new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 11

Learning Cross-Modal Affinity for Referring Video Object Segmentation Targeting Limited Samples

Referring video object segmentation (RVOS), as a supervised learning task, relies on sufficient annotated data for a given scene. However, in more realistic scenarios, only minimal annotations are available for a new scene, which poses significant challenges to existing RVOS methods. With this in mind, we propose a simple yet effective model with a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module builds multimodal affinity with a few samples, thus quickly learning new semantic information, and enabling the model to adapt to different scenarios. Since the proposed method targets limited samples for new scenes, we generalize the problem as - few-shot referring video object segmentation (FS-RVOS). To foster research in this direction, we build up a new FS-RVOS benchmark based on currently available datasets. The benchmark covers a wide range and includes multiple situations, which can maximally simulate real-world scenarios. Extensive experiments show that our model adapts well to different scenarios with only a few samples, reaching state-of-the-art performance on the benchmark. On Mini-Ref-YouTube-VOS, our model achieves an average performance of 53.1 J and 54.8 F, which are 10% better than the baselines. Furthermore, we show impressive results of 77.7 J and 74.8 F on Mini-Ref-SAIL-VOS, which are significantly better than the baselines. Code is publicly available at https://github.com/hengliusky/Few_shot_RVOS.

Language as Queries for Referring Video Object Segmentation

Referring video object segmentation (R-VOS) is an emerging cross-modal task that aims to segment the target object referred by a language expression in all video frames. In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer. On Ref-Youtube-VOS, Refer-Former achieves 55.6J&F with a ResNet-50 backbone without bells and whistles, which exceeds the previous state-of-the-art performance by 8.4 points. In addition, with the strong Swin-Large backbone, ReferFormer achieves the best J&F of 64.2 among all existing methods. Moreover, we show the impressive results of 55.0 mAP and 43.7 mAP on A2D-Sentences andJHMDB-Sentences respectively, which significantly outperforms the previous methods by a large margin. Code is publicly available at https://github.com/wjn922/ReferFormer.

Two-shot Video Object Segmentation

Previous works on video object segmentation (VOS) are trained on densely annotated videos. Nevertheless, acquiring annotations in pixel level is expensive and time-consuming. In this work, we demonstrate the feasibility of training a satisfactory VOS model on sparsely annotated videos-we merely require two labeled frames per training video while the performance is sustained. We term this novel training paradigm as two-shot video object segmentation, or two-shot VOS for short. The underlying idea is to generate pseudo labels for unlabeled frames during training and to optimize the model on the combination of labeled and pseudo-labeled data. Our approach is extremely simple and can be applied to a majority of existing frameworks. We first pre-train a VOS model on sparsely annotated videos in a semi-supervised manner, with the first frame always being a labeled one. Then, we adopt the pre-trained VOS model to generate pseudo labels for all unlabeled frames, which are subsequently stored in a pseudo-label bank. Finally, we retrain a VOS model on both labeled and pseudo-labeled data without any restrictions on the first frame. For the first time, we present a general way to train VOS models on two-shot VOS datasets. By using 7.3% and 2.9% labeled data of YouTube-VOS and DAVIS benchmarks, our approach achieves comparable results in contrast to the counterparts trained on fully labeled set. Code and models are available at https://github.com/yk-pku/Two-shot-Video-Object-Segmentation.

Stable Mean Teacher for Semi-supervised Video Action Detection

In this work, we focus on semi-supervised learning for video action detection. Video action detection requires spatiotemporal localization in addition to classification, and a limited amount of labels makes the model prone to unreliable predictions. We present Stable Mean Teacher, a simple end-to-end teacher-based framework that benefits from improved and temporally consistent pseudo labels. It relies on a novel Error Recovery (EoR) module, which learns from students' mistakes on labeled samples and transfers this knowledge to the teacher to improve pseudo labels for unlabeled samples. Moreover, existing spatiotemporal losses do not take temporal coherency into account and are prone to temporal inconsistencies. To address this, we present Difference of Pixels (DoP), a simple and novel constraint focused on temporal consistency, leading to coherent temporal detections. We evaluate our approach on four different spatiotemporal detection benchmarks: UCF101-24, JHMDB21, AVA, and YouTube-VOS. Our approach outperforms the supervised baselines for action detection by an average margin of 23.5% on UCF101-24, 16% on JHMDB21, and 3.3% on AVA. Using merely 10% and 20% of data, it provides competitive performance compared to the supervised baseline trained on 100% annotations on UCF101-24 and JHMDB21, respectively. We further evaluate its effectiveness on AVA for scaling to large-scale datasets and YouTube-VOS for video object segmentation, demonstrating its generalization capability to other tasks in the video domain. Code and models are publicly available.

Semi-supervised Active Learning for Video Action Detection

In this work, we focus on label efficient learning for video action detection. We develop a novel semi-supervised active learning approach which utilizes both labeled as well as unlabeled data along with informative sample selection for action detection. Video action detection requires spatio-temporal localization along with classification, which poses several challenges for both active learning informative sample selection as well as semi-supervised learning pseudo label generation. First, we propose NoiseAug, a simple augmentation strategy which effectively selects informative samples for video action detection. Next, we propose fft-attention, a novel technique based on high-pass filtering which enables effective utilization of pseudo label for SSL in video action detection by emphasizing on relevant activity region within a video. We evaluate the proposed approach on three different benchmark datasets, UCF-101-24, JHMDB-21, and Youtube-VOS. First, we demonstrate its effectiveness on video action detection where the proposed approach outperforms prior works in semi-supervised and weakly-supervised learning along with several baseline approaches in both UCF101-24 and JHMDB-21. Next, we also show its effectiveness on Youtube-VOS for video object segmentation demonstrating its generalization capability for other dense prediction tasks in videos. The code and models is publicly available at: https://github.com/AKASH2907/semi-sup-active-learning.

Memory-Efficient Continual Learning Object Segmentation for Long Video

Recent state-of-the-art semi-supervised Video Object Segmentation (VOS) methods have shown significant improvements in target object segmentation accuracy when information from preceding frames is used in segmenting the current frame. In particular, such memory-based approaches can help a model to more effectively handle appearance changes (representation drift) or occlusions. Ideally, for maximum performance, Online VOS methods would need all or most of the preceding frames (or their extracted information) to be stored in memory and be used for online learning in later frames. Such a solution is not feasible for long videos, as the required memory size grows without bound, and such methods can fail when memory is limited and a target object experiences repeated representation drifts throughout a video. We propose two novel techniques to reduce the memory requirement of Online VOS methods while improving modeling accuracy and generalization on long videos. Motivated by the success of continual learning techniques in preserving previously-learned knowledge, here we propose Gated-Regularizer Continual Learning (GRCL), which improves the performance of any Online VOS subject to limited memory, and a Reconstruction-based Memory Selection Continual Learning (RMSCL), which empowers Online VOS methods to efficiently benefit from stored information in memory. We also analyze the performance of a hybrid combination of the two proposed methods. Experimental results show that the proposed methods are able to improve the performance of Online VOS models by more than 8%, with improved robustness on long-video datasets while maintaining comparable performance on short-video datasets such as DAVIS16, DAVIS17, and YouTube-VOS18.

End-to-End Referring Video Object Segmentation with Multimodal Transformers

The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at https://github.com/mttr2021/MTTR

MOSEv2: A More Challenging Dataset for Video Object Segmentation in Complex Scenes

Video object segmentation (VOS) aims to segment specified target objects throughout a video. Although state-of-the-art methods have achieved impressive performance (e.g., 90+% J&F) on existing benchmarks such as DAVIS and YouTube-VOS, these datasets primarily contain salient, dominant, and isolated objects, limiting their generalization to real-world scenarios. To advance VOS toward more realistic environments, coMplex video Object SEgmentation (MOSEv1) was introduced to facilitate VOS research in complex scenes. Building on the strengths and limitations of MOSEv1, we present MOSEv2, a significantly more challenging dataset designed to further advance VOS methods under real-world conditions. MOSEv2 consists of 5,024 videos and over 701,976 high-quality masks for 10,074 objects across 200 categories. Compared to its predecessor, MOSEv2 introduces significantly greater scene complexity, including more frequent object disappearance and reappearance, severe occlusions and crowding, smaller objects, as well as a range of new challenges such as adverse weather (e.g., rain, snow, fog), low-light scenes (e.g., nighttime, underwater), multi-shot sequences, camouflaged objects, non-physical targets (e.g., shadows, reflections), scenarios requiring external knowledge, etc. We benchmark 20 representative VOS methods under 5 different settings and observe consistent performance drops. For example, SAM2 drops from 76.4% on MOSEv1 to only 50.9% on MOSEv2. We further evaluate 9 video object tracking methods and find similar declines, demonstrating that MOSEv2 presents challenges across tasks. These results highlight that despite high accuracy on existing datasets, current VOS methods still struggle under real-world complexities. MOSEv2 is publicly available at https://MOSE.video.

Scalable Video Object Segmentation with Simplified Framework

The current popular methods for video object segmentation (VOS) implement feature matching through several hand-crafted modules that separately perform feature extraction and matching. However, the above hand-crafted designs empirically cause insufficient target interaction, thus limiting the dynamic target-aware feature learning in VOS. To tackle these limitations, this paper presents a scalable Simplified VOS (SimVOS) framework to perform joint feature extraction and matching by leveraging a single transformer backbone. Specifically, SimVOS employs a scalable ViT backbone for simultaneous feature extraction and matching between query and reference features. This design enables SimVOS to learn better target-ware features for accurate mask prediction. More importantly, SimVOS could directly apply well-pretrained ViT backbones (e.g., MAE) for VOS, which bridges the gap between VOS and large-scale self-supervised pre-training. To achieve a better performance-speed trade-off, we further explore within-frame attention and propose a new token refinement module to improve the running speed and save computational cost. Experimentally, our SimVOS achieves state-of-the-art results on popular video object segmentation benchmarks, i.e., DAVIS-2017 (88.0% J&F), DAVIS-2016 (92.9% J&F) and YouTube-VOS 2019 (84.2% J&F), without applying any synthetic video or BL30K pre-training used in previous VOS approaches.

End-to-End Semi-Supervised Learning for Video Action Detection

In this work, we focus on semi-supervised learning for video action detection which utilizes both labeled as well as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes the unlabeled data. Video action detection requires both, action class prediction as well as a spatio-temporal localization of actions. Therefore, we investigate two types of constraints, classification consistency, and spatio-temporal consistency. The presence of predominant background and static regions in a video makes it challenging to utilize spatio-temporal consistency for action detection. To address this, we propose two novel regularization constraints for spatio-temporal consistency; 1) temporal coherency, and 2) gradient smoothness. Both these aspects exploit the temporal continuity of action in videos and are found to be effective for utilizing unlabeled videos for action detection. We demonstrate the effectiveness of the proposed approach on two different action detection benchmark datasets, UCF101-24 and JHMDB-21. In addition, we also show the effectiveness of the proposed approach for video object segmentation on the Youtube-VOS which demonstrates its generalization capability The proposed approach achieves competitive performance by using merely 20% of annotations on UCF101-24 when compared with recent fully supervised methods. On UCF101-24, it improves the score by +8.9% and +11% at 0.5 f-mAP and v-mAP respectively, compared to supervised approach.

Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation

In this paper, we propose a simple yet effective approach for self-supervised video object segmentation (VOS). Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust spatio-temporal correspondences in videos. Furthermore, simple clustering on this correspondence cue is sufficient to yield competitive segmentation results. Previous self-supervised VOS techniques majorly resort to auxiliary modalities or utilize iterative slot attention to assist in object discovery, which restricts their general applicability and imposes higher computational requirements. To deal with these challenges, we develop a simplified architecture that capitalizes on the emerging objectness from DINO-pretrained Transformers, bypassing the need for additional modalities or slot attention. Specifically, we first introduce a single spatio-temporal Transformer block to process the frame-wise DINO features and establish spatio-temporal dependencies in the form of self-attention. Subsequently, utilizing these attention maps, we implement hierarchical clustering to generate object segmentation masks. To train the spatio-temporal block in a fully self-supervised manner, we employ semantic and dynamic motion consistency coupled with entropy normalization. Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and particularly excels in complex real-world multi-object video segmentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19. The code and model checkpoints will be released at https://github.com/shvdiwnkozbw/SSL-UVOS.