character Recognition Optical Character Recognition is a technique that converts document images into searchable and editable text, making it a valuable tool for processing scanned documents. While the Farsi language stands as a prominent and official language in Asia, efforts to develop efficient methods for recognizing Farsi printed text have been relatively limited. This is primarily attributed to the languages distinctive features, such as cursive form, the resemblance between certain alphabet characters, and the presence of numerous diacritics and dot placement. On the other hand, given the substantial training sample requirements of deep-based architectures for effective performance, the development of such datasets holds paramount significance. In light of these concerns, this paper aims to present a novel large-scale dataset, IDPL-PFOD2, tailored for Farsi printed text recognition. The dataset comprises 2003541 images featuring a wide variety of fonts, styles, and sizes. This dataset is an extension of the previously introduced IDPL-PFOD dataset, offering a substantial increase in both volume and diversity. Furthermore, the datasets effectiveness is assessed through the utilization of both CRNN-based and Vision Transformer architectures. The CRNN-based model achieves a baseline accuracy rate of 78.49% and a normalized edit distance of 97.72%, while the Vision Transformer architecture attains an accuracy of 81.32% and a normalized edit distance of 98.74%. 5 authors · Dec 2, 2023
- EgyBERT: A Large Language Model Pretrained on Egyptian Dialect Corpora This study presents EgyBERT, an Arabic language model pretrained on 10.4 GB of Egyptian dialectal texts. We evaluated EgyBERT's performance by comparing it with five other multidialect Arabic language models across 10 evaluation datasets. EgyBERT achieved the highest average F1-score of 84.25% and an accuracy of 87.33%, significantly outperforming all other comparative models, with MARBERTv2 as the second best model achieving an F1-score 83.68% and an accuracy 87.19%. Additionally, we introduce two novel Egyptian dialectal corpora: the Egyptian Tweets Corpus (ETC), containing over 34.33 million tweets (24.89 million sentences) amounting to 2.5 GB of text, and the Egyptian Forums Corpus (EFC), comprising over 44.42 million sentences (7.9 GB of text) collected from various Egyptian online forums. Both corpora are used in pretraining the new model, and they are the largest Egyptian dialectal corpora to date reported in the literature. Furthermore, this is the first study to evaluate the performance of various language models on Egyptian dialect datasets, revealing significant differences in performance that highlight the need for more dialect-specific models. The results confirm the effectiveness of EgyBERT model in processing and analyzing Arabic text expressed in Egyptian dialect, surpassing other language models included in the study. EgyBERT model is publicly available on https://huggingface.co/faisalq/EgyBERT. 1 authors · Aug 6, 2024
- ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus At present, Text-to-speech (TTS) systems that are trained with high-quality transcribed speech data using end-to-end neural models can generate speech that is intelligible, natural, and closely resembles human speech. These models are trained with relatively large single-speaker professionally recorded audio, typically extracted from audiobooks. Meanwhile, due to the scarcity of freely available speech corpora of this kind, a larger gap exists in Arabic TTS research and development. Most of the existing freely available Arabic speech corpora are not suitable for TTS training as they contain multi-speaker casual speech with variations in recording conditions and quality, whereas the corpus curated for speech synthesis are generally small in size and not suitable for training state-of-the-art end-to-end models. In a move towards filling this gap in resources, we present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. In this paper, we describe the process of corpus creation and provide details of corpus statistics and a comparison with existing resources. Furthermore, we develop two TTS systems based on Grad-TTS and Glow-TTS and illustrate the performance of the resulting systems via subjective and objective evaluations. The corpus will be made publicly available at www.clartts.com for research purposes, along with the baseline TTS systems demo. 4 authors · Feb 28, 2023
- SaudiBERT: A Large Language Model Pretrained on Saudi Dialect Corpora In this paper, we introduce SaudiBERT, a monodialect Arabic language model pretrained exclusively on Saudi dialectal text. To demonstrate the model's effectiveness, we compared SaudiBERT with six different multidialect Arabic language models across 11 evaluation datasets, which are divided into two groups: sentiment analysis and text classification. SaudiBERT achieved average F1-scores of 86.15\% and 87.86\% in these groups respectively, significantly outperforming all other comparative models. Additionally, we present two novel Saudi dialectal corpora: the Saudi Tweets Mega Corpus (STMC), which contains over 141 million tweets in Saudi dialect, and the Saudi Forums Corpus (SFC), which includes 15.2 GB of text collected from five Saudi online forums. Both corpora are used in pretraining the proposed model, and they are the largest Saudi dialectal corpora ever reported in the literature. The results confirm the effectiveness of SaudiBERT in understanding and analyzing Arabic text expressed in Saudi dialect, achieving state-of-the-art results in most tasks and surpassing other language models included in the study. SaudiBERT model is publicly available on https://huggingface.co/faisalq/SaudiBERT. 1 authors · May 10, 2024
- AmQA: Amharic Question Answering Dataset Question Answering (QA) returns concise answers or answer lists from natural language text given a context document. Many resources go into curating QA datasets to advance robust models' development. There is a surge of QA datasets for languages like English, however, this is not true for Amharic. Amharic, the official language of Ethiopia, is the second most spoken Semitic language in the world. There is no published or publicly available Amharic QA dataset. Hence, to foster the research in Amharic QA, we present the first Amharic QA (AmQA) dataset. We crowdsourced 2628 question-answer pairs over 378 Wikipedia articles. Additionally, we run an XLMR Large-based baseline model to spark open-domain QA research interest. The best-performing baseline achieves an F-score of 69.58 and 71.74 in reader-retriever QA and reading comprehension settings respectively. 3 authors · Mar 6, 2023
2 Fineweb-Edu-Ar: Machine-translated Corpus to Support Arabic Small Language Models As large language models (LLMs) grow and develop, so do their data demands. This is especially true for multilingual LLMs, where the scarcity of high-quality and readily available data online has led to a multitude of synthetic dataset generation approaches. A key technique in this space is machine translation (MT), where high-quality English text is adapted to a target, comparatively low-resource language. This report introduces FineWeb-Edu-Ar, a machine-translated version of the exceedingly popular (deduplicated) FineWeb-Edu dataset from HuggingFace. To the best of our knowledge, FineWeb-Edu-Ar is the largest publicly available machine-translated Arabic dataset out there, with its size of 202B tokens of an Arabic-trained tokenizer. 3 authors · Nov 10, 2024 1
- AraGPT2: Pre-Trained Transformer for Arabic Language Generation Recently, pre-trained transformer-based architectures have proven to be very efficient at language modeling and understanding, given that they are trained on a large enough corpus. Applications in language generation for Arabic are still lagging in comparison to other NLP advances primarily due to the lack of advanced Arabic language generation models. In this paper, we develop the first advanced Arabic language generation model, AraGPT2, trained from scratch on a large Arabic corpus of internet text and news articles. Our largest model, AraGPT2-mega, has 1.46 billion parameters, which makes it the largest Arabic language model available. The Mega model was evaluated and showed success on different tasks including synthetic news generation, and zero-shot question answering. For text generation, our best model achieves a perplexity of 29.8 on held-out Wikipedia articles. A study conducted with human evaluators showed the significant success of AraGPT2-mega in generating news articles that are difficult to distinguish from articles written by humans. We thus develop and release an automatic discriminator model with a 98% percent accuracy in detecting model-generated text. The models are also publicly available, hoping to encourage new research directions and applications for Arabic NLP. 3 authors · Dec 31, 2020 1
1 Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition Crafting an effective Automatic Speech Recognition (ASR) solution for dialects demands innovative approaches that not only address the data scarcity issue but also navigate the intricacies of linguistic diversity. In this paper, we address the aforementioned ASR challenge, focusing on the Tunisian dialect. First, textual and audio data is collected and in some cases annotated. Second, we explore self-supervision, semi-supervision and few-shot code-switching approaches to push the state-of-the-art on different Tunisian test sets; covering different acoustic, linguistic and prosodic conditions. Finally, and given the absence of conventional spelling, we produce a human evaluation of our transcripts to avoid the noise coming from spelling inadequacies in our testing references. Our models, allowing to transcribe audio samples in a linguistic mix involving Tunisian Arabic, English and French, and all the data used during training and testing are released for public use and further improvements. 4 authors · Sep 20, 2023
- MediaSpeech: Multilanguage ASR Benchmark and Dataset The performance of automated speech recognition (ASR) systems is well known to differ for varied application domains. At the same time, vendors and research groups typically report ASR quality results either for limited use simplistic domains (audiobooks, TED talks), or proprietary datasets. To fill this gap, we provide an open-source 10-hour ASR system evaluation dataset NTR MediaSpeech for 4 languages: Spanish, French, Turkish and Arabic. The dataset was collected from the official youtube channels of media in the respective languages, and manually transcribed. We estimate that the WER of the dataset is under 5%. We have benchmarked many ASR systems available both commercially and freely, and provide the benchmark results. We also open-source baseline QuartzNet models for each language. 8 authors · Mar 30, 2021
- ThatiAR: Subjectivity Detection in Arabic News Sentences Detecting subjectivity in news sentences is crucial for identifying media bias, enhancing credibility, and combating misinformation by flagging opinion-based content. It provides insights into public sentiment, empowers readers to make informed decisions, and encourages critical thinking. While research has developed methods and systems for this purpose, most efforts have focused on English and other high-resourced languages. In this study, we present the first large dataset for subjectivity detection in Arabic, consisting of ~3.6K manually annotated sentences, and GPT-4o based explanation. In addition, we included instructions (both in English and Arabic) to facilitate LLM based fine-tuning. We provide an in-depth analysis of the dataset, annotation process, and extensive benchmark results, including PLMs and LLMs. Our analysis of the annotation process highlights that annotators were strongly influenced by their political, cultural, and religious backgrounds, especially at the beginning of the annotation process. The experimental results suggest that LLMs with in-context learning provide better performance. We aim to release the dataset and resources for the community. 5 authors · Jun 8, 2024
- AraPoemBERT: A Pretrained Language Model for Arabic Poetry Analysis Arabic poetry, with its rich linguistic features and profound cultural significance, presents a unique challenge to the Natural Language Processing (NLP) field. The complexity of its structure and context necessitates advanced computational models for accurate analysis. In this paper, we introduce AraPoemBERT, an Arabic language model pretrained exclusively on Arabic poetry text. To demonstrate the effectiveness of the proposed model, we compared AraPoemBERT with 5 different Arabic language models on various NLP tasks related to Arabic poetry. The new model outperformed all other models and achieved state-of-the-art results in most of the downstream tasks. AraPoemBERT achieved unprecedented accuracy in two out of three novel tasks: poet's gender classification (99.34\% accuracy), and poetry sub-meter classification (97.79\% accuracy). In addition, the model achieved an accuracy score in poems' rhyme classification (97.73\% accuracy) which is almost equivalent to the best score reported in this study. Moreover, the proposed model significantly outperformed previous work and other comparative models in the tasks of poems' sentiment analysis, achieving an accuracy of 78.95\%, and poetry meter classification (99.03\% accuracy), while significantly expanding the scope of these two problems. The dataset used in this study, contains more than 2.09 million verses collected from online sources, each associated with various attributes such as meter, sub-meter, poet, rhyme, and topic. The results demonstrate the effectiveness of the proposed model in understanding and analyzing Arabic poetry, achieving state-of-the-art results in several tasks and outperforming previous works and other language models included in the study. AraPoemBERT model is publicly available on https://huggingface.co/faisalq. 1 authors · Mar 18, 2024
- Arabic Stable LM: Adapting Stable LM 2 1.6B to Arabic Large Language Models (LLMs) have shown impressive results in multiple domains of natural language processing (NLP) but are mainly focused on the English language. Recently, more LLMs have incorporated a larger proportion of multilingual text to represent low-resource languages. In Arabic NLP, several Arabic-centric LLMs have shown remarkable results on multiple benchmarks in the past two years. However, most Arabic LLMs have more than 7 billion parameters, which increases their hardware requirements and inference latency, when compared to smaller LLMs. This paper introduces Arabic Stable LM 1.6B in a base and chat version as a small but powerful Arabic-centric LLM. Our Arabic Stable LM 1.6B chat model achieves impressive results on several benchmarks beating multiple models with up to 8x the parameters. In addition, we show the benefit of mixing in synthetic instruction tuning data by augmenting our fine-tuning data with a large synthetic dialogue dataset. 11 authors · Dec 5, 2024
- DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public. 5 authors · May 26, 2023
- Exploiting Dialect Identification in Automatic Dialectal Text Normalization Dialectal Arabic is the primary spoken language used by native Arabic speakers in daily communication. The rise of social media platforms has notably expanded its use as a written language. However, Arabic dialects do not have standard orthographies. This, combined with the inherent noise in user-generated content on social media, presents a major challenge to NLP applications dealing with Dialectal Arabic. In this paper, we explore and report on the task of CODAfication, which aims to normalize Dialectal Arabic into the Conventional Orthography for Dialectal Arabic (CODA). We work with a unique parallel corpus of multiple Arabic dialects focusing on five major city dialects. We benchmark newly developed pretrained sequence-to-sequence models on the task of CODAfication. We further show that using dialect identification information improves the performance across all dialects. We make our code, data, and pretrained models publicly available. 7 authors · Jul 3, 2024
- DziriBERT: a Pre-trained Language Model for the Algerian Dialect Pre-trained transformers are now the de facto models in Natural Language Processing given their state-of-the-art results in many tasks and languages. However, most of the current models have been trained on languages for which large text resources are already available (such as English, French, Arabic, etc.). Therefore, there are still a number of low-resource languages that need more attention from the community. In this paper, we study the Algerian dialect which has several specificities that make the use of Arabic or multilingual models inappropriate. To address this issue, we collected more than one million Algerian tweets, and pre-trained the first Algerian language model: DziriBERT. When compared with existing models, DziriBERT achieves better results, especially when dealing with the Roman script. The obtained results show that pre-training a dedicated model on a small dataset (150 MB) can outperform existing models that have been trained on much more data (hundreds of GB). Finally, our model is publicly available to the community. 4 authors · Sep 25, 2021
1 Quati: A Brazilian Portuguese Information Retrieval Dataset from Native Speakers Despite Portuguese being one of the most spoken languages in the world, there is a lack of high-quality information retrieval datasets in that language. We present Quati, a dataset specifically designed for the Brazilian Portuguese language. It comprises a collection of queries formulated by native speakers and a curated set of documents sourced from a selection of high-quality Brazilian Portuguese websites. These websites are frequented more likely by real users compared to those randomly scraped, ensuring a more representative and relevant corpus. To label the query-document pairs, we use a state-of-the-art LLM, which shows inter-annotator agreement levels comparable to human performance in our assessments. We provide a detailed description of our annotation methodology to enable others to create similar datasets for other languages, providing a cost-effective way of creating high-quality IR datasets with an arbitrary number of labeled documents per query. Finally, we evaluate a diverse range of open-source and commercial retrievers to serve as baseline systems. Quati is publicly available at https://huggingface.co/datasets/unicamp-dl/quati and all scripts at https://github.com/unicamp-dl/quati . 5 authors · Apr 10, 2024
- Killkan: The Automatic Speech Recognition Dataset for Kichwa with Morphosyntactic Information This paper presents Killkan, the first dataset for automatic speech recognition (ASR) in the Kichwa language, an indigenous language of Ecuador. Kichwa is an extremely low-resource endangered language, and there have been no resources before Killkan for Kichwa to be incorporated in applications of natural language processing. The dataset contains approximately 4 hours of audio with transcription, translation into Spanish, and morphosyntactic annotation in the format of Universal Dependencies. The audio data was retrieved from a publicly available radio program in Kichwa. This paper also provides corpus-linguistic analyses of the dataset with a special focus on the agglutinative morphology of Kichwa and frequent code-switching with Spanish. The experiments show that the dataset makes it possible to develop the first ASR system for Kichwa with reliable quality despite its small dataset size. This dataset, the ASR model, and the code used to develop them will be publicly available. Thus, our study positively showcases resource building and its applications for low-resource languages and their community. 4 authors · Apr 23, 2024
- Design of Arabic Sign Language Recognition Model Deaf people are using sign language for communication, and it is a combination of gestures, movements, postures, and facial expressions that correspond to alphabets and words in spoken languages. The proposed Arabic sign language recognition model helps deaf and hard hearing people communicate effectively with ordinary people. The recognition has four stages of converting the alphabet into letters as follows: Image Loading stage, which loads the images of Arabic sign language alphabets that were used later to train and test the model, a pre-processing stage which applies image processing techniques such as normalization, Image augmentation, resizing, and filtering to extract the features which are necessary to accomplish the recognition perfectly, a training stage which is achieved by deep learning techniques like CNN, a testing stage which demonstrates how effectively the model performs for images did not see it before, and the model was built and tested mainly using PyTorch library. The model is tested on ArASL2018, consisting of 54,000 images for 32 alphabet signs gathered from 40 signers, and the dataset has two sets: training dataset and testing dataset. We had to ensure that the system is reliable in terms of accuracy, time, and flexibility of use explained in detail in this report. Finally, the future work will be a model that converts Arabic sign language into Arabic text. 3 authors · Jan 6, 2023
1 NileChat: Towards Linguistically Diverse and Culturally Aware LLMs for Local Communities Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in LLM development. 5 authors · May 23 2
- A Benchmark Dataset with Larger Context for Non-Factoid Question Answering over Islamic Text Accessing and comprehending religious texts, particularly the Quran (the sacred scripture of Islam) and Ahadith (the corpus of the sayings or traditions of the Prophet Muhammad), in today's digital era necessitates efficient and accurate Question-Answering (QA) systems. Yet, the scarcity of QA systems tailored specifically to the detailed nature of inquiries about the Quranic Tafsir (explanation, interpretation, context of Quran for clarity) and Ahadith poses significant challenges. To address this gap, we introduce a comprehensive dataset meticulously crafted for QA purposes within the domain of Quranic Tafsir and Ahadith. This dataset comprises a robust collection of over 73,000 question-answer pairs, standing as the largest reported dataset in this specialized domain. Importantly, both questions and answers within the dataset are meticulously enriched with contextual information, serving as invaluable resources for training and evaluating tailored QA systems. However, while this paper highlights the dataset's contributions and establishes a benchmark for evaluating QA performance in the Quran and Ahadith domains, our subsequent human evaluation uncovered critical insights regarding the limitations of existing automatic evaluation techniques. The discrepancy between automatic evaluation metrics, such as ROUGE scores, and human assessments became apparent. The human evaluation indicated significant disparities: the model's verdict consistency with expert scholars ranged between 11% to 20%, while its contextual understanding spanned a broader spectrum of 50% to 90%. These findings underscore the necessity for evaluation techniques that capture the nuances and complexities inherent in understanding religious texts, surpassing the limitations of traditional automatic metrics. 3 authors · Sep 15, 2024
- MessIRve: A Large-Scale Spanish Information Retrieval Dataset Information retrieval (IR) is the task of finding relevant documents in response to a user query. Although Spanish is the second most spoken native language, current IR benchmarks lack Spanish data, hindering the development of information access tools for Spanish speakers. We introduce MessIRve, a large-scale Spanish IR dataset with around 730 thousand queries from Google's autocomplete API and relevant documents sourced from Wikipedia. MessIRve's queries reflect diverse Spanish-speaking regions, unlike other datasets that are translated from English or do not consider dialectal variations. The large size of the dataset allows it to cover a wide variety of topics, unlike smaller datasets. We provide a comprehensive description of the dataset, comparisons with existing datasets, and baseline evaluations of prominent IR models. Our contributions aim to advance Spanish IR research and improve information access for Spanish speakers. 6 authors · Sep 9, 2024