35 IntFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction We introduce IntFold, a controllable foundation model for both general and specialized biomolecular structure prediction. IntFold demonstrates predictive accuracy comparable to the state-of-the-art AlphaFold3, while utilizing a superior customized attention kernel. Beyond standard structure prediction, IntFold can be adapted to predict allosteric states, constrained structures, and binding affinity through the use of individual adapters. Furthermore, we introduce a novel confidence head to estimate docking quality, offering a more nuanced assessment for challenging targets such as antibody-antigen complexes. Finally, we share insights gained during the training process of this computationally intensive model. 7 authors · Jul 2 5
- mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics Recent advancements in protein structure determination are revolutionizing our understanding of proteins. Still, a significant gap remains in the availability of comprehensive datasets that focus on the dynamics of proteins, which are crucial for understanding protein function, folding, and interactions. To address this critical gap, we introduce mdCATH, a dataset generated through an extensive set of all-atom molecular dynamics simulations of a diverse and representative collection of protein domains. This dataset comprises all-atom systems for 5,398 domains, modeled with a state-of-the-art classical force field, and simulated in five replicates each at five temperatures from 320 K to 413 K. The mdCATH dataset records coordinates and forces every 1 ns, for over 62 ms of accumulated simulation time, effectively capturing the dynamics of the various classes of domains and providing a unique resource for proteome-wide statistical analyses of protein unfolding thermodynamics and kinetics. We outline the dataset structure and showcase its potential through four easily reproducible case studies, highlighting its capabilities in advancing protein science. 3 authors · Jul 20, 2024