Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeText Editing by Command
A prevailing paradigm in neural text generation is one-shot generation, where text is produced in a single step. The one-shot setting is inadequate, however, when the constraints the user wishes to impose on the generated text are dynamic, especially when authoring longer documents. We address this limitation with an interactive text generation setting in which the user interacts with the system by issuing commands to edit existing text. To this end, we propose a novel text editing task, and introduce WikiDocEdits, a dataset of single-sentence edits crawled from Wikipedia. We show that our Interactive Editor, a transformer-based model trained on this dataset, outperforms baselines and obtains positive results in both automatic and human evaluations. We present empirical and qualitative analyses of this model's performance.
Multimodal Programming in Computer Science with Interactive Assistance Powered by Large Language Model
LLM chatbot interfaces allow students to get instant, interactive assistance with homework, but doing so carelessly may not advance educational objectives. In this study, an interactive homework help system based on DeepSeek R1 is developed and first implemented for students enrolled in a large computer science beginning programming course. In addition to an assist button in a well-known code editor, our assistant also has a feedback option in our command-line automatic evaluator. It wraps student work in a personalized prompt that advances our educational objectives without offering answers straight away. We have discovered that our assistant can recognize students' conceptual difficulties and provide ideas, plans, and template code in pedagogically appropriate ways. However, among other mistakes, it occasionally incorrectly labels the correct student code as incorrect or encourages students to use correct-but-lesson-inappropriate approaches, which can lead to long and frustrating journeys for the students. After discussing many development and deployment issues, we provide our conclusions and future actions.
JarvisEvo: Towards a Self-Evolving Photo Editing Agent with Synergistic Editor-Evaluator Optimization
Agent-based editing models have substantially advanced interactive experiences, processing quality, and creative flexibility. However, two critical challenges persist: (1) instruction hallucination, text-only chain-of-thought (CoT) reasoning cannot fully prevent factual errors due to inherent information bottlenecks; (2) reward hacking, dynamic policy optimization against static reward models allows agents to exploit flaws in reward functions. To address these issues, we propose JarvisEvo, a unified image editing agent that emulates an expert human designer by iteratively editing, selecting appropriate tools, evaluating results, and reflecting on its own decisions to refine outcomes. JarvisEvo offers three key advantages: (1) an interleaved multimodal chain-of-thought (iMCoT) reasoning mechanism that enhances instruction following and editing quality; (2) a synergistic editor-evaluator policy optimization (SEPO) framework that enables self-improvement without external rewards, effectively mitigating reward hacking; and (3) support for both global and local fine-grained editing through seamless integration of Adobe Lightroom. On ArtEdit-Bench, JarvisEvo outperforms Nano-Banana by an average of 18.95% on preservative editing metrics, including a substantial 44.96% improvement in pixel-level content fidelity. Project page: https://jarvisevo.vercel.app/
ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer
Diffusion models have emerged as a powerful generative technology and have been found to be applicable in various scenarios. Most existing foundational diffusion models are primarily designed for text-guided visual generation and do not support multi-modal conditions, which are essential for many visual editing tasks. This limitation prevents these foundational diffusion models from serving as a unified model in the field of visual generation, like GPT-4 in the natural language processing field. In this work, we propose ACE, an All-round Creator and Editor, which achieves comparable performance compared to those expert models in a wide range of visual generation tasks. To achieve this goal, we first introduce a unified condition format termed Long-context Condition Unit (LCU), and propose a novel Transformer-based diffusion model that uses LCU as input, aiming for joint training across various generation and editing tasks. Furthermore, we propose an efficient data collection approach to address the issue of the absence of available training data. It involves acquiring pairwise images with synthesis-based or clustering-based pipelines and supplying these pairs with accurate textual instructions by leveraging a fine-tuned multi-modal large language model. To comprehensively evaluate the performance of our model, we establish a benchmark of manually annotated pairs data across a variety of visual generation tasks. The extensive experimental results demonstrate the superiority of our model in visual generation fields. Thanks to the all-in-one capabilities of our model, we can easily build a multi-modal chat system that responds to any interactive request for image creation using a single model to serve as the backend, avoiding the cumbersome pipeline typically employed in visual agents. Code and models will be available on the project page: https://ali-vilab.github.io/ace-page/.
CharGen: Fast and Fluent Portrait Modification
Interactive editing of character images with diffusion models remains challenging due to the inherent trade-off between fine-grained control, generation speed, and visual fidelity. We introduce CharGen, a character-focused editor that combines attribute-specific Concept Sliders, trained to isolate and manipulate attributes such as facial feature size, expression, and decoration with the StreamDiffusion sampling pipeline for more interactive performance. To counteract the loss of detail that often accompanies accelerated sampling, we propose a lightweight Repair Step that reinstates fine textures without compromising structural consistency. Throughout extensive ablation studies and in comparison to open-source InstructPix2Pix and closed-source Google Gemini, and a comprehensive user study, CharGen achieves two-to-four-fold faster edit turnaround with precise editing control and identity-consistent results. Project page: https://chargen.jdihlmann.com/
Mellum: Production-Grade in-IDE Contextual Code Completion with Multi-File Project Understanding
We present the Mellum models family, open-weight code completion models designed for interactive use in JetBrains IDEs. Mellums have 4B parameters, adopt a Llama-style architecture, and are pre-trained on ~4T tokens of permissively licensed, multi-language code. Our studies show that (i) careful data curation and staged training significantly improve the model's quality, (ii) editor-critical capabilities such as context packing are necessary for high-quality suggestions, and (iii) a compact, task-focused model can meet the cost and latency constraints of interactive completion. In the paper, we describe an end-to-end industrial pipeline for producing contextualized in-editor completion: disciplined data governance, multi-stage training that includes fill-in-the-middle and project context via supervised fine-tuning, and alignment via direct preference optimization using feedback from real-world scenarios. Our quality evaluations include both large-scale offline benchmarks and online telemetry from production deployments in JetBrains IDEs. Mellums are released under the Apache-2.0 license on HuggingFace, with a public model card providing a reproducible reference for practitioners. Our experience offers a pragmatic blueprint for taking a focused, open model from a research prototype to at scale production for hundreds of thousands of users.
InteractEdit: Zero-Shot Editing of Human-Object Interactions in Images
This paper presents InteractEdit, a novel framework for zero-shot Human-Object Interaction (HOI) editing, addressing the challenging task of transforming an existing interaction in an image into a new, desired interaction while preserving the identities of the subject and object. Unlike simpler image editing scenarios such as attribute manipulation, object replacement or style transfer, HOI editing involves complex spatial, contextual, and relational dependencies inherent in humans-objects interactions. Existing methods often overfit to the source image structure, limiting their ability to adapt to the substantial structural modifications demanded by new interactions. To address this, InteractEdit decomposes each scene into subject, object, and background components, then employs Low-Rank Adaptation (LoRA) and selective fine-tuning to preserve pretrained interaction priors while learning the visual identity of the source image. This regularization strategy effectively balances interaction edits with identity consistency. We further introduce IEBench, the most comprehensive benchmark for HOI editing, which evaluates both interaction editing and identity preservation. Our extensive experiments show that InteractEdit significantly outperforms existing methods, establishing a strong baseline for future HOI editing research and unlocking new possibilities for creative and practical applications. Code will be released upon publication.
PaperDebugger: A Plugin-Based Multi-Agent System for In-Editor Academic Writing, Review, and Editing
Large language models are increasingly embedded into academic writing workflows, yet existing assistants remain external to the editor, preventing deep interaction with document state, structure, and revision history. This separation makes it impossible to support agentic, context-aware operations directly within LaTeX editors such as Overleaf. We present PaperDebugger, an in-editor, multi-agent, and plugin-based academic writing assistant that brings LLM-driven reasoning directly into the writing environment. Enabling such in-editor interaction is technically non-trivial: it requires reliable bidirectional synchronization with the editor, fine-grained version control and patching, secure state management, multi-agent scheduling, and extensible communication with external tools. PaperDebugger addresses these challenges through a Chrome-approved extension, a Kubernetes-native orchestration layer, and a Model Context Protocol (MCP) toolchain that integrates literature search, reference lookup, document scoring, and revision pipelines. Our demo showcases a fully integrated workflow, including localized edits, structured reviews, parallel agent execution, and diff-based updates, encapsulated within a minimal-intrusion user interface (UI). Early aggregated analytics demonstrate active user engagement and validate the practicality of an editor-native, agentic writing assistant. More details about this demo and video could be found at https://github.com/PaperDebugger/PaperDebugger.
Text-Driven Image Editing via Learnable Regions
Language has emerged as a natural interface for image editing. In this paper, we introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches. Specifically, our approach leverages an existing pretrained text-to-image model and introduces a bounding box generator to find the edit regions that are aligned with the textual prompts. We show that this simple approach enables flexible editing that is compatible with current image generation models, and is able to handle complex prompts featuring multiple objects, complex sentences or long paragraphs. We conduct an extensive user study to compare our method against state-of-the-art methods. Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that align with the language descriptions provided. Our project webpage: https://yuanze-lin.me/LearnableRegions_page.
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Text editing or revision is an essential function of the human writing process. Understanding the capabilities of LLMs for making high-quality revisions and collaborating with human writers is a critical step toward building effective writing assistants. With the prior success of LLMs and instruction tuning, we leverage instruction-tuned LLMs for text revision to improve the quality of user-generated text and improve the efficiency of the process. We introduce CoEdIT, a state-of-the-art text editing model for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as "Make the sentence simpler" or "Write it in a more neutral style," and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being sim60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits compositional comprehension abilities to generalize to instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT, relative to other state-of-the-art text editing models. Our code and dataset are publicly available.
Beyond the Chat: Executable and Verifiable Text-Editing with LLMs
Conversational interfaces powered by Large Language Models (LLMs) have recently become a popular way to obtain feedback during document editing. However, standard chat-based conversational interfaces do not support transparency and verifiability of the editing changes that they suggest. To give the author more agency when editing with an LLM, we present InkSync, an editing interface that suggests executable edits directly within the document being edited. Because LLMs are known to introduce factual errors, Inksync also supports a 3-stage approach to mitigate this risk: Warn authors when a suggested edit introduces new information, help authors Verify the new information's accuracy through external search, and allow an auditor to perform an a-posteriori verification by Auditing the document via a trace of all auto-generated content. Two usability studies confirm the effectiveness of InkSync's components when compared to standard LLM-based chat interfaces, leading to more accurate, more efficient editing, and improved user experience.
Speakerly: A Voice-based Writing Assistant for Text Composition
We present Speakerly, a new real-time voice-based writing assistance system that helps users with text composition across various use cases such as emails, instant messages, and notes. The user can interact with the system through instructions or dictation, and the system generates a well-formatted and coherent document. We describe the system architecture and detail how we address the various challenges while building and deploying such a system at scale. More specifically, our system uses a combination of small, task-specific models as well as pre-trained language models for fast and effective text composition while supporting a variety of input modes for better usability.
IGA : An Intent-Guided Authoring Assistant
While large-scale pretrained language models have significantly improved writing assistance functionalities such as autocomplete, more complex and controllable writing assistants have yet to be explored. We leverage advances in language modeling to build an interactive writing assistant that generates and rephrases text according to fine-grained author specifications. Users provide input to our Intent-Guided Assistant (IGA) in the form of text interspersed with tags that correspond to specific rhetorical directives (e.g., adding description or contrast, or rephrasing a particular sentence). We fine-tune a language model on a dataset heuristically-labeled with author intent, which allows IGA to fill in these tags with generated text that users can subsequently edit to their liking. A series of automatic and crowdsourced evaluations confirm the quality of IGA's generated outputs, while a small-scale user study demonstrates author preference for IGA over baseline methods in a creative writing task. We release our dataset, code, and demo to spur further research into AI-assisted writing.
TIP-Editor: An Accurate 3D Editor Following Both Text-Prompts And Image-Prompts
Text-driven 3D scene editing has gained significant attention owing to its convenience and user-friendliness. However, existing methods still lack accurate control of the specified appearance and location of the editing result due to the inherent limitations of the text description. To this end, we propose a 3D scene editing framework, TIPEditor, that accepts both text and image prompts and a 3D bounding box to specify the editing region. With the image prompt, users can conveniently specify the detailed appearance/style of the target content in complement to the text description, enabling accurate control of the appearance. Specifically, TIP-Editor employs a stepwise 2D personalization strategy to better learn the representation of the existing scene and the reference image, in which a localization loss is proposed to encourage correct object placement as specified by the bounding box. Additionally, TIPEditor utilizes explicit and flexible 3D Gaussian splatting as the 3D representation to facilitate local editing while keeping the background unchanged. Extensive experiments have demonstrated that TIP-Editor conducts accurate editing following the text and image prompts in the specified bounding box region, consistently outperforming the baselines in editing quality, and the alignment to the prompts, qualitatively and quantitatively.
Towards Full Authorship with AI: Supporting Revision with AI-Generated Views
Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts. This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process. To restore autonomy, we introduce Textfocals, a UI prototype designed to investigate a human-centered approach that emphasizes the user's role in writing. Textfocals supports the writing process by providing LLM-generated summaries, questions, and advice (i.e., LLM views) in a sidebar of a text editor, encouraging reflection and self-driven revision in writing without direct text generation. Textfocals' UI affordances, including contextually adaptive views and scaffolding for prompt selection and customization, offer a novel way to interact with LLMs where users maintain full authorship of their writing. A formative user study with Textfocals showed promising evidence that this approach might help users develop underdeveloped ideas, cater to the rhetorical audience, and clarify their writing. However, the study also showed interaction design challenges related to document navigation and scoping, prompt engineering, and context management. Our work highlights the breadth of the design space of writing support interfaces powered by generative AI that maintain authorship integrity.
Next Edit Prediction: Learning to Predict Code Edits from Context and Interaction History
The rapid advancement of large language models (LLMs) has led to the widespread adoption of AI-powered coding assistants integrated into a development environment. On one hand, low-latency code completion offers completion suggestions but is fundamentally constrained to the cursor's current position. On the other hand, chat-based editing can perform complex modifications, yet forces developers to stop their work, describe the intent in natural language, which causes a context-switch away from the code. This creates a suboptimal user experience, as neither paradigm proactively predicts the developer's next edit in a sequence of related edits. To bridge this gap and provide the seamless code edit suggestion, we introduce the task of Next Edit Prediction, a novel task designed to infer developer intent from recent interaction history to predict both the location and content of the subsequent edit. Specifically, we curate a high-quality supervised fine-tuning dataset and an evaluation benchmark for the Next Edit Prediction task. Then, we conduct supervised fine-tuning on a series of models and performed a comprehensive evaluation of both the fine-tuned models and other baseline models, yielding several novel findings. This work lays the foundation for a new interaction paradigm that proactively collaborate with developers by anticipating their following action, rather than merely reacting to explicit instructions.
Visual Story-Writing: Writing by Manipulating Visual Representations of Stories
We define "visual story-writing" as using visual representations of story elements to support writing and revising narrative texts. To demonstrate this approach, we developed a text editor that automatically visualizes a graph of entity interactions, movement between locations, and a timeline of story events. Interacting with these visualizations results in suggested text edits: for example, connecting two characters in the graph creates an interaction between them, moving an entity updates their described location, and rearranging events on the timeline reorganizes the narrative sequence. Through two user studies on narrative text editing and writing, we found that visuals supported participants in planning high-level revisions, tracking story elements, and exploring story variations in ways that encourage creativity. Broadly, our work lays the foundation for writing support, not just through words, but also visuals.
MoGraphGPT: Creating Interactive Scenes Using Modular LLM and Graphical Control
Creating interactive scenes often involves complex programming tasks. Although large language models (LLMs) like ChatGPT can generate code from natural language, their output is often error-prone, particularly when scripting interactions among multiple elements. The linear conversational structure limits the editing of individual elements, and lacking graphical and precise control complicates visual integration. To address these issues, we integrate an element-level modularization technique that processes textual descriptions for individual elements through separate LLM modules, with a central module managing interactions among elements. This modular approach allows for refining each element independently. We design a graphical user interface, MoGraphGPT , which combines modular LLMs with enhanced graphical control to generate codes for 2D interactive scenes. It enables direct integration of graphical information and offers quick, precise control through automatically generated sliders. Our comparative evaluation against an AI coding tool, Cursor Composer, as the baseline system and a usability study show MoGraphGPT significantly improves easiness, controllability, and refinement in creating complex 2D interactive scenes with multiple visual elements in a coding-free manner.
Edisum: Summarizing and Explaining Wikipedia Edits at Scale
An edit summary is a succinct comment written by a Wikipedia editor explaining the nature of, and reasons for, an edit to a Wikipedia page. Edit summaries are crucial for maintaining the encyclopedia: they are the first thing seen by content moderators and help them decide whether to accept or reject an edit. Additionally, edit summaries constitute a valuable data source for researchers. Unfortunately, as we show, for many edits, summaries are either missing or incomplete. To overcome this problem and help editors write useful edit summaries, we propose a model for recommending edit summaries generated by a language model trained to produce good edit summaries given the representation of an edit diff. This is a challenging task for multiple reasons, including mixed-quality training data, the need to understand not only what was changed in the article but also why it was changed, and efficiency requirements imposed by the scale of Wikipedia. We address these challenges by curating a mix of human and synthetically generated training data and fine-tuning a generative language model sufficiently small to be used on Wikipedia at scale. Our model performs on par with human editors. Commercial large language models are able to solve this task better than human editors, but would be too expensive to run on Wikipedia at scale. More broadly, this paper showcases how language modeling technology can be used to support humans in maintaining one of the largest and most visible projects on the Web.
Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
MagicQuill: An Intelligent Interactive Image Editing System
Image editing involves a variety of complex tasks and requires efficient and precise manipulation techniques. In this paper, we present MagicQuill, an integrated image editing system that enables swift actualization of creative ideas. Our system features a streamlined yet functionally robust interface, allowing for the articulation of editing operations (e.g., inserting elements, erasing objects, altering color) with minimal input. These interactions are monitored by a multimodal large language model (MLLM) to anticipate editing intentions in real time, bypassing the need for explicit prompt entry. Finally, we apply a powerful diffusion prior, enhanced by a carefully learned two-branch plug-in module, to process editing requests with precise control. Experimental results demonstrate the effectiveness of MagicQuill in achieving high-quality image edits. Please visit https://magic-quill.github.io to try out our system.
InteractiveVideo: User-Centric Controllable Video Generation with Synergistic Multimodal Instructions
We introduce InteractiveVideo, a user-centric framework for video generation. Different from traditional generative approaches that operate based on user-provided images or text, our framework is designed for dynamic interaction, allowing users to instruct the generative model through various intuitive mechanisms during the whole generation process, e.g. text and image prompts, painting, drag-and-drop, etc. We propose a Synergistic Multimodal Instruction mechanism, designed to seamlessly integrate users' multimodal instructions into generative models, thus facilitating a cooperative and responsive interaction between user inputs and the generative process. This approach enables iterative and fine-grained refinement of the generation result through precise and effective user instructions. With InteractiveVideo, users are given the flexibility to meticulously tailor key aspects of a video. They can paint the reference image, edit semantics, and adjust video motions until their requirements are fully met. Code, models, and demo are available at https://github.com/invictus717/InteractiveVideo
TaleCrafter: Interactive Story Visualization with Multiple Characters
Accurate Story visualization requires several necessary elements, such as identity consistency across frames, the alignment between plain text and visual content, and a reasonable layout of objects in images. Most previous works endeavor to meet these requirements by fitting a text-to-image (T2I) model on a set of videos in the same style and with the same characters, e.g., the FlintstonesSV dataset. However, the learned T2I models typically struggle to adapt to new characters, scenes, and styles, and often lack the flexibility to revise the layout of the synthesized images. This paper proposes a system for generic interactive story visualization, capable of handling multiple novel characters and supporting the editing of layout and local structure. It is developed by leveraging the prior knowledge of large language and T2I models, trained on massive corpora. The system comprises four interconnected components: story-to-prompt generation (S2P), text-to-layout generation (T2L), controllable text-to-image generation (C-T2I), and image-to-video animation (I2V). First, the S2P module converts concise story information into detailed prompts required for subsequent stages. Next, T2L generates diverse and reasonable layouts based on the prompts, offering users the ability to adjust and refine the layout to their preference. The core component, C-T2I, enables the creation of images guided by layouts, sketches, and actor-specific identifiers to maintain consistency and detail across visualizations. Finally, I2V enriches the visualization process by animating the generated images. Extensive experiments and a user study are conducted to validate the effectiveness and flexibility of interactive editing of the proposed system.
XATU: A Fine-grained Instruction-based Benchmark for Explainable Text Updates
Text editing is a crucial task that involves modifying text to better align with user intents. However, existing text editing benchmark datasets have limitations in providing only coarse-grained instructions. Consequently, although the edited output may seem reasonable, it often deviates from the intended changes outlined in the gold reference, resulting in low evaluation scores. To comprehensively investigate the text editing capabilities of large language models, this paper introduces XATU, the first benchmark specifically designed for fine-grained instruction-based explainable text editing. XATU covers a wide range of topics and text types, incorporating lexical, syntactic, semantic, and knowledge-intensive edits. To enhance interpretability, we leverage high-quality data sources and human annotation, resulting in a benchmark that includes fine-grained instructions and gold-standard edit explanations. By evaluating existing open and closed large language models against our benchmark, we demonstrate the effectiveness of instruction tuning and the impact of underlying architecture across various editing tasks. Furthermore, extensive experimentation reveals the significant role of explanations in fine-tuning language models for text editing tasks. The benchmark will be open-sourced to support reproduction and facilitate future research.
EditEval: An Instruction-Based Benchmark for Text Improvements
Evaluation of text generation to date has primarily focused on content created sequentially, rather than improvements on a piece of text. Writing, however, is naturally an iterative and incremental process that requires expertise in different modular skills such as fixing outdated information or making the style more consistent. Even so, comprehensive evaluation of a model's capacity to perform these skills and the ability to edit remains sparse. This work presents EditEval: An instruction-based, benchmark and evaluation suite that leverages high-quality existing and new datasets for automatic evaluation of editing capabilities such as making text more cohesive and paraphrasing. We evaluate several pre-trained models, which shows that InstructGPT and PEER perform the best, but that most baselines fall below the supervised SOTA, particularly when neutralizing and updating information. Our analysis also shows that commonly used metrics for editing tasks do not always correlate well, and that optimization for prompts with the highest performance does not necessarily entail the strongest robustness to different models. Through the release of this benchmark and a publicly available leaderboard challenge, we hope to unlock future research in developing models capable of iterative and more controllable editing.
Custom-Edit: Text-Guided Image Editing with Customized Diffusion Models
Text-to-image diffusion models can generate diverse, high-fidelity images based on user-provided text prompts. Recent research has extended these models to support text-guided image editing. While text guidance is an intuitive editing interface for users, it often fails to ensure the precise concept conveyed by users. To address this issue, we propose Custom-Edit, in which we (i) customize a diffusion model with a few reference images and then (ii) perform text-guided editing. Our key discovery is that customizing only language-relevant parameters with augmented prompts improves reference similarity significantly while maintaining source similarity. Moreover, we provide our recipe for each customization and editing process. We compare popular customization methods and validate our findings on two editing methods using various datasets.
An Item is Worth a Prompt: Versatile Image Editing with Disentangled Control
Building on the success of text-to-image diffusion models (DPMs), image editing is an important application to enable human interaction with AI-generated content. Among various editing methods, editing within the prompt space gains more attention due to its capacity and simplicity of controlling semantics. However, since diffusion models are commonly pretrained on descriptive text captions, direct editing of words in text prompts usually leads to completely different generated images, violating the requirements for image editing. On the other hand, existing editing methods usually consider introducing spatial masks to preserve the identity of unedited regions, which are usually ignored by DPMs and therefore lead to inharmonic editing results. Targeting these two challenges, in this work, we propose to disentangle the comprehensive image-prompt interaction into several item-prompt interactions, with each item linked to a special learned prompt. The resulting framework, named D-Edit, is based on pretrained diffusion models with cross-attention layers disentangled and adopts a two-step optimization to build item-prompt associations. Versatile image editing can then be applied to specific items by manipulating the corresponding prompts. We demonstrate state-of-the-art results in four types of editing operations including image-based, text-based, mask-based editing, and item removal, covering most types of editing applications, all within a single unified framework. Notably, D-Edit is the first framework that can (1) achieve item editing through mask editing and (2) combine image and text-based editing. We demonstrate the quality and versatility of the editing results for a diverse collection of images through both qualitative and quantitative evaluations.
PPTArena: A Benchmark for Agentic PowerPoint Editing
We introduce PPTArena, a benchmark for PowerPoint editing that measures reliable modifications to real slides under natural-language instructions. In contrast to image-PDF renderings or text-to-slide generation, PPTArena focuses on in-place editing across 100 decks, 2125 slides, and over 800 targeted edits covering text, charts, tables, animations, and master-level styles. Each case includes a ground-truth deck, a fully specified target outcome, and a dual VLM-as-judge pipeline that separately scores instruction following and visual quality using both structural diffs and slide images. Building on this setting, we propose PPTPilot, a structure-aware slide-editing agent that plans semantic edit sequences, routes between high-level programmatic tools and deterministic XML operations for precise control, and verifies outputs through an iterative plan-edit-check loop against task-specific constraints. In our experiments, PPTPilot outperforms strong proprietary agents and frontier VLM systems by over 10 percentage points on compound, layout-sensitive, and cross-slide edits, with particularly large gains in visual fidelity and deck-wide consistency. Despite these improvements, existing agents still underperform on long-horizon, document-scale tasks in PPTArena, highlighting the remaining challenges in reliable PPT editing.
Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization
Large Language Models (LLMs) have shown significant capability across various tasks, with their real-world effectiveness often driven by prompt design. While recent research has focused on optimizing prompt content, the role of prompt formatting, a critical but often overlooked dimension, has received limited systematic investigation. In this paper, we introduce Content-Format Integrated Prompt Optimization (CFPO), an innovative methodology that jointly optimizes both prompt content and formatting through an iterative refinement process. CFPO leverages natural language mutations to explore content variations and employs a dynamic format exploration strategy that systematically evaluates diverse format options. Our extensive evaluations across multiple tasks and open-source LLMs demonstrate that CFPO demonstrates measurable performance improvements compared to content-only optimization methods. This highlights the importance of integrated content-format optimization and offers a practical, model-agnostic approach to enhancing LLM performance. Code will be available at https://github.com/HenryLau7/CFPO.
SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
Recent prompt-based image editing models have demonstrated impressive prompt-following capability at structural editing tasks. However, existing models still fail to perform local edits, follow detailed editing prompts, or maintain global image quality beyond a single editing step. To address these challenges, we introduce SPICE, a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and improves image quality consistently during more than 100 editing steps. By synergizing the strengths of a base diffusion model and a Canny edge ControlNet model, SPICE robustly handles free-form editing instructions from the user. SPICE outperforms state-of-the-art baselines on a challenging realistic image-editing dataset consisting of semantic editing (object addition, removal, replacement, and background change), stylistic editing (texture changes), and structural editing (action change) tasks. Not only does SPICE achieve the highest quantitative performance according to standard evaluation metrics, but it is also consistently preferred by users over existing image-editing methods. We release the workflow implementation for popular diffusion model Web UIs to support further research and artistic exploration.
DynaVis: Dynamically Synthesized UI Widgets for Visualization Editing
Users often rely on GUIs to edit and interact with visualizations - a daunting task due to the large space of editing options. As a result, users are either overwhelmed by a complex UI or constrained by a custom UI with a tailored, fixed subset of options with limited editing flexibility. Natural Language Interfaces (NLIs) are emerging as a feasible alternative for users to specify edits. However, NLIs forgo the advantages of traditional GUI: the ability to explore and repeat edits and see instant visual feedback. We introduce DynaVis, which blends natural language and dynamically synthesized UI widgets. As the user describes an editing task in natural language, DynaVis performs the edit and synthesizes a persistent widget that the user can interact with to make further modifications. Study participants (n=24) preferred DynaVis over the NLI-only interface citing ease of further edits and editing confidence due to immediate visual feedback.
Talk-to-Edit: Fine-Grained Facial Editing via Dialog
Facial editing is an important task in vision and graphics with numerous applications. However, existing works are incapable to deliver a continuous and fine-grained editing mode (e.g., editing a slightly smiling face to a big laughing one) with natural interactions with users. In this work, we propose Talk-to-Edit, an interactive facial editing framework that performs fine-grained attribute manipulation through dialog between the user and the system. Our key insight is to model a continual "semantic field" in the GAN latent space. 1) Unlike previous works that regard the editing as traversing straight lines in the latent space, here the fine-grained editing is formulated as finding a curving trajectory that respects fine-grained attribute landscape on the semantic field. 2) The curvature at each step is location-specific and determined by the input image as well as the users' language requests. 3) To engage the users in a meaningful dialog, our system generates language feedback by considering both the user request and the current state of the semantic field. We also contribute CelebA-Dialog, a visual-language facial editing dataset to facilitate large-scale study. Specifically, each image has manually annotated fine-grained attribute annotations as well as template-based textual descriptions in natural language. Extensive quantitative and qualitative experiments demonstrate the superiority of our framework in terms of 1) the smoothness of fine-grained editing, 2) the identity/attribute preservation, and 3) the visual photorealism and dialog fluency. Notably, user study validates that our overall system is consistently favored by around 80% of the participants. Our project page is https://www.mmlab-ntu.com/project/talkedit/.
Breaking Barriers to Creative Expression: Co-Designing and Implementing an Accessible Text-to-Image Interface
Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art.
InstructEdit: Instruction-based Knowledge Editing for Large Language Models
Knowledge editing for large language models can offer an efficient solution to alter a model's behavior without negatively impacting the overall performance. However, the current approach encounters issues with limited generalizability across tasks, necessitating one distinct editor for each task, which significantly hinders the broader applications. To address this, we take the first step to analyze the multi-task generalization issue in knowledge editing. Specifically, we develop an instruction-based editing technique, termed InstructEdit, which facilitates the editor's adaptation to various task performances simultaneously using simple instructions. With only one unified editor for each LLM, we empirically demonstrate that InstructEdit can improve the editor's control, leading to an average 14.86% increase in Reliability in multi-task editing setting. Furthermore, experiments involving holdout unseen task illustrate that InstructEdit consistently surpass previous strong baselines. To further investigate the underlying mechanisms of instruction-based knowledge editing, we analyze the principal components of the editing gradient directions, which unveils that instructions can help control optimization direction with stronger OOD generalization. Code and datasets will be available in https://github.com/zjunlp/EasyEdit.
Dynamic Retriever for In-Context Knowledge Editing via Policy Optimization
Large language models (LLMs) excel at factual recall yet still propagate stale or incorrect knowledge. In-context knowledge editing offers a gradient-free remedy suitable for black-box APIs, but current editors rely on static demonstration sets chosen by surface-level similarity, leading to two persistent obstacles: (i) a quantity-quality trade-off, and (ii) lack of adaptivity to task difficulty. We address these issues by dynamically selecting supporting demonstrations according to their utility for the edit. We propose Dynamic Retriever for In-Context Knowledge Editing (DR-IKE), a lightweight framework that (1) trains a BERT retriever with REINFORCE to rank demonstrations by editing reward, and (2) employs a learnable threshold to prune low-value examples, shortening the prompt when the edit is easy and expanding it when the task is hard. DR-IKE performs editing without modifying model weights, relying solely on forward passes for compatibility with black-box LLMs. On the COUNTERFACT benchmark, it improves edit success by up to 17.1%, reduces latency by 41.6%, and preserves accuracy on unrelated queries, demonstrating scalable and adaptive knowledge editing. The code is available at https://github.com/mwnafee/DR-IKE .
PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask
Recent virtual try-on approaches have advanced by fine-tuning the pre-trained text-to-image diffusion models to leverage their powerful generative ability. However, the use of text prompts in virtual try-on is still underexplored. This paper tackles a text-editable virtual try-on task that changes the clothing item based on the provided clothing image while editing the wearing style (e.g., tucking style, fit) according to the text descriptions. In the text-editable virtual try-on, three key aspects exist: (i) designing rich text descriptions for paired person-clothing data to train the model, (ii) addressing the conflicts where textual information of the existing person's clothing interferes the generation of the new clothing, and (iii) adaptively adjust the inpainting mask aligned with the text descriptions, ensuring proper editing areas while preserving the original person's appearance irrelevant to the new clothing. To address these aspects, we propose PromptDresser, a text-editable virtual try-on model that leverages large multimodal model (LMM) assistance to enable high-quality and versatile manipulation based on generative text prompts. Our approach utilizes LMMs via in-context learning to generate detailed text descriptions for person and clothing images independently, including pose details and editing attributes using minimal human cost. Moreover, to ensure the editing areas, we adjust the inpainting mask depending on the text prompts adaptively. We found that our approach, utilizing detailed text prompts, not only enhances text editability but also effectively conveys clothing details that are difficult to capture through images alone, thereby enhancing image quality. Our code is available at https://github.com/rlawjdghek/PromptDresser.
Describe, Don't Dictate: Semantic Image Editing with Natural Language Intent
Despite the progress in text-to-image generation, semantic image editing remains a challenge. Inversion-based algorithms unavoidably introduce reconstruction errors, while instruction-based models mainly suffer from limited dataset quality and scale. To address these problems, we propose a descriptive-prompt-based editing framework, named DescriptiveEdit. The core idea is to re-frame `instruction-based image editing' as `reference-image-based text-to-image generation', which preserves the generative power of well-trained Text-to-Image models without architectural modifications or inversion. Specifically, taking the reference image and a prompt as input, we introduce a Cross-Attentive UNet, which newly adds attention bridges to inject reference image features into the prompt-to-edit-image generation process. Owing to its text-to-image nature, DescriptiveEdit overcomes limitations in instruction dataset quality, integrates seamlessly with ControlNet, IP-Adapter, and other extensions, and is more scalable. Experiments on the Emu Edit benchmark show it improves editing accuracy and consistency.
FineEdit: Unlock Instruction-Based Text Editing for LLMs
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating strong capabilities in tasks such as text generation, summarization, and reasoning. Recently, their potential for automating precise text editing tasks across specialized domains, such as programming code, LaTeX, and structured database languages, has gained attention. However, current state-of-the-art LLMs still struggle with executing precise, instruction-driven edits, particularly when structural accuracy and strict adherence to domain conventions are required. To address these challenges, we introduce InstrEditBench, an automated benchmark dataset comprising over 30,000 structured editing tasks spanning diverse domains, including Wikipedia articles, LaTeX documents, source code, and database languages. Using this benchmark, we develop FineEdit, a specialized editing model explicitly trained for accurate, context-aware text modifications. Experimental evaluations demonstrate that FineEdit outperforms state-of-the-art models, achieving improvements of approximately 10% over Gemini models on single-turn edits, up to 30% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40% on direct editing tasks. FineEdit also effectively generalizes to realistic multi-turn editing scenarios, highlighting its practical applicability.
Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques
Text entry is an essential task in our day-to-day digital interactions. Numerous intelligent features have been developed to streamline this process, making text entry more effective, efficient, and fluid. These improvements include sentence prediction and user personalization. However, as deep learning-based language models become the norm for these advanced features, the necessity for data collection and model fine-tuning increases. These challenges can be mitigated by harnessing the in-context learning capability of large language models such as GPT-3.5. This unique feature allows the language model to acquire new skills through prompts, eliminating the need for data collection and fine-tuning. Consequently, large language models can learn various text prediction techniques. We initially showed that, for a sentence prediction task, merely prompting GPT-3.5 surpassed a GPT-2 backed system and is comparable with a fine-tuned GPT-3.5 model, with the latter two methods requiring costly data collection, fine-tuning and post-processing. However, the task of prompting large language models to specialize in specific text prediction tasks can be challenging, particularly for designers without expertise in prompt engineering. To address this, we introduce Promptor, a conversational prompt generation agent designed to engage proactively with designers. Promptor can automatically generate complex prompts tailored to meet specific needs, thus offering a solution to this challenge. We conducted a user study involving 24 participants creating prompts for three intelligent text entry tasks, half of the participants used Promptor while the other half designed prompts themselves. The results show that Promptor-designed prompts result in a 35% increase in similarity and 22% in coherence over those by designers.
Listen, Chat, and Edit: Text-Guided Soundscape Modification for Enhanced Auditory Experience
In daily life, we encounter a variety of sounds, both desirable and undesirable, with limited control over their presence and volume. Our work introduces "Listen, Chat, and Edit" (LCE), a novel multimodal sound mixture editor that modifies each sound source in a mixture based on user-provided text instructions. LCE distinguishes itself with a user-friendly chat interface and its unique ability to edit multiple sound sources simultaneously within a mixture, without needing to separate them. Users input open-vocabulary text prompts, which are interpreted by a large language model to create a semantic filter for editing the sound mixture. The system then decomposes the mixture into its components, applies the semantic filter, and reassembles it into the desired output. We developed a 160-hour dataset with over 100k mixtures, including speech and various audio sources, along with text prompts for diverse editing tasks like extraction, removal, and volume control. Our experiments demonstrate significant improvements in signal quality across all editing tasks and robust performance in zero-shot scenarios with varying numbers and types of sound sources.
Sketch Then Generate: Providing Incremental User Feedback and Guiding LLM Code Generation through Language-Oriented Code Sketches
Crafting effective prompts for code generation or editing with Large Language Models (LLMs) is not an easy task. Particularly, the absence of immediate, stable feedback during prompt crafting hinders effective interaction, as users are left to mentally imagine possible outcomes until the code is generated. In response, we introduce Language-Oriented Code Sketching, an interactive approach that provides instant, incremental feedback in the form of code sketches (i.e., incomplete code outlines) during prompt crafting. This approach converts a prompt into a code sketch by leveraging the inherent linguistic structures within the prompt and applying classic natural language processing techniques. The sketch then serves as an intermediate placeholder that not only previews the intended code structure but also guides the LLM towards the desired code, thereby enhancing human-LLM interaction. We conclude by discussing the approach's applicability and future plans.
FramePainter: Endowing Interactive Image Editing with Video Diffusion Priors
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.
Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision
Revision is an essential part of the human writing process. It tends to be strategic, adaptive, and, more importantly, iterative in nature. Despite the success of large language models on text revision tasks, they are limited to non-iterative, one-shot revisions. Examining and evaluating the capability of large language models for making continuous revisions and collaborating with human writers is a critical step towards building effective writing assistants. In this work, we present a human-in-the-loop iterative text revision system, Read, Revise, Repeat (R3), which aims at achieving high quality text revisions with minimal human efforts by reading model-generated revisions and user feedbacks, revising documents, and repeating human-machine interactions. In R3, a text revision model provides text editing suggestions for human writers, who can accept or reject the suggested edits. The accepted edits are then incorporated into the model for the next iteration of document revision. Writers can therefore revise documents iteratively by interacting with the system and simply accepting/rejecting its suggested edits until the text revision model stops making further revisions or reaches a predefined maximum number of revisions. Empirical experiments show that R3 can generate revisions with comparable acceptance rate to human writers at early revision depths, and the human-machine interaction can get higher quality revisions with fewer iterations and edits. The collected human-model interaction dataset and system code are available at https://github.com/vipulraheja/IteraTeR. Our system demonstration is available at https://youtu.be/lK08tIpEoaE.
InteractComp: Evaluating Search Agents With Ambiguous Queries
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.
Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases
Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.
Ctrl-Room: Controllable Text-to-3D Room Meshes Generation with Layout Constraints
Text-driven 3D indoor scene generation could be useful for gaming, film industry, and AR/VR applications. However, existing methods cannot faithfully capture the room layout, nor do they allow flexible editing of individual objects in the room. To address these problems, we present Ctrl-Room, which is able to generate convincing 3D rooms with designer-style layouts and high-fidelity textures from just a text prompt. Moreover, Ctrl-Room enables versatile interactive editing operations such as resizing or moving individual furniture items. Our key insight is to separate the modeling of layouts and appearance. %how to model the room that takes into account both scene texture and geometry at the same time. To this end, Our proposed method consists of two stages, a `Layout Generation Stage' and an `Appearance Generation Stage'. The `Layout Generation Stage' trains a text-conditional diffusion model to learn the layout distribution with our holistic scene code parameterization. Next, the `Appearance Generation Stage' employs a fine-tuned ControlNet to produce a vivid panoramic image of the room guided by the 3D scene layout and text prompt. In this way, we achieve a high-quality 3D room with convincing layouts and lively textures. Benefiting from the scene code parameterization, we can easily edit the generated room model through our mask-guided editing module, without expensive editing-specific training. Extensive experiments on the Structured3D dataset demonstrate that our method outperforms existing methods in producing more reasonable, view-consistent, and editable 3D rooms from natural language prompts.
Can It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing Instructions
A significant amount of research is focused on developing and evaluating large language models for a variety of code synthesis tasks. These include synthesizing code from natural language instructions, synthesizing tests from code, and synthesizing explanations of code. In contrast, the behavior of instructional code editing with LLMs is understudied. These are tasks in which the model is instructed to update a block of code provided in a prompt. The editing instruction may ask for a feature to added or removed, describe a bug and ask for a fix, ask for a different kind of solution, or many other common code editing tasks. We introduce a carefully crafted benchmark of code editing tasks and use it evaluate several cutting edge LLMs. Our evaluation exposes a significant gap between the capabilities of state-of-the-art open and closed models. For example, even GPT-3.5-Turbo is 8.8% better than the best open model at editing code. We also introduce a new, carefully curated, permissively licensed training set of code edits coupled with natural language instructions. Using this training set, we show that we can fine-tune open Code LLMs to significantly improve their code editing capabilities.
DialogPaint: A Dialog-based Image Editing Model
We present DialogPaint, an innovative framework that employs an interactive conversational approach for image editing. The framework comprises a pretrained dialogue model (Blenderbot) and a diffusion model (Stable Diffusion). The dialogue model engages in conversation with users to understand their requirements and generates concise instructions based on the dialogue. Subsequently, the Stable Diffusion model employs these instructions, along with the input image, to produce the desired output. Due to the difficulty of acquiring fine-tuning data for such models, we leverage multiple large-scale models to generate simulated dialogues and corresponding image pairs. After fine-tuning our framework with the synthesized data, we evaluate its performance in real application scenes. The results demonstrate that DialogPaint excels in both objective and subjective evaluation metrics effectively handling ambiguous instructions and performing tasks such as object replacement, style transfer, color modification. Moreover, our framework supports multi-round editing, allowing for the completion of complicated editing tasks.
Prompting LLMs for Code Editing: Struggles and Remedies
Large Language Models (LLMs) are rapidly transforming software engineering, with coding assistants embedded in an IDE becoming increasingly prevalent. While research has focused on improving the tools and understanding developer perceptions, a critical gap exists in understanding how developers actually use these tools in their daily workflows, and, crucially, where they struggle. This paper addresses part of this gap through a multi-phased investigation of developer interactions with an LLM-powered code editing and transformation feature, Transform Code, in an IDE widely used at Google. First, we analyze telemetry logs of the feature usage, revealing that frequent re-prompting can be an indicator of developer struggles with using Transform Code. Second, we conduct a qualitative analysis of unsatisfactory requests, identifying five key categories of information often missing from developer prompts. Finally, based on these findings, we propose and evaluate a tool, AutoPrompter, for automatically improving prompts by inferring missing information from the surrounding code context, leading to a 27% improvement in edit correctness on our test set.
Prompt Orchestration Markup Language
Large Language Models (LLMs) require sophisticated prompting, yet current practices face challenges in structure, data integration, format sensitivity, and tooling. Existing methods lack comprehensive solutions for organizing complex prompts involving diverse data types (documents, tables, images) or managing presentation variations systematically. To address these gaps, we introduce POML (Prompt Orchestration Markup Language). POML employs component-based markup for logical structure (roles, tasks, examples), specialized tags for seamless data integration, and a CSS-like styling system to decouple content from presentation, reducing formatting sensitivity. It includes templating for dynamic prompts and a comprehensive developer toolkit (IDE support, SDKs) to improve version control and collaboration. We validate POML through two case studies demonstrating its impact on complex application integration (PomLink) and accuracy performance (TableQA), as well as a user study assessing its effectiveness in real-world development scenarios.
Exploring Direct Instruction and Summary-Mediated Prompting in LLM-Assisted Code Modification
This paper presents a study of using large language models (LLMs) in modifying existing code. While LLMs for generating code have been widely studied, their role in code modification remains less understood. Although "prompting" serves as the primary interface for developers to communicate intents to LLMs, constructing effective prompts for code modification introduces challenges different from generation. Prior work suggests that natural language summaries may help scaffold this process, yet such approaches have been validated primarily in narrow domains like SQL rewriting. This study investigates two prompting strategies for LLM-assisted code modification: Direct Instruction Prompting, where developers describe changes explicitly in free-form language, and Summary-Mediated Prompting, where changes are made by editing the generated summaries of the code. We conducted an exploratory study with 15 developers who completed modification tasks using both techniques across multiple scenarios. Our findings suggest that developers followed an iterative workflow: understanding the code, localizing the edit, and validating outputs through execution or semantic reasoning. Each prompting strategy presented trade-offs: direct instruction prompting was more flexible and easier to specify, while summary-mediated prompting supported comprehension, prompt scaffolding, and control. Developers' choice of strategy was shaped by task goals and context, including urgency, maintainability, learning intent, and code familiarity. These findings highlight the need for more usable prompt interactions, including adjustable summary granularity, reliable summary-code traceability, and consistency in generated summaries.
Facilitating the Production of Well-tailored Video Summaries for Sharing on Social Media
This paper presents a web-based tool that facilitates the production of tailored summaries for online sharing on social media. Through an interactive user interface, it supports a ``one-click'' video summarization process. Based on the integrated AI models for video summarization and aspect ratio transformation, it facilitates the generation of multiple summaries of a full-length video according to the needs of target platforms with regard to the video's length and aspect ratio.
Multi-line AI-assisted Code Authoring
CodeCompose is an AI-assisted code authoring tool powered by large language models (LLMs) that provides inline suggestions to 10's of thousands of developers at Meta. In this paper, we present how we scaled the product from displaying single-line suggestions to multi-line suggestions. This evolution required us to overcome several unique challenges in improving the usability of these suggestions for developers. First, we discuss how multi-line suggestions can have a 'jarring' effect, as the LLM's suggestions constantly move around the developer's existing code, which would otherwise result in decreased productivity and satisfaction. Second, multi-line suggestions take significantly longer to generate; hence we present several innovative investments we made to reduce the perceived latency for users. These model-hosting optimizations sped up multi-line suggestion latency by 2.5x. Finally, we conduct experiments on 10's of thousands of engineers to understand how multi-line suggestions impact the user experience and contrast this with single-line suggestions. Our experiments reveal that (i) multi-line suggestions account for 42% of total characters accepted (despite only accounting for 16% for displayed suggestions) (ii) multi-line suggestions almost doubled the percentage of keystrokes saved for users from 9% to 17%. Multi-line CodeCompose has been rolled out to all engineers at Meta, and less than 1% of engineers have opted out of multi-line suggestions.
InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation
Large Language Models (LLMs) are increasingly capable of generating complete applications from natural language instructions, creating new opportunities in science and education. In these domains, interactive scientific demonstrations are particularly valuable for explaining concepts, supporting new teaching methods, and presenting research findings. Generating such demonstrations requires models to combine accurate scientific knowledge with the ability to implement interactive front-end code that behaves correctly and responds to user actions. This capability goes beyond the scope of existing benchmarks, which typically evaluate either knowledge question answering without grounding in code or static web code generation without scientific interactivity. To evaluate this integrated ability, we design a hybrid framework that combines programmatic functional testing to rigorously verify interaction logic with visually-grounded qualitative testing to assess rendered outputs against reference snapshots. Building on this framework, we present InteractScience, a benchmark consisting of a substantial set of carefully designed questions across five scientific domains, each paired with unit tests, reference snapshots, and checklists. We evaluate 30 leading open- and closed-source LLMs and report results that highlight ongoing weaknesses in integrating domain knowledge with interactive front-end coding. Our work positions InteractScience as the first benchmark to automatically measure this combined capability with realistic interactive operations, providing a foundation for advancing reliable and educationally useful scientific demonstration code generation. All code and data are publicly available at https://github.com/open-compass/InteractScience.
StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images. They either finetune the model, or invert the image in the latent space of the pretrained model. However, they suffer from two problems: (1) Unsatisfying results for selected regions, and unexpected changes in nonselected regions. (2) They require careful text prompt editing where the prompt should include all visual objects in the input image. To address this, we propose two improvements: (1) Only optimizing the input of the value linear network in the cross-attention layers, is sufficiently powerful to reconstruct a real image. (2) We propose attention regularization to preserve the object-like attention maps after editing, enabling us to obtain accurate style editing without invoking significant structural changes. We further improve the editing technique which is used for the unconditional branch of classifier-free guidance, as well as the conditional one as used by P2P. Extensive experimental prompt-editing results on a variety of images, demonstrate qualitatively and quantitatively that our method has superior editing capabilities than existing and concurrent works.
mEdIT: Multilingual Text Editing via Instruction Tuning
We introduce mEdIT, a multi-lingual extension to CoEdIT -- the recent state-of-the-art text editing models for writing assistance. mEdIT models are trained by fine-tuning multi-lingual large, pre-trained language models (LLMs) via instruction tuning. They are designed to take instructions from the user specifying the attributes of the desired text in the form of natural language instructions, such as Grammatik korrigieren (German) or Parafrasee la oraci\'on (Spanish). We build mEdIT by curating data from multiple publicly available human-annotated text editing datasets for three text editing tasks (Grammatical Error Correction (GEC), Text Simplification, and Paraphrasing) across diverse languages belonging to six different language families. We detail the design and training of mEdIT models and demonstrate their strong performance on many multi-lingual text editing benchmarks against other multilingual LLMs. We also find that mEdIT generalizes effectively to new languages over multilingual baselines. We publicly release our data, code, and trained models at https://github.com/vipulraheja/medit.
Aligning LLM Agents by Learning Latent Preference from User Edits
We study interactive learning of language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data and using it to define a prompt policy that drives future response generation. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages a large language model (LLM) to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, for evaluation using a GPT-4 simulated user. We compare with algorithms that directly retrieve user edits but do not learn descriptive preference, and algorithms that learn context-agnostic preference. On both tasks, CIPHER achieves the lowest edit distance cost and learns preferences that show significant similarity to the ground truth preferences
Prompt-to-Prompt Image Editing with Cross Attention Control
Recent large-scale text-driven synthesis models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Such text-based synthesis methods are particularly appealing to humans who are used to verbally describe their intent. Therefore, it is only natural to extend the text-driven image synthesis to text-driven image editing. Editing is challenging for these generative models, since an innate property of an editing technique is to preserve most of the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. To this end, we analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we present several applications which monitor the image synthesis by editing the textual prompt only. This includes localized editing by replacing a word, global editing by adding a specification, and even delicately controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.
UI2Code^N: A Visual Language Model for Test-Time Scalable Interactive UI-to-Code Generation
User interface (UI) programming is a core yet highly complex part of modern software development. Recent advances in visual language models (VLMs) highlight the potential of automatic UI coding, but current approaches face two key limitations: multimodal coding capabilities remain underdeveloped, and single-turn paradigms make little use of iterative visual feedback. We address these challenges with an interactive UI-to-code paradigm that better reflects real-world workflows and raises the upper bound of achievable performance. Under this paradigm, we present UI2Code^N, a visual language model trained through staged pretraining, fine-tuning, and reinforcement learning to achieve foundational improvements in multimodal coding. The model unifies three key capabilities: UI-to-code generation, UI editing, and UI polishing. We further explore test-time scaling for interactive generation, enabling systematic use of multi-turn feedback. Experiments on UI-to-code and UI polishing benchmarks show that UI2Code^N establishes a new state of the art among open-source models and achieves performance comparable to leading closed-source models such as Claude-4-Sonnet and GPT-5. Our code and models are available at https://github.com/zai-org/UI2Code_N.
CAISE: Conversational Agent for Image Search and Editing
Demand for image editing has been increasing as users' desire for expression is also increasing. However, for most users, image editing tools are not easy to use since the tools require certain expertise in photo effects and have complex interfaces. Hence, users might need someone to help edit their images, but having a personal dedicated human assistant for every user is impossible to scale. For that reason, an automated assistant system for image editing is desirable. Additionally, users want more image sources for diverse image editing works, and integrating an image search functionality into the editing tool is a potential remedy for this demand. Thus, we propose a dataset of an automated Conversational Agent for Image Search and Editing (CAISE). To our knowledge, this is the first dataset that provides conversational image search and editing annotations, where the agent holds a grounded conversation with users and helps them to search and edit images according to their requests. To build such a system, we first collect image search and editing conversations between pairs of annotators. The assistant-annotators are equipped with a customized image search and editing tool to address the requests from the user-annotators. The functions that the assistant-annotators conduct with the tool are recorded as executable commands, allowing the trained system to be useful for real-world application execution. We also introduce a generator-extractor baseline model for this task, which can adaptively select the source of the next token (i.e., from the vocabulary or from textual/visual contexts) for the executable command. This serves as a strong starting point while still leaving a large human-machine performance gap for useful future work. Our code and dataset are publicly available at: https://github.com/hyounghk/CAISE
IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
LAVE: LLM-Powered Agent Assistance and Language Augmentation for Video Editing
Video creation has become increasingly popular, yet the expertise and effort required for editing often pose barriers to beginners. In this paper, we explore the integration of large language models (LLMs) into the video editing workflow to reduce these barriers. Our design vision is embodied in LAVE, a novel system that provides LLM-powered agent assistance and language-augmented editing features. LAVE automatically generates language descriptions for the user's footage, serving as the foundation for enabling the LLM to process videos and assist in editing tasks. When the user provides editing objectives, the agent plans and executes relevant actions to fulfill them. Moreover, LAVE allows users to edit videos through either the agent or direct UI manipulation, providing flexibility and enabling manual refinement of agent actions. Our user study, which included eight participants ranging from novices to proficient editors, demonstrated LAVE's effectiveness. The results also shed light on user perceptions of the proposed LLM-assisted editing paradigm and its impact on users' creativity and sense of co-creation. Based on these findings, we propose design implications to inform the future development of agent-assisted content editing.
FreeEdit: Mask-free Reference-based Image Editing with Multi-modal Instruction
Introducing user-specified visual concepts in image editing is highly practical as these concepts convey the user's intent more precisely than text-based descriptions. We propose FreeEdit, a novel approach for achieving such reference-based image editing, which can accurately reproduce the visual concept from the reference image based on user-friendly language instructions. Our approach leverages the multi-modal instruction encoder to encode language instructions to guide the editing process. This implicit way of locating the editing area eliminates the need for manual editing masks. To enhance the reconstruction of reference details, we introduce the Decoupled Residual ReferAttention (DRRA) module. This module is designed to integrate fine-grained reference features extracted by a detail extractor into the image editing process in a residual way without interfering with the original self-attention. Given that existing datasets are unsuitable for reference-based image editing tasks, particularly due to the difficulty in constructing image triplets that include a reference image, we curate a high-quality dataset, FreeBench, using a newly developed twice-repainting scheme. FreeBench comprises the images before and after editing, detailed editing instructions, as well as a reference image that maintains the identity of the edited object, encompassing tasks such as object addition, replacement, and deletion. By conducting phased training on FreeBench followed by quality tuning, FreeEdit achieves high-quality zero-shot editing through convenient language instructions. We conduct extensive experiments to evaluate the effectiveness of FreeEdit across multiple task types, demonstrating its superiority over existing methods. The code will be available at: https://freeedit.github.io/.
Understanding Generative AI Capabilities in Everyday Image Editing Tasks
Generative AI (GenAI) holds significant promise for automating everyday image editing tasks, especially following the recent release of GPT-4o on March 25, 2025. However, what subjects do people most often want edited? What kinds of editing actions do they want to perform (e.g., removing or stylizing the subject)? Do people prefer precise edits with predictable outcomes or highly creative ones? By understanding the characteristics of real-world requests and the corresponding edits made by freelance photo-editing wizards, can we draw lessons for improving AI-based editors and determine which types of requests can currently be handled successfully by AI editors? In this paper, we present a unique study addressing these questions by analyzing 83k requests from the past 12 years (2013-2025) on the Reddit community, which collected 305k PSR-wizard edits. According to human ratings, approximately only 33% of requests can be fulfilled by the best AI editors (including GPT-4o, Gemini-2.0-Flash, SeedEdit). Interestingly, AI editors perform worse on low-creativity requests that require precise editing than on more open-ended tasks. They often struggle to preserve the identity of people and animals, and frequently make non-requested touch-ups. On the other side of the table, VLM judges (e.g., o1) perform differently from human judges and may prefer AI edits more than human edits. Code and qualitative examples are available at: https://psrdataset.github.io
PairEdit: Learning Semantic Variations for Exemplar-based Image Editing
Recent advancements in text-guided image editing have achieved notable success by leveraging natural language prompts for fine-grained semantic control. However, certain editing semantics are challenging to specify precisely using textual descriptions alone. A practical alternative involves learning editing semantics from paired source-target examples. Existing exemplar-based editing methods still rely on text prompts describing the change within paired examples or learning implicit text-based editing instructions. In this paper, we introduce PairEdit, a novel visual editing method designed to effectively learn complex editing semantics from a limited number of image pairs or even a single image pair, without using any textual guidance. We propose a target noise prediction that explicitly models semantic variations within paired images through a guidance direction term. Moreover, we introduce a content-preserving noise schedule to facilitate more effective semantic learning. We also propose optimizing distinct LoRAs to disentangle the learning of semantic variations from content. Extensive qualitative and quantitative evaluations demonstrate that PairEdit successfully learns intricate semantics while significantly improving content consistency compared to baseline methods. Code will be available at https://github.com/xudonmao/PairEdit.
Image Editing As Programs with Diffusion Models
While diffusion models have achieved remarkable success in text-to-image generation, they encounter significant challenges with instruction-driven image editing. Our research highlights a key challenge: these models particularly struggle with structurally inconsistent edits that involve substantial layout changes. To mitigate this gap, we introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture. At its core, IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations. Each operation is implemented via a lightweight adapter sharing the same DiT backbone and is specialized for a specific type of edit. Programmed by a vision-language model (VLM)-based agent, these operations collaboratively support arbitrary and structurally inconsistent transformations. By modularizing and sequencing edits in this way, IEAP generalizes robustly across a wide range of editing tasks, from simple adjustments to substantial structural changes. Extensive experiments demonstrate that IEAP significantly outperforms state-of-the-art methods on standard benchmarks across various editing scenarios. In these evaluations, our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions. Codes are available at https://github.com/YujiaHu1109/IEAP.
Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting
Text-guided image editing can have a transformative impact in supporting creative applications. A key challenge is to generate edits that are faithful to input text prompts, while consistent with input images. We present Imagen Editor, a cascaded diffusion model built, by fine-tuning Imagen on text-guided image inpainting. Imagen Editor's edits are faithful to the text prompts, which is accomplished by using object detectors to propose inpainting masks during training. In addition, Imagen Editor captures fine details in the input image by conditioning the cascaded pipeline on the original high resolution image. To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting. EditBench evaluates inpainting edits on natural and generated images exploring objects, attributes, and scenes. Through extensive human evaluation on EditBench, we find that object-masking during training leads to across-the-board improvements in text-image alignment -- such that Imagen Editor is preferred over DALL-E 2 and Stable Diffusion -- and, as a cohort, these models are better at object-rendering than text-rendering, and handle material/color/size attributes better than count/shape attributes.
JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Context-based Code Generation
Interactive programming with interleaved code snippet cells and natural language markdown is recently gaining popularity in the form of Jupyter notebooks, which accelerate prototyping and collaboration. To study code generation conditioned on a long context history, we present JuICe, a corpus of 1.5 million examples with a curated test set of 3.7K instances based on online programming assignments. Compared with existing contextual code generation datasets, JuICe provides refined human-curated data, open-domain code, and an order of magnitude more training data. Using JuICe, we train models for two tasks: (1) generation of the API call sequence in a code cell, and (2) full code cell generation, both conditioned on the NL-Code history up to a particular code cell. Experiments using current baseline code generation models show that both context and distant supervision aid in generation, and that the dataset is challenging for current systems.
Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following
Existing text-to-image (T2I) diffusion models usually struggle in interpreting complex prompts, especially those with quantity, object-attribute binding, and multi-subject descriptions. In this work, we introduce a semantic panel as the middleware in decoding texts to images, supporting the generator to better follow instructions. The panel is obtained through arranging the visual concepts parsed from the input text by the aid of large language models, and then injected into the denoising network as a detailed control signal to complement the text condition. To facilitate text-to-panel learning, we come up with a carefully designed semantic formatting protocol, accompanied by a fully-automatic data preparation pipeline. Thanks to such a design, our approach, which we call Ranni, manages to enhance a pre-trained T2I generator regarding its textual controllability. More importantly, the introduction of the generative middleware brings a more convenient form of interaction (i.e., directly adjusting the elements in the panel or using language instructions) and further allows users to finely customize their generation, based on which we develop a practical system and showcase its potential in continuous generation and chatting-based editing. Our project page is at https://ranni-t2i.github.io/Ranni.
GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency
Large language models (LLMs) are becoming more prevalent and have found a ubiquitous use in providing different forms of writing assistance. However, LLM-powered writing systems can frustrate users due to their limited personalization and control, which can be exacerbated when users lack experience with prompt engineering. We see design as one way to address these challenges and introduce GhostWriter, an AI-enhanced writing design probe where users can exercise enhanced agency and personalization. GhostWriter leverages LLMs to learn the user's intended writing style implicitly as they write, while allowing explicit teaching moments through manual style edits and annotations. We study 18 participants who use GhostWriter on two different writing tasks, observing that it helps users craft personalized text generations and empowers them by providing multiple ways to control the system's writing style. From this study, we present insights regarding people's relationship with AI-assisted writing and offer design recommendations for future work.
Spivavtor: An Instruction Tuned Ukrainian Text Editing Model
We introduce Spivavtor, a dataset, and instruction-tuned models for text editing focused on the Ukrainian language. Spivavtor is the Ukrainian-focused adaptation of the English-only CoEdIT model. Similar to CoEdIT, Spivavtor performs text editing tasks by following instructions in Ukrainian. This paper describes the details of the Spivavtor-Instruct dataset and Spivavtor models. We evaluate Spivavtor on a variety of text editing tasks in Ukrainian, such as Grammatical Error Correction (GEC), Text Simplification, Coherence, and Paraphrasing, and demonstrate its superior performance on all of them. We publicly release our best-performing models and data as resources to the community to advance further research in this space.
IntelliCode Compose: Code Generation Using Transformer
In software development through integrated development environments (IDEs), code completion is one of the most widely used features. Nevertheless, majority of integrated development environments only support completion of methods and APIs, or arguments. In this paper, we introduce IntelliCode Compose - a general-purpose multilingual code completion tool which is capable of predicting sequences of code tokens of arbitrary types, generating up to entire lines of syntactically correct code. It leverages state-of-the-art generative transformer model trained on 1.2 billion lines of source code in Python, C#, JavaScript and TypeScript programming languages. IntelliCode Compose is deployed as a cloud-based web service. It makes use of client-side tree-based caching, efficient parallel implementation of the beam search decoder, and compute graph optimizations to meet edit-time completion suggestion requirements in the Visual Studio Code IDE and Azure Notebook. Our best model yields an average edit similarity of 86.7% and a perplexity of 1.82 for Python programming language.
Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models
The output quality of large language models (LLMs) can be improved via "reasoning": generating segments of chain-of-thought (CoT) content to further condition the model prior to producing user-facing output. While these chains contain valuable information, they are verbose and lack explicit organization, making them tedious to review. Moreover, they lack opportunities for user feedback, such as to remove unwanted considerations, add desired ones, or clarify unclear assumptions. We introduce Interactive Reasoning, an interaction design that visualizes chain-of-thought outputs as a hierarchy of topics and enables user review and modification. We implement interactive reasoning in Hippo, a prototype for AI-assisted decision making in the face of uncertain trade-offs. In a user study with 16 participants, we find that interactive reasoning in Hippo allows users to quickly identify and interrupt erroneous generations, efficiently steer the model towards customized responses, and better understand both model reasoning and model outputs. Our work contributes to a new paradigm that incorporates user oversight into LLM reasoning processes.
POEM: Precise Object-level Editing via MLLM control
Diffusion models have significantly improved text-to-image generation, producing high-quality, realistic images from textual descriptions. Beyond generation, object-level image editing remains a challenging problem, requiring precise modifications while preserving visual coherence. Existing text-based instructional editing methods struggle with localized shape and layout transformations, often introducing unintended global changes. Image interaction-based approaches offer better accuracy but require manual human effort to provide precise guidance. To reduce this manual effort while maintaining a high image editing accuracy, in this paper, we propose POEM, a framework for Precise Object-level Editing using Multimodal Large Language Models (MLLMs). POEM leverages MLLMs to analyze instructional prompts and generate precise object masks before and after transformation, enabling fine-grained control without extensive user input. This structured reasoning stage guides the diffusion-based editing process, ensuring accurate object localization and transformation. To evaluate our approach, we introduce VOCEdits, a benchmark dataset based on PASCAL VOC 2012, augmented with instructional edit prompts, ground-truth transformations, and precise object masks. Experimental results show that POEM outperforms existing text-based image editing approaches in precision and reliability while reducing manual effort compared to interaction-based methods.
FastEdit: Fast Text-Guided Single-Image Editing via Semantic-Aware Diffusion Fine-Tuning
Conventional Text-guided single-image editing approaches require a two-step process, including fine-tuning the target text embedding for over 1K iterations and the generative model for another 1.5K iterations. Although it ensures that the resulting image closely aligns with both the input image and the target text, this process often requires 7 minutes per image, posing a challenge for practical application due to its time-intensive nature. To address this bottleneck, we introduce FastEdit, a fast text-guided single-image editing method with semantic-aware diffusion fine-tuning, dramatically accelerating the editing process to only 17 seconds. FastEdit streamlines the generative model's fine-tuning phase, reducing it from 1.5K to a mere 50 iterations. For diffusion fine-tuning, we adopt certain time step values based on the semantic discrepancy between the input image and target text. Furthermore, FastEdit circumvents the initial fine-tuning step by utilizing an image-to-image model that conditions on the feature space, rather than the text embedding space. It can effectively align the target text prompt and input image within the same feature space and save substantial processing time. Additionally, we apply the parameter-efficient fine-tuning technique LoRA to U-net. With LoRA, FastEdit minimizes the model's trainable parameters to only 0.37\% of the original size. At the same time, we can achieve comparable editing outcomes with significantly reduced computational overhead. We conduct extensive experiments to validate the editing performance of our approach and show promising editing capabilities, including content addition, style transfer, background replacement, and posture manipulation, etc.
DocEdit-v2: Document Structure Editing Via Multimodal LLM Grounding
Document structure editing involves manipulating localized textual, visual, and layout components in document images based on the user's requests. Past works have shown that multimodal grounding of user requests in the document image and identifying the accurate structural components and their associated attributes remain key challenges for this task. To address these, we introduce the DocEdit-v2, a novel framework that performs end-to-end document editing by leveraging Large Multimodal Models (LMMs). It consists of three novel components: (1) Doc2Command, which simultaneously localizes edit regions of interest (RoI) and disambiguates user edit requests into edit commands; (2) LLM-based Command Reformulation prompting to tailor edit commands originally intended for specialized software into edit instructions suitable for generalist LMMs. (3) Moreover, DocEdit-v2 processes these outputs via Large Multimodal Models like GPT-4V and Gemini, to parse the document layout, execute edits on grounded Region of Interest (RoI), and generate the edited document image. Extensive experiments on the DocEdit dataset show that DocEdit-v2 significantly outperforms strong baselines on edit command generation (2-33%), RoI bounding box detection (12-31%), and overall document editing (1-12\%) tasks.
PIXELS: Progressive Image Xemplar-based Editing with Latent Surgery
Recent advancements in language-guided diffusion models for image editing are often bottle-necked by cumbersome prompt engineering to precisely articulate desired changes. An intuitive alternative calls on guidance from in-the-wild image exemplars to help users bring their imagined edits to life. Contemporary exemplar-based editing methods shy away from leveraging the rich latent space learnt by pre-existing large text-to-image (TTI) models and fall back on training with curated objective functions to achieve the task. Though somewhat effective, this demands significant computational resources and lacks compatibility with diverse base models and arbitrary exemplar count. On further investigation, we also find that these techniques restrict user control to only applying uniform global changes over the entire edited region. In this paper, we introduce a novel framework for progressive exemplar-driven editing with off-the-shelf diffusion models, dubbed PIXELS, to enable customization by providing granular control over edits, allowing adjustments at the pixel or region level. Our method operates solely during inference to facilitate imitative editing, enabling users to draw inspiration from a dynamic number of reference images, or multimodal prompts, and progressively incorporate all the desired changes without retraining or fine-tuning existing TTI models. This capability of fine-grained control opens up a range of new possibilities, including selective modification of individual objects and specifying gradual spatial changes. We demonstrate that PIXELS delivers high-quality edits efficiently, leading to a notable improvement in quantitative metrics as well as human evaluation. By making high-quality image editing more accessible, PIXELS has the potential to enable professional-grade edits to a wider audience with the ease of using any open-source image generation model.
RelationAdapter: Learning and Transferring Visual Relation with Diffusion Transformers
Inspired by the in-context learning mechanism of large language models (LLMs), a new paradigm of generalizable visual prompt-based image editing is emerging. Existing single-reference methods typically focus on style or appearance adjustments and struggle with non-rigid transformations. To address these limitations, we propose leveraging source-target image pairs to extract and transfer content-aware editing intent to novel query images. To this end, we introduce RelationAdapter, a lightweight module that enables Diffusion Transformer (DiT) based models to effectively capture and apply visual transformations from minimal examples. We also introduce Relation252K, a comprehensive dataset comprising 218 diverse editing tasks, to evaluate model generalization and adaptability in visual prompt-driven scenarios. Experiments on Relation252K show that RelationAdapter significantly improves the model's ability to understand and transfer editing intent, leading to notable gains in generation quality and overall editing performance.
HairCLIP: Design Your Hair by Text and Reference Image
Hair editing is an interesting and challenging problem in computer vision and graphics. Many existing methods require well-drawn sketches or masks as conditional inputs for editing, however these interactions are neither straightforward nor efficient. In order to free users from the tedious interaction process, this paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly based on the texts or reference images provided by users. For this purpose, we encode the image and text conditions in a shared embedding space and propose a unified hair editing framework by leveraging the powerful image text representation capability of the Contrastive Language-Image Pre-Training (CLIP) model. With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing in a disentangled manner. Extensive experiments demonstrate the superiority of our approach in terms of manipulation accuracy, visual realism of editing results, and irrelevant attribute preservation. Project repo is https://github.com/wty-ustc/HairCLIP.
Natural Language Commanding via Program Synthesis
We present Semantic Interpreter, a natural language-friendly AI system for productivity software such as Microsoft Office that leverages large language models (LLMs) to execute user intent across application features. While LLMs are excellent at understanding user intent expressed as natural language, they are not sufficient for fulfilling application-specific user intent that requires more than text-to-text transformations. We therefore introduce the Office Domain Specific Language (ODSL), a concise, high-level language specialized for performing actions in and interacting with entities in Office applications. Semantic Interpreter leverages an Analysis-Retrieval prompt construction method with LLMs for program synthesis, translating natural language user utterances to ODSL programs that can be transpiled to application APIs and then executed. We focus our discussion primarily on a research exploration for Microsoft PowerPoint.
Low-code LLM: Graphical User Interface over Large Language Models
Utilizing Large Language Models (LLMs) for complex tasks is challenging, often involving a time-consuming and uncontrollable prompt engineering process. This paper introduces a novel human-LLM interaction framework, Low-code LLM. It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses. Through visual interaction with a graphical user interface, users can incorporate their ideas into the process without writing trivial prompts. The proposed Low-code LLM framework consists of a Planning LLM that designs a structured planning workflow for complex tasks, which can be correspondingly edited and confirmed by users through low-code visual programming operations, and an Executing LLM that generates responses following the user-confirmed workflow. We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability. We demonstrate its benefits using four typical applications. By introducing this framework, we aim to bridge the gap between humans and LLMs, enabling more effective and efficient utilization of LLMs for complex tasks. The code, prompts, and experimental details are available at https://github.com/moymix/TaskMatrix/tree/main/LowCodeLLM. A system demonstration video can be found at https://www.youtube.com/watch?v=jb2C1vaeO3E.
Representing Prompting Patterns with PDL: Compliance Agent Case Study
Prompt engineering for LLMs remains complex, with existing frameworks either hiding complexity behind restrictive APIs or providing inflexible canned patterns that resist customization -- making sophisticated agentic programming challenging. We present the Prompt Declaration Language (PDL), a novel approach to prompt representation that tackles this fundamental complexity by bringing prompts to the forefront, enabling manual and automatic prompt tuning while capturing the composition of LLM calls together with rule-based code and external tools. By abstracting away the plumbing for such compositions, PDL aims at improving programmer productivity while providing a declarative representation that is amenable to optimization. This paper demonstrates PDL's utility through a real-world case study of a compliance agent. Tuning the prompting pattern of this agent yielded up to 4x performance improvement compared to using a canned agent and prompt pattern.
InternLM-XComposer: A Vision-Language Large Model for Advanced Text-image Comprehension and Composition
We propose InternLM-XComposer, a vision-language large model that enables advanced image-text comprehension and composition. The innovative nature of our model is highlighted by three appealing properties: 1) Interleaved Text-Image Composition: InternLM-XComposer can effortlessly generate coherent and contextual articles that seamlessly integrate images, providing a more engaging and immersive reading experience. Simply provide a title, and our system will generate the corresponding manuscript. It can intelligently identify the areas in the text where images would enhance the content and automatically insert the most appropriate visual candidates. 2) Comprehension with Rich Multilingual Knowledge: The text-image comprehension is empowered by training on extensive multi-modal multilingual concepts with carefully crafted strategies, resulting in a deep understanding of visual content. 3) State-of-the-art Performance: Our model consistently achieves state-of-the-art results across various mainstream benchmarks for vision-language foundational models, including MME Benchmark, MMBench, MMBench-CN, Seed-Bench, and CCBench (Chinese Cultural Benchmark). Collectively, InternLM-XComposer seamlessly blends advanced text-image comprehension and composition, revolutionizing vision-language interaction and offering new insights and opportunities. The InternLM-XComposer model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.
Node-Based Editing for Multimodal Generation of Text, Audio, Image, and Video
We present a node-based storytelling system for multimodal content generation. The system represents stories as graphs of nodes that can be expanded, edited, and iteratively refined through direct user edits and natural-language prompts. Each node can integrate text, images, audio, and video, allowing creators to compose multimodal narratives. A task selection agent routes between specialized generative tasks that handle story generation, node structure reasoning, node diagram formatting, and context generation. The interface supports targeted editing of individual nodes, automatic branching for parallel storylines, and node-based iterative refinement. Our results demonstrate that node-based editing supports control over narrative structure and iterative generation of text, images, audio, and video. We report quantitative outcomes on automatic story outline generation and qualitative observations of editing workflows. Finally, we discuss current limitations such as scalability to longer narratives and consistency across multiple nodes, and outline future work toward human-in-the-loop and user-centered creative AI tools.
InstructPix2Pix: Learning to Follow Image Editing Instructions
We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.
AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.4% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
Detail++: Training-Free Detail Enhancer for Text-to-Image Diffusion Models
Recent advances in text-to-image (T2I) generation have led to impressive visual results. However, these models still face significant challenges when handling complex prompt, particularly those involving multiple subjects with distinct attributes. Inspired by the human drawing process, which first outlines the composition and then incrementally adds details, we propose Detail++, a training-free framework that introduces a novel Progressive Detail Injection (PDI) strategy to address this limitation. Specifically, we decompose a complex prompt into a sequence of simplified sub-prompts, guiding the generation process in stages. This staged generation leverages the inherent layout-controlling capacity of self-attention to first ensure global composition, followed by precise refinement. To achieve accurate binding between attributes and corresponding subjects, we exploit cross-attention mechanisms and further introduce a Centroid Alignment Loss at test time to reduce binding noise and enhance attribute consistency. Extensive experiments on T2I-CompBench and a newly constructed style composition benchmark demonstrate that Detail++ significantly outperforms existing methods, particularly in scenarios involving multiple objects and complex stylistic conditions.
InsightEdit: Towards Better Instruction Following for Image Editing
In this paper, we focus on the task of instruction-based image editing. Previous works like InstructPix2Pix, InstructDiffusion, and SmartEdit have explored end-to-end editing. However, two limitations still remain: First, existing datasets suffer from low resolution, poor background consistency, and overly simplistic instructions. Second, current approaches mainly condition on the text while the rich image information is underexplored, therefore inferior in complex instruction following and maintaining background consistency. Targeting these issues, we first curated the AdvancedEdit dataset using a novel data construction pipeline, formulating a large-scale dataset with high visual quality, complex instructions, and good background consistency. Then, to further inject the rich image information, we introduce a two-stream bridging mechanism utilizing both the textual and visual features reasoned by the powerful Multimodal Large Language Models (MLLM) to guide the image editing process more precisely. Extensive results demonstrate that our approach, InsightEdit, achieves state-of-the-art performance, excelling in complex instruction following and maintaining high background consistency with the original image.
DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image Editing
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years. Although owning diverse and high-quality generation capabilities, translating these abilities to fine-grained image editing remains challenging. In this paper, we propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing: (1) in complex scenarios, editing results often lack editing accuracy and exhibit unexpected artifacts; (2) lack of flexibility to harmonize editing operations, e.g., imagine new content. In our solution, we introduce image prompts in fine-grained image editing, cooperating with the text prompt to better describe the editing content. To increase the flexibility while maintaining content consistency, we locally combine stochastic differential equation (SDE) into the ordinary differential equation (ODE) sampling. In addition, we incorporate regional score-based gradient guidance and a time travel strategy into the diffusion sampling, further improving the editing quality. Extensive experiments demonstrate that our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks, including editing within a single image (e.g., object moving, resizing, and content dragging) and across images (e.g., appearance replacing and object pasting). Our source code is released at https://github.com/MC-E/DragonDiffusion.
LLaVA-Interactive: An All-in-One Demo for Image Chat, Segmentation, Generation and Editing
LLaVA-Interactive is a research prototype for multimodal human-AI interaction. The system can have multi-turn dialogues with human users by taking multimodal user inputs and generating multimodal responses. Importantly, LLaVA-Interactive goes beyond language prompt, where visual prompt is enabled to align human intents in the interaction. The development of LLaVA-Interactive is extremely cost-efficient as the system combines three multimodal skills of pre-built AI models without additional model training: visual chat of LLaVA, image segmentation from SEEM, as well as image generation and editing from GLIGEN. A diverse set of application scenarios is presented to demonstrate the promises of LLaVA-Interactive and to inspire future research in multimodal interactive systems.
CannyEdit: Selective Canny Control and Dual-Prompt Guidance for Training-Free Image Editing
Recent advances in text-to-image (T2I) models have enabled training-free regional image editing by leveraging the generative priors of foundation models. However, existing methods struggle to balance text adherence in edited regions, context fidelity in unedited areas, and seamless integration of edits. We introduce CannyEdit, a novel training-free framework that addresses these challenges through two key innovations: (1) Selective Canny Control, which masks the structural guidance of Canny ControlNet in user-specified editable regions while strictly preserving details of the source images in unedited areas via inversion-phase ControlNet information retention. This enables precise, text-driven edits without compromising contextual integrity. (2) Dual-Prompt Guidance, which combines local prompts for object-specific edits with a global target prompt to maintain coherent scene interactions. On real-world image editing tasks (addition, replacement, removal), CannyEdit outperforms prior methods like KV-Edit, achieving a 2.93 to 10.49 percent improvement in the balance of text adherence and context fidelity. In terms of editing seamlessness, user studies reveal only 49.2 percent of general users and 42.0 percent of AIGC experts identified CannyEdit's results as AI-edited when paired with real images without edits, versus 76.08 to 89.09 percent for competitor methods.
Visual Instruction Inversion: Image Editing via Visual Prompting
Text-conditioned image editing has emerged as a powerful tool for editing images. However, in many situations, language can be ambiguous and ineffective in describing specific image edits. When faced with such challenges, visual prompts can be a more informative and intuitive way to convey ideas. We present a method for image editing via visual prompting. Given pairs of example that represent the "before" and "after" images of an edit, our goal is to learn a text-based editing direction that can be used to perform the same edit on new images. We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions. Our results show that with just one example pair, we can achieve competitive results compared to state-of-the-art text-conditioned image editing frameworks.
Language hooks: a modular framework for augmenting LLM reasoning that decouples tool usage from the model and its prompt
Prompting and fine-tuning have emerged as two competing paradigms for augmenting language models with new capabilities, such as the use of tools. Prompting approaches are quick to set up but rely on providing explicit demonstrations of each tool's usage in the model's prompt, thus coupling tool use to the task at hand and limiting generalisation. Fine-tuning removes the need for task-specific demonstrations of tool usage at runtime; however, this ties new capabilities to a single model, thus making already-heavier setup costs a recurring expense. In this paper, we introduce language hooks, a novel framework for augmenting language models with new capabilities that is decoupled both from the model's task-specific prompt and from the model itself. The language hook algorithm interleaves text generation by the base model with the execution of modular programs that trigger conditionally based on the existing text and the available capabilities. Upon triggering, programs may call external tools, auxiliary language models (e.g. using tool specific prompts), and modify the existing context. We benchmark our method against state-of-the-art baselines, find that it outperforms task-aware approaches, and demonstrate its ability to generalise to novel tasks.
EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction
To address intricate real-world tasks, there has been a rising interest in tool utilization in applications of large language models (LLMs). To develop LLM-based agents, it usually requires LLMs to understand many tool functions from different tool documentation. But these documentations could be diverse, redundant or incomplete, which immensely affects the capability of LLMs in using tools. To solve this, we introduce EASYTOOL, a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction for easier tool usage. EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i.e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents. Extensive experiments on multiple different tasks demonstrate that EasyTool can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios. Our code will be available at https://github.com/microsoft/JARVIS/ in the future.
NoHumansRequired: Autonomous High-Quality Image Editing Triplet Mining
Recent advances in generative modeling enable image editing assistants that follow natural language instructions without additional user input. Their supervised training requires millions of triplets: original image, instruction, edited image. Yet mining pixel-accurate examples is hard. Each edit must affect only prompt-specified regions, preserve stylistic coherence, respect physical plausibility, and retain visual appeal. The lack of robust automated edit-quality metrics hinders reliable automation at scale. We present an automated, modular pipeline that mines high-fidelity triplets across domains, resolutions, instruction complexities, and styles. Built on public generative models and running without human intervention, our system uses a task-tuned Gemini validator to score instruction adherence and aesthetics directly, removing any need for segmentation or grounding models. Inversion and compositional bootstrapping enlarge the mined set by approximately 2.2x, enabling large-scale high-fidelity training data. By automating the most repetitive annotation steps, the approach allows a new scale of training without human labeling effort. To democratize research in this resource-intensive area, we release NHR-Edit: an open dataset of 358k high-quality triplets. In the largest cross-dataset evaluation, it surpasses all public alternatives. We also release Bagel-NHR-Edit, an open-source fine-tuned Bagel model, which achieves state-of-the-art metrics in our experiments.
"President Vows to Cut <Taxes> Hair": Dataset and Analysis of Creative Text Editing for Humorous Headlines
We introduce, release, and analyze a new dataset, called Humicroedit, for research in computational humor. Our publicly available data consists of regular English news headlines paired with versions of the same headlines that contain simple replacement edits designed to make them funny. We carefully curated crowdsourced editors to create funny headlines and judges to score a to a total of 15,095 edited headlines, with five judges per headline. The simple edits, usually just a single word replacement, mean we can apply straightforward analysis techniques to determine what makes our edited headlines humorous. We show how the data support classic theories of humor, such as incongruity, superiority, and setup/punchline. Finally, we develop baseline classifiers that can predict whether or not an edited headline is funny, which is a first step toward automatically generating humorous headlines as an approach to creating topical humor.
AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea
Instruction-based image editing aims to modify specific image elements with natural language instructions. However, current models in this domain often struggle to accurately execute complex user instructions, as they are trained on low-quality data with limited editing types. We present AnyEdit, a comprehensive multi-modal instruction editing dataset, comprising 2.5 million high-quality editing pairs spanning over 20 editing types and five domains. We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results. Using the dataset, we further train a novel AnyEdit Stable Diffusion with task-aware routing and learnable task embedding for unified image editing. Comprehensive experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models. This presents prospects for developing instruction-driven image editing models that support human creativity.
PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. It is available through both a Python API: https://github.com/eliyahabba/PromptSuite, and a user-friendly web interface: https://promptsuite.streamlit.app/
Instruction-based Time Series Editing
In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.
CursorCore: Assist Programming through Aligning Anything
Large language models have been successfully applied to programming assistance tasks, such as code completion, code insertion, and instructional code editing. However, these applications remain insufficiently automated and struggle to effectively integrate various types of information during the programming process, including coding history, current code, and user instructions. In this work, we propose a new conversational framework that comprehensively integrates these information sources, collect data to train our models and evaluate their performance. Firstly, to thoroughly evaluate how well models align with different types of information and the quality of their outputs, we introduce a new benchmark, APEval (Assist Programming Eval), to comprehensively assess the performance of models in programming assistance tasks. Then, for data collection, we develop a data generation pipeline, Programming-Instruct, which synthesizes training data from diverse sources, such as GitHub and online judge platforms. This pipeline can automatically generate various types of messages throughout the programming process. Finally, using this pipeline, we generate 219K samples, fine-tune multiple models, and develop the CursorCore series. We show that CursorCore outperforms other models of comparable size. This framework unifies applications such as inline chat and automated editing, contributes to the advancement of coding assistants. Code, models and data are freely available at https://github.com/TechxGenus/CursorCore.
ZONE: Zero-Shot Instruction-Guided Local Editing
Recent advances in vision-language models like Stable Diffusion have shown remarkable power in creative image synthesis and editing.However, most existing text-to-image editing methods encounter two obstacles: First, the text prompt needs to be carefully crafted to achieve good results, which is not intuitive or user-friendly. Second, they are insensitive to local edits and can irreversibly affect non-edited regions, leaving obvious editing traces. To tackle these problems, we propose a Zero-shot instructiON-guided local image Editing approach, termed ZONE. We first convert the editing intent from the user-provided instruction (e.g., "make his tie blue") into specific image editing regions through InstructPix2Pix. We then propose a Region-IoU scheme for precise image layer extraction from an off-the-shelf segment model. We further develop an edge smoother based on FFT for seamless blending between the layer and the image.Our method allows for arbitrary manipulation of a specific region with a single instruction while preserving the rest. Extensive experiments demonstrate that our ZONE achieves remarkable local editing results and user-friendliness, outperforming state-of-the-art methods. Code is available at https://github.com/lsl001006/ZONE.
Seal-3D: Interactive Pixel-Level Editing for Neural Radiance Fields
With the popularity of implicit neural representations, or neural radiance fields (NeRF), there is a pressing need for editing methods to interact with the implicit 3D models for tasks like post-processing reconstructed scenes and 3D content creation. While previous works have explored NeRF editing from various perspectives, they are restricted in editing flexibility, quality, and speed, failing to offer direct editing response and instant preview. The key challenge is to conceive a locally editable neural representation that can directly reflect the editing instructions and update instantly. To bridge the gap, we propose a new interactive editing method and system for implicit representations, called Seal-3D, which allows users to edit NeRF models in a pixel-level and free manner with a wide range of NeRF-like backbone and preview the editing effects instantly. To achieve the effects, the challenges are addressed by our proposed proxy function mapping the editing instructions to the original space of NeRF models and a teacher-student training strategy with local pretraining and global finetuning. A NeRF editing system is built to showcase various editing types. Our system can achieve compelling editing effects with an interactive speed of about 1 second.
Toward Interactive Dictation
Voice dictation is an increasingly important text input modality. Existing systems that allow both dictation and editing-by-voice restrict their command language to flat templates invoked by trigger words. In this work, we study the feasibility of allowing users to interrupt their dictation with spoken editing commands in open-ended natural language. We introduce a new task and dataset, TERTiUS, to experiment with such systems. To support this flexibility in real-time, a system must incrementally segment and classify spans of speech as either dictation or command, and interpret the spans that are commands. We experiment with using large pre-trained language models to predict the edited text, or alternatively, to predict a small text-editing program. Experiments show a natural trade-off between model accuracy and latency: a smaller model achieves 30% end-state accuracy with 1.3 seconds of latency, while a larger model achieves 55% end-state accuracy with 7 seconds of latency.
EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models
Large Language Models (LLMs) usually suffer from knowledge cutoff or fallacy issues, which means they are unaware of unseen events or generate text with incorrect facts owing to the outdated/noisy data. To this end, many knowledge editing approaches for LLMs have emerged -- aiming to subtly inject/edit updated knowledge or adjust undesired behavior while minimizing the impact on unrelated inputs. Nevertheless, due to significant differences among various knowledge editing methods and the variations in task setups, there is no standard implementation framework available for the community, which hinders practitioners to apply knowledge editing to applications. To address these issues, we propose EasyEdit, an easy-to-use knowledge editing framework for LLMs. It supports various cutting-edge knowledge editing approaches and can be readily apply to many well-known LLMs such as T5, GPT-J, LlaMA, etc. Empirically, we report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit, along with Google Colab tutorials and comprehensive documentation for beginners to get started. Besides, we present an online system for real-time knowledge editing, and a demo video at http://knowlm.zjukg.cn/easyedit.mp4.
MagicStick: Controllable Video Editing via Control Handle Transformations
Text-based video editing has recently attracted considerable interest in changing the style or replacing the objects with a similar structure. Beyond this, we demonstrate that properties such as shape, size, location, motion, etc., can also be edited in videos. Our key insight is that the keyframe transformations of the specific internal feature (e.g., edge maps of objects or human pose), can easily propagate to other frames to provide generation guidance. We thus propose MagicStick, a controllable video editing method that edits the video properties by utilizing the transformation on the extracted internal control signals. In detail, to keep the appearance, we inflate both the pretrained image diffusion model and ControlNet to the temporal dimension and train low-rank adaptions (LORA) layers to fit the specific scenes. Then, in editing, we perform an inversion and editing framework. Differently, finetuned ControlNet is introduced in both inversion and generation for attention guidance with the proposed attention remix between the spatial attention maps of inversion and editing. Yet succinct, our method is the first method to show the ability of video property editing from the pre-trained text-to-image model. We present experiments on numerous examples within our unified framework. We also compare with shape-aware text-based editing and handcrafted motion video generation, demonstrating our superior temporal consistency and editing capability than previous works. The code and models will be made publicly available.
ChatSpot: Bootstrapping Multimodal LLMs via Precise Referring Instruction Tuning
Human-AI interactivity is a critical aspect that reflects the usability of multimodal large language models (MLLMs). However, existing end-to-end MLLMs only allow users to interact with them through language instructions, leading to the limitation of the interactive accuracy and efficiency. In this study, we present precise referring instructions that utilize diverse reference representations such as points and boxes as referring prompts to refer to the special region. This enables MLLMs to focus on the region of interest and achieve finer-grained interaction. Based on precise referring instruction, we propose ChatSpot, a unified end-to-end multimodal large language model that supports diverse forms of interactivity including mouse clicks, drag-and-drop, and drawing boxes, which provides a more flexible and seamless interactive experience. We also construct a multi-grained vision-language instruction-following dataset based on existing datasets and GPT-4 generating. Furthermore, we design a series of evaluation tasks to assess the effectiveness of region recognition and interaction. Experimental results showcase ChatSpot's promising performance.
PRewrite: Prompt Rewriting with Reinforcement Learning
Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a "trial and error" fashion. This manual procedure can be time consuming, ineffective, and the generated prompts are, in a lot of cases, sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications? To address these questions, in this paper, we investigate prompt engineering automation. We consider a specific use case scenario in which developers/users have drafted initial prompts, but lack the time/expertise to optimize them. We propose PRewrite, an automated tool to rewrite these drafts and to generate highly effective new prompts. PRewrite is based on the Reinforcement Learning (RL) framework which allows for end-to-end optimization and our design allows the RL search to happen in a large action space. The automated tool leverages manually crafted prompts as starting points which makes the rewriting procedure more guided and efficient. The generated prompts are human readable, and self-explanatory, unlike some of those in previous works. We conducted extensive experiments on diverse datasets and found that the prompts generated with this new method not only outperform professionally crafted prompts, but also prompts generated with other previously proposed methods.
ParaRev: Building a dataset for Scientific Paragraph Revision annotated with revision instruction
Revision is a crucial step in scientific writing, where authors refine their work to improve clarity, structure, and academic quality. Existing approaches to automated writing assistance often focus on sentence-level revisions, which fail to capture the broader context needed for effective modification. In this paper, we explore the impact of shifting from sentence-level to paragraph-level scope for the task of scientific text revision. The paragraph level definition of the task allows for more meaningful changes, and is guided by detailed revision instructions rather than general ones. To support this task, we introduce ParaRev, the first dataset of revised scientific paragraphs with an evaluation subset manually annotated with revision instructions. Our experiments demonstrate that using detailed instructions significantly improves the quality of automated revisions compared to general approaches, no matter the model or the metric considered.
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the scientific domain. Given a research question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs' instruction-following capabilities for knowledge intensive writing tasks.
ClickDiffusion: Harnessing LLMs for Interactive Precise Image Editing
Recently, researchers have proposed powerful systems for generating and manipulating images using natural language instructions. However, it is difficult to precisely specify many common classes of image transformations with text alone. For example, a user may wish to change the location and breed of a particular dog in an image with several similar dogs. This task is quite difficult with natural language alone, and would require a user to write a laboriously complex prompt that both disambiguates the target dog and describes the destination. We propose ClickDiffusion, a system for precise image manipulation and generation that combines natural language instructions with visual feedback provided by the user through a direct manipulation interface. We demonstrate that by serializing both an image and a multi-modal instruction into a textual representation it is possible to leverage LLMs to perform precise transformations of the layout and appearance of an image. Code available at https://github.com/poloclub/ClickDiffusion.
SAO-Instruct: Free-form Audio Editing using Natural Language Instructions
Generative models have made significant progress in synthesizing high-fidelity audio from short textual descriptions. However, editing existing audio using natural language has remained largely underexplored. Current approaches either require the complete description of the edited audio or are constrained to predefined edit instructions that lack flexibility. In this work, we introduce SAO-Instruct, a model based on Stable Audio Open capable of editing audio clips using any free-form natural language instruction. To train our model, we create a dataset of audio editing triplets (input audio, edit instruction, output audio) using Prompt-to-Prompt, DDPM inversion, and a manual editing pipeline. Although partially trained on synthetic data, our model generalizes well to real in-the-wild audio clips and unseen edit instructions. We demonstrate that SAO-Instruct achieves competitive performance on objective metrics and outperforms other audio editing approaches in a subjective listening study. To encourage future research, we release our code and model weights.
Kontinuous Kontext: Continuous Strength Control for Instruction-based Image Editing
Instruction-based image editing offers a powerful and intuitive way to manipulate images through natural language. Yet, relying solely on text instructions limits fine-grained control over the extent of edits. We introduce Kontinuous Kontext, an instruction-driven editing model that provides a new dimension of control over edit strength, enabling users to adjust edits gradually from no change to a fully realized result in a smooth and continuous manner. Kontinuous Kontext extends a state-of-the-art image editing model to accept an additional input, a scalar edit strength which is then paired with the edit instruction, enabling explicit control over the extent of the edit. To inject this scalar information, we train a lightweight projector network that maps the input scalar and the edit instruction to coefficients in the model's modulation space. For training our model, we synthesize a diverse dataset of image-edit-instruction-strength quadruplets using existing generative models, followed by a filtering stage to ensure quality and consistency. Kontinuous Kontext provides a unified approach for fine-grained control over edit strength for instruction driven editing from subtle to strong across diverse operations such as stylization, attribute, material, background, and shape changes, without requiring attribute-specific training.
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models
Text-to-image (T2I) research has grown explosively in the past year, owing to the large-scale pre-trained diffusion models and many emerging personalization and editing approaches. Yet, one pain point persists: the text prompt engineering, and searching high-quality text prompts for customized results is more art than science. Moreover, as commonly argued: "an image is worth a thousand words" - the attempt to describe a desired image with texts often ends up being ambiguous and cannot comprehensively cover delicate visual details, hence necessitating more additional controls from the visual domain. In this paper, we take a bold step forward: taking "Text" out of a pre-trained T2I diffusion model, to reduce the burdensome prompt engineering efforts for users. Our proposed framework, Prompt-Free Diffusion, relies on only visual inputs to generate new images: it takes a reference image as "context", an optional image structural conditioning, and an initial noise, with absolutely no text prompt. The core architecture behind the scene is Semantic Context Encoder (SeeCoder), substituting the commonly used CLIP-based or LLM-based text encoder. The reusability of SeeCoder also makes it a convenient drop-in component: one can also pre-train a SeeCoder in one T2I model and reuse it for another. Through extensive experiments, Prompt-Free Diffusion is experimentally found to (i) outperform prior exemplar-based image synthesis approaches; (ii) perform on par with state-of-the-art T2I models using prompts following the best practice; and (iii) be naturally extensible to other downstream applications such as anime figure generation and virtual try-on, with promising quality. Our code and models are open-sourced at https://github.com/SHI-Labs/Prompt-Free-Diffusion.
GPTutor: an open-source AI pair programming tool alternative to Copilot
This paper presents the latest progress of GPTutor: a ChatGPT-powered programming tool extension in Visual Studio Code. The emergence of Large Language Models (LLMs) has improved software development efficiency, but their performance can be hindered by training data limitations and prompt design issues. Existing LLM development tools often operate as black boxes, with users unable to view the prompts used and unable to improve performance by correcting prompts when errors occur. To address the aforementioned issues, GPTutor was introduced as an open-source AI pair programming tool, offering an alternative to Copilot. GPTutor empowers users to customize prompts for various programming languages and scenarios, with support for 120+ human languages and 50+ programming languages. Users can fine-tune prompts to correct the errors from LLM for precision and efficient code generation. At the end of the paper, we underscore GPTutor's potential through examples, including demonstrating its proficiency in interpreting and generating Sui-Move, a newly introduced smart contract language, using prompt engineering.
InstantDrag: Improving Interactivity in Drag-based Image Editing
Drag-based image editing has recently gained popularity for its interactivity and precision. However, despite the ability of text-to-image models to generate samples within a second, drag editing still lags behind due to the challenge of accurately reflecting user interaction while maintaining image content. Some existing approaches rely on computationally intensive per-image optimization or intricate guidance-based methods, requiring additional inputs such as masks for movable regions and text prompts, thereby compromising the interactivity of the editing process. We introduce InstantDrag, an optimization-free pipeline that enhances interactivity and speed, requiring only an image and a drag instruction as input. InstantDrag consists of two carefully designed networks: a drag-conditioned optical flow generator (FlowGen) and an optical flow-conditioned diffusion model (FlowDiffusion). InstantDrag learns motion dynamics for drag-based image editing in real-world video datasets by decomposing the task into motion generation and motion-conditioned image generation. We demonstrate InstantDrag's capability to perform fast, photo-realistic edits without masks or text prompts through experiments on facial video datasets and general scenes. These results highlight the efficiency of our approach in handling drag-based image editing, making it a promising solution for interactive, real-time applications.
Generating Illustrated Instructions
We introduce the new task of generating Illustrated Instructions, i.e., visual instructions customized to a user's needs. We identify desiderata unique to this task, and formalize it through a suite of automatic and human evaluation metrics, designed to measure the validity, consistency, and efficacy of the generations. We combine the power of large language models (LLMs) together with strong text-to-image generation diffusion models to propose a simple approach called StackedDiffusion, which generates such illustrated instructions given text as input. The resulting model strongly outperforms baseline approaches and state-of-the-art multimodal LLMs; and in 30% of cases, users even prefer it to human-generated articles. Most notably, it enables various new and exciting applications far beyond what static articles on the web can provide, such as personalized instructions complete with intermediate steps and pictures in response to a user's individual situation.
Improving Iterative Text Revision by Learning Where to Edit from Other Revision Tasks
Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document. Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text instead of building accurate and robust systems for iterative text revision. In this work, we aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans (where-to-edit) with their corresponding edit intents and then instructing a revision model to revise the detected edit spans. Leveraging datasets from other related text editing NLP tasks, combined with the specification of editable spans, leads our system to more accurately model the process of iterative text refinement, as evidenced by empirical results and human evaluations. Our system significantly outperforms previous baselines on our text revision tasks and other standard text revision tasks, including grammatical error correction, text simplification, sentence fusion, and style transfer. Through extensive qualitative and quantitative analysis, we make vital connections between edit intentions and writing quality, and better computational modeling of iterative text revisions.
Mono4DEditor: Text-Driven 4D Scene Editing from Monocular Video via Point-Level Localization of Language-Embedded Gaussians
Editing 4D scenes reconstructed from monocular videos based on text prompts is a valuable yet challenging task with broad applications in content creation and virtual environments. The key difficulty lies in achieving semantically precise edits in localized regions of complex, dynamic scenes, while preserving the integrity of unedited content. To address this, we introduce Mono4DEditor, a novel framework for flexible and accurate text-driven 4D scene editing. Our method augments 3D Gaussians with quantized CLIP features to form a language-embedded dynamic representation, enabling efficient semantic querying of arbitrary spatial regions. We further propose a two-stage point-level localization strategy that first selects candidate Gaussians via CLIP similarity and then refines their spatial extent to improve accuracy. Finally, targeted edits are performed on localized regions using a diffusion-based video editing model, with flow and scribble guidance ensuring spatial fidelity and temporal coherence. Extensive experiments demonstrate that Mono4DEditor enables high-quality, text-driven edits across diverse scenes and object types, while preserving the appearance and geometry of unedited areas and surpassing prior approaches in both flexibility and visual fidelity.
Adaptable Logical Control for Large Language Models
Despite the success of Large Language Models (LLMs) on various tasks following human instructions, controlling model generation at inference time poses a persistent challenge. In this paper, we introduce Ctrl-G, an adaptable framework that facilitates tractable and flexible control of LLM generation to reliably follow logical constraints. Ctrl-G combines any production-ready LLM with a Hidden Markov Model, enabling LLM outputs to adhere to logical constraints represented as deterministic finite automata. We show that Ctrl-G, when applied to a TULU2-7B model, outperforms GPT3.5 and GPT4 on the task of interactive text editing: specifically, for the task of generating text insertions/continuations following logical constraints, Ctrl-G achieves over 30% higher satisfaction rate in human evaluation compared to GPT4. When applied to medium-size language models (e.g., GPT2-large), Ctrl-G also beats its counterparts for constrained generation by large margins on standard benchmarks. Additionally, as a proof-of-concept study, we experiment Ctrl-G on the Grade School Math benchmark to assist LLM reasoning, foreshadowing the application of Ctrl-G, as well as other constrained generation approaches, beyond traditional language generation tasks.
