new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

MathSmith: Towards Extremely Hard Mathematical Reasoning by Forging Synthetic Problems with a Reinforced Policy

Large language models have achieved substantial progress in mathematical reasoning, yet their advancement is limited by the scarcity of high-quality, high-difficulty training data. Existing synthesis methods largely rely on transforming human-written templates, limiting both diversity and scalability. We propose MathSmith, a novel framework for synthesizing challenging mathematical problems to enhance LLM reasoning. Rather than modifying existing problems, MathSmith constructs new ones from scratch by randomly sampling concept-explanation pairs from PlanetMath, ensuring data independence and avoiding contamination. To increase difficulty, we design nine predefined strategies as soft constraints during rationales. We further adopts reinforcement learning to jointly optimize structural validity, reasoning complexity, and answer consistency. The length of the reasoning trace generated under autoregressive prompting is used to reflect cognitive complexity, encouraging the creation of more demanding problems aligned with long-chain-of-thought reasoning. Experiments across five benchmarks, categorized as easy & medium (GSM8K, MATH-500) and hard (AIME2024, AIME2025, OlympiadBench), show that MathSmith consistently outperforms existing baselines under both short and long CoT settings. Additionally, a weakness-focused variant generation module enables targeted improvement on specific concepts. Overall, MathSmith exhibits strong scalability, generalization, and transferability, highlighting the promise of high-difficulty synthetic data in advancing LLM reasoning capabilities.

  • 6 authors
·
Aug 7, 2025

FineWeb2: One Pipeline to Scale Them All -- Adapting Pre-Training Data Processing to Every Language

Pre-training state-of-the-art large language models (LLMs) requires vast amounts of clean and diverse text data. While the open development of large high-quality English pre-training datasets has seen substantial recent progress, training performant multilingual LLMs remains a challenge, in large part due to the inherent difficulty of tailoring filtering and deduplication pipelines to a large number of languages. In this work, we introduce a new pre-training dataset curation pipeline based on FineWeb that can be automatically adapted to support any language. We extensively ablate our pipeline design choices on a set of nine diverse languages, guided by a set of meaningful and informative evaluation tasks that were chosen through a novel selection process based on measurable criteria. Ultimately, we show that our pipeline can be used to create non-English corpora that produce more performant models than prior datasets. We additionally introduce a straightforward and principled approach to rebalance datasets that takes into consideration both duplication count and quality, providing an additional performance uplift. Finally, we scale our pipeline to over 1000 languages using almost 100 Common Crawl snapshots to produce FineWeb2, a new 20 terabyte (5 billion document) multilingual dataset which we release along with our pipeline, training, and evaluation codebases.

HuggingFaceFW FineData
·
Jun 25, 2025 1

BMGQ: A Bottom-up Method for Generating Complex Multi-hop Reasoning Questions from Semi-structured Data

Building training-ready multi-hop question answering (QA) datasets that truly stress a model's retrieval and reasoning abilities remains highly challenging recently. While there have been a few recent evaluation datasets that capture the characteristics of hard-to-search but easy-to-verify problems -- requiring the integration of ambiguous, indirect, and cross-domain cues -- these data resources remain scarce and are mostly designed for evaluation, making them unsuitable for supervised fine-tuning (SFT) or reinforcement learning (RL). Meanwhile, manually curating non-trivially retrievable questions -- where answers cannot be found through a single direct query but instead require multi-hop reasoning over oblique and loosely connected evidence -- incurs prohibitive human costs and fails to scale, creating a critical data bottleneck for training high-capability retrieval-and-reasoning agents. To address this, we present an automated framework for generating high-difficulty, training-ready multi-hop questions from semi-structured knowledge sources. The system (i) grows diverse, logically labeled evidence clusters through Natural Language Inference (NLI)-based relation typing and diversity-aware expansion; (ii) applies reverse question construction to compose oblique cues so that isolated signals are underinformative but their combination uniquely identifies the target entity; and (iii) enforces quality with a two-step evaluation pipeline that combines multi-model consensus filtering with structured constraint decomposition and evidence-based matching. The result is a scalable process that yields complex, retrieval-resistant yet verifiable questions suitable for SFT/RL training as well as challenging evaluation, substantially reducing human curation effort while preserving the difficulty profile of strong evaluation benchmarks.

  • 9 authors
·
Oct 28, 2025

TextSSR: Diffusion-based Data Synthesis for Scene Text Recognition

Scene text recognition (STR) suffers from challenges of either less realistic synthetic training data or the difficulty of collecting sufficient high-quality real-world data, limiting the effectiveness of trained models. Meanwhile, despite producing holistically appealing text images, diffusion-based visual text generation methods struggle to synthesize accurate and realistic instance-level text at scale. To tackle this, we introduce TextSSR: a novel pipeline for Synthesizing Scene Text Recognition training data. TextSSR targets three key synthesizing characteristics: accuracy, realism, and scalability. It achieves accuracy through a proposed region-centric text generation with position-glyph enhancement, ensuring proper character placement. It maintains realism by guiding style and appearance generation using contextual hints from surrounding text or background. This character-aware diffusion architecture enjoys precise character-level control and semantic coherence preservation, without relying on natural language prompts. Therefore, TextSSR supports large-scale generation through combinatorial text permutations. Based on these, we present TextSSR-F, a dataset of 3.55 million quality-screened text instances. Extensive experiments show that STR models trained on TextSSR-F outperform those trained on existing synthetic datasets by clear margins on common benchmarks, and further improvements are observed when mixed with real-world training data. Code is available at https://github.com/YesianRohn/TextSSR.

  • 4 authors
·
Dec 2, 2024

Large-Scale Diverse Synthesis for Mid-Training

The scarcity of high-quality, knowledge-intensive training data hinders the development of large language models (LLMs), as traditional corpora provide limited information. Previous studies have synthesized and integrated corpora-dependent question-answering (QA) data to improve model performance but face challenges in QA data scalability and knowledge diversity, particularly in cross-domain contexts. Furthermore, leveraging our designed discipline and difficulty annotation system, we probe model deficiencies in STEM disciplines and high-difficulty data. To overcome these limitations, we propose a novel diversified pipeline to synthesize BoostQA, a 100B-token large-scale QA dataset. Our synthesis framework: (1) curates seed data from heterogeneous sources; (2) utilizes DeepSeek-R1 to implement STEM-focused multi-grade synthesis to boost data diversity and high-difficulty synthesis to mitigate difficulty degradation; (3) refines answers via DeepSeek-V3 to improve output quality. We utilize BoostQA in mid-training, a mid-stage between pre-training and post-training, to optimize domain-specific knowledge acquisition and enhance data quality. Our method enables Llama-3 8B, mid-trained on a 40B-token dataset, to achieve an average improvement of 12.74% on MMLU and CMMLU and establish SOTA average performance across 12 benchmarks. BoostQA also demonstrates robust scalability, with performance consistently improving as model size, data volume, and initial FLOPs scale.

  • 7 authors
·
Aug 2, 2025

MiniPLM: Knowledge Distillation for Pre-Training Language Models

Knowledge distillation (KD) is widely used to train small, high-performing student language models (LMs) using large teacher LMs. While effective in fine-tuning, KD during pre-training faces challenges in efficiency, flexibility, and effectiveness. Existing methods either incur high computational costs due to online teacher inference, require tokenization matching between teacher and student LMs, or risk losing the difficulty and diversity of the teacher-generated training data. To address these issues, we propose MiniPLM, a KD framework for pre-training LMs by refining the training data distribution with the teacher's knowledge. For efficiency, MiniPLM performs offline teacher LM inference, allowing KD for multiple student LMs without adding training-time costs. For flexibility, MiniPLM operates solely on the training corpus, enabling KD across model families. For effectiveness, MiniPLM leverages the differences between large and small LMs to enhance the difficulty and diversity of the training data, helping student LMs acquire versatile and sophisticated knowledge. Extensive experiments demonstrate that MiniPLM boosts the student LMs' performance on 9 widely used downstream tasks, improves the language modeling capabilities, and reduces pre-training computation. The benefit of MiniPLM extends to large pre-training scales, evidenced by the extrapolation of the scaling curves. Further analysis reveals that MiniPLM supports KD across model families and enhances the utilization of pre-training data. Our model, code, and data are available at https://github.com/thu-coai/MiniPLM.

  • 5 authors
·
Oct 22, 2024 2

Force Prompting: Video Generation Models Can Learn and Generalize Physics-based Control Signals

Recent advances in video generation models have sparked interest in world models capable of simulating realistic environments. While navigation has been well-explored, physically meaningful interactions that mimic real-world forces remain largely understudied. In this work, we investigate using physical forces as a control signal for video generation and propose force prompts which enable users to interact with images through both localized point forces, such as poking a plant, and global wind force fields, such as wind blowing on fabric. We demonstrate that these force prompts can enable videos to respond realistically to physical control signals by leveraging the visual and motion prior in the original pretrained model, without using any 3D asset or physics simulator at inference. The primary challenge of force prompting is the difficulty in obtaining high quality paired force-video training data, both in the real world due to the difficulty of obtaining force signals, and in synthetic data due to limitations in the visual quality and domain diversity of physics simulators. Our key finding is that video generation models can generalize remarkably well when adapted to follow physical force conditioning from videos synthesized by Blender, even with limited demonstrations of few objects. Our method can generate videos which simulate forces across diverse geometries, settings, and materials. We also try to understand the source of this generalization and perform ablations that reveal two key elements: visual diversity and the use of specific text keywords during training. Our approach is trained on only around 15k training examples for a single day on four A100 GPUs, and outperforms existing methods on force adherence and physics realism, bringing world models closer to real-world physics interactions. We release all datasets, code, weights, and interactive video demos at our project page.

  • 7 authors
·
May 25, 2025 2

Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP

The development of monolingual language models for low and mid-resource languages continues to be hindered by the difficulty in sourcing high-quality training data. In this study, we present a novel cross-lingual vocabulary transfer strategy, trans-tokenization, designed to tackle this challenge and enable more efficient language adaptation. Our approach focuses on adapting a high-resource monolingual LLM to an unseen target language by initializing the token embeddings of the target language using a weighted average of semantically similar token embeddings from the source language. For this, we leverage a translation resource covering both the source and target languages. We validate our method with the Tweeties, a series of trans-tokenized LLMs, and demonstrate their competitive performance on various downstream tasks across a small but diverse set of languages. Additionally, we introduce Hydra LLMs, models with multiple swappable language modeling heads and embedding tables, which further extend the capabilities of our trans-tokenization strategy. By designing a Hydra LLM based on the multilingual model TowerInstruct, we developed a state-of-the-art machine translation model for Tatar, in a zero-shot manner, completely bypassing the need for high-quality parallel data. This breakthrough is particularly significant for low-resource languages like Tatar, where high-quality parallel data is hard to come by. By lowering the data and time requirements for training high-quality models, our trans-tokenization strategy allows for the development of LLMs for a wider range of languages, especially those with limited resources. We hope that our work will inspire further research and collaboration in the field of cross-lingual vocabulary transfer and contribute to the empowerment of languages on a global scale.

  • 6 authors
·
Aug 8, 2024 2

Efficient Multi-turn RL for GUI Agents via Decoupled Training and Adaptive Data Curation

Vision-language model (VLM) based GUI agents show promise for automating complex desktop and mobile tasks, but face significant challenges in applying reinforcement learning (RL): (1) slow multi-turn interactions with GUI environments for policy rollout, and (2) insufficient high-quality agent-environment interactions for policy learning. To address these challenges, we propose DART, a Decoupled Agentic RL Training framework for GUI agents, which coordinates heterogeneous modules in a highly decoupled manner. DART separates the training system into four asynchronous modules: environment cluster, rollout service, data manager, and trainer. This design enables non-blocking communication, asynchronous training, rollout-wise trajectory sampling, and per-worker model synchronization, significantly improving the system efficiency: 1.6*GPU utilization for rollout, 1.9* training throughput, and 5.5* environment utilization. To facilitate effective learning from abundant samples, we introduce an adaptive data curation scheme: (1) pre-collecting successful trajectories for challenging tasks to supplement sparse success in online sampling; (2) dynamically adjusting rollout numbers and trajectory lengths based on task difficulty; (3) training selectively on high-entropy steps to prioritize critical decisions; (4) stabilizing learning via truncated importance sampling for policy mismatch between policy rollout and updating. On the OSWorld benchmark, DART-GUI-7B achieves a 42.13% task success rate, a 14.61% absolute gain over the base model, and 7.34% higher than open-source SOTA. We will fully open-source our training framework, data, and model checkpoints via computer-use-agents.github.io/dart-gui, which we believe is a timely contribution to the open-source community of agentic RL training.

T-SHIRT: Token-Selective Hierarchical Data Selection for Instruction Tuning

Instruction tuning is essential for Large Language Models (LLMs) to effectively follow user instructions. To improve training efficiency and reduce data redundancy, recent works use LLM-based scoring functions, e.g., Instruction-Following Difficulty (IFD), to select high-quality instruction-tuning data with scores above a threshold. While these data selection methods often lead to models that can match or even exceed the performance of models trained on the full datasets, we identify two key limitations: (i) they assess quality at the sample level, ignoring token-level informativeness; and (ii) they overlook the robustness of the scoring method, often selecting a sample due to superficial lexical features instead of its true quality. In this work, we propose Token-Selective HIeRarchical Data Selection for Instruction Tuning (T-SHIRT), a novel data selection framework that introduces a new scoring method to include only informative tokens in quality evaluation and also promotes robust and reliable samples whose neighbors also show high quality with less local inconsistencies. We demonstrate that models instruction-tuned on a curated dataset (only 5% of the original size) using T-SHIRT can outperform those trained on the entire large-scale dataset by up to 5.48 points on average across eight benchmarks. Across various LLMs and training set scales, our method consistently surpasses existing state-of-the-art data selection techniques, while also remaining both cost-effective and highly efficient. For instance, by using GPT-2 for score computation, we are able to process a dataset of 52k samples in 40 minutes on a single GPU. Our code is available at https://github.com/Dynamite321/T-SHIRT.

  • 3 authors
·
Jun 2, 2025

Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation

Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.

  • 10 authors
·
Aug 18, 2025

Detect Anything via Next Point Prediction

Object detection has long been dominated by traditional coordinate regression-based models, such as YOLO, DETR, and Grounding DINO. Although recent efforts have attempted to leverage MLLMs to tackle this task, they face challenges like low recall rate, duplicate predictions, coordinate misalignment, etc. In this work, we bridge this gap and propose Rex-Omni, a 3B-scale MLLM that achieves state-of-the-art object perception performance. On benchmarks like COCO and LVIS, Rex-Omni attains performance comparable to or exceeding regression-based models (e.g., DINO, Grounding DINO) in a zero-shot setting. This is enabled by three key designs: 1) Task Formulation: we use special tokens to represent quantized coordinates from 0 to 999, reducing the model's learning difficulty and improving token efficiency for coordinate prediction; 2) Data Engines: we construct multiple data engines to generate high-quality grounding, referring, and pointing data, providing semantically rich supervision for training; \3) Training Pipelines: we employ a two-stage training process, combining supervised fine-tuning on 22 million data with GRPO-based reinforcement post-training. This RL post-training leverages geometry-aware rewards to effectively bridge the discrete-to-continuous coordinate prediction gap, improve box accuracy, and mitigate undesirable behaviors like duplicate predictions that stem from the teacher-guided nature of the initial SFT stage. Beyond conventional detection, Rex-Omni's inherent language understanding enables versatile capabilities such as object referring, pointing, visual prompting, GUI grounding, spatial referring, OCR and key-pointing, all systematically evaluated on dedicated benchmarks. We believe that Rex-Omni paves the way for more versatile and language-aware visual perception systems.

IDEA-Research IDEA-Research
·
Oct 14, 2025 3

Ultra-FineWeb: Efficient Data Filtering and Verification for High-Quality LLM Training Data

Data quality has become a key factor in enhancing model performance with the rapid development of large language models (LLMs). Model-driven data filtering has increasingly become a primary approach for acquiring high-quality data. However, it still faces two main challenges: (1) the lack of an efficient data verification strategy makes it difficult to provide timely feedback on data quality; and (2) the selection of seed data for training classifiers lacks clear criteria and relies heavily on human expertise, introducing a degree of subjectivity. To address the first challenge, we introduce an efficient verification strategy that enables rapid evaluation of the impact of data on LLM training with minimal computational cost. To tackle the second challenge, we build upon the assumption that high-quality seed data is beneficial for LLM training, and by integrating the proposed verification strategy, we optimize the selection of positive and negative samples and propose an efficient data filtering pipeline. This pipeline not only improves filtering efficiency, classifier quality, and robustness, but also significantly reduces experimental and inference costs. In addition, to efficiently filter high-quality data, we employ a lightweight classifier based on fastText, and successfully apply the filtering pipeline to two widely-used pre-training corpora, FineWeb and Chinese FineWeb datasets, resulting in the creation of the higher-quality Ultra-FineWeb dataset. Ultra-FineWeb contains approximately 1 trillion English tokens and 120 billion Chinese tokens. Empirical results demonstrate that the LLMs trained on Ultra-FineWeb exhibit significant performance improvements across multiple benchmark tasks, validating the effectiveness of our pipeline in enhancing both data quality and training efficiency.

openbmb OpenBMB
·
May 8, 2025

PYInfer: Deep Learning Semantic Type Inference for Python Variables

Python type inference is challenging in practice. Due to its dynamic properties and extensive dependencies on third-party libraries without type annotations, the performance of traditional static analysis techniques is limited. Although semantics in source code can help manifest intended usage for variables (thus help infer types), they are usually ignored by existing tools. In this paper, we propose PYInfer, an end-to-end learning-based type inference tool that automatically generates type annotations for Python variables. The key insight is that contextual code semantics is critical in inferring the type for a variable. For each use of a variable, we collect a few tokens within its contextual scope, and design a neural network to predict its type. One challenge is that it is difficult to collect a high-quality human-labeled training dataset for this purpose. To address this issue, we apply an existing static analyzer to generate the ground truth for variables in source code. Our main contribution is a novel approach to statically infer variable types effectively and efficiently. Formulating the type inference as a classification problem, we can handle user-defined types and predict type probabilities for each variable. Our model achieves 91.2% accuracy on classifying 11 basic types in Python and 81.2% accuracy on classifying 500 most common types. Our results substantially outperform the state-of-the-art type annotators. Moreover, PYInfer achieves 5.2X more code coverage and is 187X faster than a state-of-the-art learning-based tool. With similar time consumption, our model annotates 5X more variables than a state-of-the-art static analysis tool. Our model also outperforms a learning-based function-level annotator on annotating types for variables and function arguments. All our tools and datasets are publicly available to facilitate future research in this direction.

  • 6 authors
·
Jun 27, 2021

TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models

Recent advances in multimodal Large Language Models (LLMs) have shown great success in understanding multi-modal contents. For video understanding tasks, training-based video LLMs are difficult to build due to the scarcity of high-quality, curated video-text paired data. In contrast, paired image-text data are much easier to obtain, and there is substantial similarity between images and videos. Consequently, extending image LLMs for video understanding tasks presents an appealing alternative. Developing effective strategies for compressing visual tokens from multiple frames is a promising way to leverage the powerful pre-trained image LLM. In this work, we explore the limitations of the existing compression strategies for building a training-free video LLM. The findings lead to our method TS-LLaVA, which constructs visual tokens through a Thumbnail-and-Sampling strategy. Given a video, we select few equidistant frames from all input frames to construct a Thumbnail image as a detailed visual cue, complemented by Sampled visual tokens from all input frames. Our method establishes the new state-of-the-art performance among training-free video LLMs on various benchmarks. Notably, our 34B model outperforms GPT-4V on the MVBench benchmark, and achieves performance comparable to the 72B training-based video LLM, Video-LLaMA2, on the challenging MLVU benchmark. Code is available at https://github.com/tingyu215/TS-LLaVA.

  • 4 authors
·
Nov 17, 2024

HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec

Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}

  • 6 authors
·
May 4, 2023 1

Pre-training technique to localize medical BERT and enhance biomedical BERT

Pre-training large-scale neural language models on raw texts has made a significant contribution to improving transfer learning in natural language processing (NLP). With the introduction of transformer-based language models, such as bidirectional encoder representations from transformers (BERT), the performance of information extraction from a free text by NLP has significantly improved for both the general domain and medical domain; however, it is difficult to train specific BERT models that perform well for domains in which there are few publicly available databases of high quality and large size. We hypothesized that this problem can be addressed by up-sampling a domain-specific corpus and using it for pre-training with a larger corpus in a balanced manner. Our proposed method consists of a single intervention with one option: simultaneous pre-training after up-sampling and amplified vocabulary. We conducted three experiments and evaluated the resulting products. We confirmed that our Japanese medical BERT outperformed conventional baselines and the other BERT models in terms of the medical document classification task and that our English BERT pre-trained using both the general and medical-domain corpora performed sufficiently well for practical use in terms of the biomedical language understanding evaluation (BLUE) benchmark. Moreover, our enhanced biomedical BERT model, in which clinical notes were not used during pre-training, showed that both the clinical and biomedical scores of the BLUE benchmark were 0.3 points above that of the ablation model trained without our proposed method. Well-balanced pre-training by up-sampling instances derived from a corpus appropriate for the target task allows us to construct a high-performance BERT model.

  • 6 authors
·
May 14, 2020

DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation

Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.

tencent Tencent
·
Nov 9, 2025 5

PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using Human Phenotype Ontology

Automatic phenotype concept recognition from unstructured text remains a challenging task in biomedical text mining research. Previous works that address the task typically use dictionary-based matching methods, which can achieve high precision but suffer from lower recall. Recently, machine learning-based methods have been proposed to identify biomedical concepts, which can recognize more unseen concept synonyms by automatic feature learning. However, most methods require large corpora of manually annotated data for model training, which is difficult to obtain due to the high cost of human annotation. In this paper, we propose PhenoTagger, a hybrid method that combines both dictionary and machine learning-based methods to recognize Human Phenotype Ontology (HPO) concepts in unstructured biomedical text. We first use all concepts and synonyms in HPO to construct a dictionary, which is then used to automatically build a distantly supervised training dataset for machine learning. Next, a cutting-edge deep learning model is trained to classify each candidate phrase (n-gram from input sentence) into a corresponding concept label. Finally, the dictionary and machine learning-based prediction results are combined for improved performance. Our method is validated with two HPO corpora, and the results show that PhenoTagger compares favorably to previous methods. In addition, to demonstrate the generalizability of our method, we retrained PhenoTagger using the disease ontology MEDIC for disease concept recognition to investigate the effect of training on different ontologies. Experimental results on the NCBI disease corpus show that PhenoTagger without requiring manually annotated training data achieves competitive performance as compared with state-of-the-art supervised methods.

  • 10 authors
·
Sep 17, 2020