new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens

We present Brain Harmony (BrainHarmonix), the first multimodal brain foundation model that unifies structural morphology and functional dynamics into compact 1D token representations. The model was pretrained on two of the largest neuroimaging datasets to date, encompassing 64,594 T1-weighted structural MRI 3D volumes (~ 14 million images) and 70,933 functional MRI (fMRI) time series. BrainHarmonix is grounded in two foundational neuroscience principles: structure complements function - structural and functional modalities offer distinct yet synergistic insights into brain organization; function follows structure - brain functional dynamics are shaped by cortical morphology. The modular pretraining process involves single-modality training with geometric pre-alignment followed by modality fusion through shared brain hub tokens. Notably, our dynamics encoder uniquely handles fMRI time series with heterogeneous repetition times (TRs), addressing a major limitation in existing models. BrainHarmonix is also the first to deeply compress high-dimensional neuroimaging signals into unified, continuous 1D tokens, forming a compact latent space of the human brain. BrainHarmonix achieves strong generalization across diverse downstream tasks, including neurodevelopmental and neurodegenerative disorder classification and cognition prediction - consistently outperforming previous approaches. Our models - pretrained on 8 H100 GPUs - aim to catalyze a new era of AI-driven neuroscience powered by large-scale multimodal neuroimaging.

  • 12 authors
·
Sep 29, 2025

CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding

Predictive Coding (PC) is a theoretical framework in cognitive science suggesting that the human brain processes cognition through spatiotemporal prediction of the visual world. Existing studies have developed spatiotemporal prediction neural networks based on the PC theory, emulating its two core mechanisms: Correcting predictions from residuals and hierarchical learning. However, these models do not show the enhancement of prediction skills on real-world forecasting tasks and ignore the Precision Weighting mechanism of PC theory. The precision weighting mechanism posits that the brain allocates more attention to signals with lower precision, contributing to the cognitive ability of human brains. This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM), which demonstrate the connection between diffusion probabilistic models and PC theory. CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models. We experimentally show that the precision weights effectively estimate the data predictability. We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and ERA surface wind datasets. Our results demonstrate that CogDPM outperforms both existing domain-specific operational models and general deep prediction models by providing more proficient forecasting.

  • 5 authors
·
May 3, 2024

Experts' cognition-driven ensemble deep learning for external validation of predicting pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer

In breast cancer imaging, there has been a trend to directly predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) from histological images based on deep learning (DL). However, it has been a commonly known problem that the constructed DL-based models numerically have better performances in internal validation than in external validation. The primary reason for this situation lies in that the distribution of the external data for validation is different from the distribution of the training data for the construction of the predictive model. In this paper, we aim to alleviate this situation with a more intrinsic approach. We propose an experts' cognition-driven ensemble deep learning (ECDEDL) approach for external validation of predicting pCR to NAC from histological images in breast cancer. The proposed ECDEDL, which takes the cognition of both pathology and artificial intelligence experts into consideration to improve the generalization of the predictive model to the external validation, more intrinsically approximates the working paradigm of a human being which will refer to his various working experiences to make decisions. The proposed ECDEDL approach was validated with 695 WSIs collected from the same center as the primary dataset to develop the predictive model and perform the internal validation, and 340 WSIs collected from other three centers as the external dataset to perform the external validation. In external validation, the proposed ECDEDL approach improves the AUCs of pCR prediction from 61.52(59.80-63.26) to 67.75(66.74-68.80) and the Accuracies of pCR prediction from 56.09(49.39-62.79) to 71.01(69.44-72.58). The proposed ECDEDL was quite effective for external validation, numerically more approximating the internal validation.

  • 7 authors
·
Jun 19, 2023

CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation

The advancement of large Vision-Language-Action (VLA) models has significantly improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios. While existing VLAs adapted from pretrained large Vision-Language-Models (VLM) have demonstrated promising generalizability, their task performance is still unsatisfactory as indicated by the low tasks success rates in different environments. In this paper, we present a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a omponentized VLA architecture that has a specialized action module conditioned on VLM output. We systematically study the design of the action module and demonstrates the strong performance enhancement with diffusion action transformers for action sequence modeling, as well as their favorable scaling behaviors. We also conduct comprehensive experiments and ablation studies to evaluate the efficacy of our models with varied designs. The evaluation on 5 robot embodiments in simulation and real work shows that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds. It exceeds the average success rates of OpenVLA which has similar model size (7B) with ours by over 35% in simulated evaluation and 55% in real robot experiments. It also outperforms the large RT-2-X model (55B) by 18% absolute success rates in simulation. Code and models can be found on our project page (https://cogact.github.io/).

  • 18 authors
·
Nov 29, 2024

Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models

When faced with novel situations, people are able to marshal relevant considerations from a wide range of background knowledge and put these to use in inferences and predictions. What permits us to draw in globally relevant information and reason over it coherently? Here, we explore the hypothesis that people use a combination of distributed and symbolic representations to construct bespoke mental models tailored to novel situations. We propose a computational implementation of this idea -- a ``Model Synthesis Architecture'' (MSA) -- using language models to implement global relevance-based retrieval and model synthesis and probabilistic programs to implement bespoke, coherent world models. We evaluate our MSA as a model of human judgments on a novel reasoning dataset. The dataset -- built around a `Model Olympics` domain of sports vignettes -- tests models' capacity for human-like, open-ended reasoning by requiring (i) judgments about novel causal structures described in language; (ii) drawing on large bodies of background knowledge; and (iii) doing both in light of observations that introduce arbitrary novel variables. Our MSA approach captures human judgments better than language model-only baselines, under both direct and chain-of-thought generations from the LM that supports model synthesis. These results suggest that MSAs can be implemented in a way that mirrors people's ability to deliver locally coherent reasoning over globally relevant variables, offering a path to understanding and replicating human reasoning in open-ended domains.

  • 11 authors
·
Jul 16, 2025

Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems

Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.

  • 10 authors
·
Mar 9, 2025

STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery

Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets <subject, relationship, object> heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size SAI. This paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named STAR (Scene graph generaTion in lArge-size satellite imageRy), encompassing over 210K objects and over 400K triplets. To realize SGG in large-size SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI regarding object detection (OBD), pair pruning and relationship prediction for SGG. We also release a SAI-oriented SGG toolkit with about 30 OBD and 10 SGG methods which need further adaptation by our devised modules on our challenging STAR dataset. The dataset and toolkit are available at: https://linlin-dev.github.io/project/STAR.

  • 14 authors
·
Jun 13, 2024

Cognitio Emergens: Agency, Dimensions, and Dynamics in Human-AI Knowledge Co-Creation

Scientific knowledge creation is fundamentally transforming as humans and AI systems evolve beyond tool-user relationships into co-evolutionary epistemic partnerships. When AlphaFold revolutionized protein structure prediction, researchers described engaging with an epistemic partner that reshaped how they conceptualized fundamental relationships. This article introduces Cognitio Emergens (CE), a framework addressing critical limitations in existing models that focus on static roles or narrow metrics while failing to capture how scientific understanding emerges through recursive human-AI interaction over time. CE integrates three components addressing these limitations: Agency Configurations describing how authority distributes between humans and AI (Directed, Contributory, Partnership), with partnerships dynamically oscillating between configurations rather than following linear progression; Epistemic Dimensions capturing six specific capabilities emerging through collaboration across Discovery, Integration, and Projection axes, creating distinctive "capability signatures" that guide development; and Partnership Dynamics identifying forces shaping how these relationships evolve, particularly the risk of epistemic alienation where researchers lose interpretive control over knowledge they formally endorse. Drawing from autopoiesis theory, social systems theory, and organizational modularity, CE reveals how knowledge co-creation emerges through continuous negotiation of roles, values, and organizational structures. By reconceptualizing human-AI scientific collaboration as fundamentally co-evolutionary, CE offers a balanced perspective that neither uncritically celebrates nor unnecessarily fears AI's evolving role, instead providing conceptual tools for cultivating partnerships that maintain meaningful human participation while enabling transformative scientific breakthroughs.

  • 1 authors
·
May 5, 2025 1

Joint encoding of "what" and "when" predictions through error-modulated plasticity in reservoir spiking networks

The brain understands the external world through an internal model that generates predictions and refines them based on prediction errors. A complete prediction specifies what will happen, when it will happen, and with what probability, which we refer to as a "prediction object". Existing models typically capture only what and when, omit probabilities, and rely on biologically-implausible algorithms. Here we show that a single population of spiking neurons can jointly encode the prediction object through a biologically grounded learning mechanism. We implement a heterogeneous Izhikevich spiking reservoir with readouts trained by an error-modulated, attention-gated three-factor Hebbian rule and test it on a novel paradigm that controls both the timing and probability of upcoming stimuli. By integrating real-time learning of "when" with offline consolidation of "what", the model encodes the complete prediction object, firing at the correct times with magnitudes proportional to the probabilities. Critically, it rapidly adapts to changes in both stimulus timing and probability, an ability that global least-squares methods such as FORCE lack without explicit resets. During learning, the model self-organizes its readout weights into near-orthogonal subspaces for "what" and "when," showing that multiplexed encoding arises naturally from generic recurrent dynamics under local, error-gated modulation. These results challenge the view that "what" and "when" predictions require separate modules, suggesting instead that mixed selectivity within shared populations supports flexible predictive cognition. The model also predicts phase-specific neuromodulation and overlapping neural subspaces, offering a parsimonious alternative to hierarchical predictive-coding accounts.

  • 2 authors
·
Oct 16, 2025