Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTool Learning with Foundation Models
Humans possess an extraordinary ability to create and utilize tools, allowing them to overcome physical limitations and explore new frontiers. With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans. This paradigm, i.e., tool learning with foundation models, combines the strengths of specialized tools and foundation models to achieve enhanced accuracy, efficiency, and automation in problem-solving. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field. To this end, we present a systematic investigation of tool learning in this paper. We first introduce the background of tool learning, including its cognitive origins, the paradigm shift of foundation models, and the complementary roles of tools and models. Then we recapitulate existing tool learning research into tool-augmented and tool-oriented learning. We formulate a general tool learning framework: starting from understanding the user instruction, models should learn to decompose a complex task into several subtasks, dynamically adjust their plan through reasoning, and effectively conquer each sub-task by selecting appropriate tools. We also discuss how to train models for improved tool-use capabilities and facilitate the generalization in tool learning. Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools. Finally, we discuss several open problems that require further investigation for tool learning. In general, we hope this paper could inspire future research in integrating tools with foundation models.
Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward
Effective conversational agents must be able to personalize their behavior to suit a user's preferences, personality, and attributes, whether they are assisting with writing tasks or operating in domains like education or healthcare. Current training methods like Reinforcement Learning from Human Feedback (RLHF) prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized interactions. Traditional approaches to personalization often rely on extensive user history, limiting their effectiveness for new or context-limited users. To overcome these limitations, we propose to incorporate an intrinsic motivation to improve the conversational agents's model of the user as an additional reward alongside multi-turn RLHF. This reward mechanism encourages the agent to actively elicit user traits by optimizing conversations to increase the accuracy of its user model. Consequently, the policy agent can deliver more personalized interactions through obtaining more information about the user. We applied our method both education and fitness settings, where LLMs teach concepts or recommend personalized strategies based on users' hidden learning style or lifestyle attributes. Using LLM-simulated users, our approach outperformed a multi-turn RLHF baseline in revealing information about the users' preferences, and adapting to them.
LLMs + Persona-Plug = Personalized LLMs
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user's relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user's overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, . It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.
Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization
Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.
Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond
Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.
Draw Your Mind: Personalized Generation via Condition-Level Modeling in Text-to-Image Diffusion Models
Personalized generation in T2I diffusion models aims to naturally incorporate individual user preferences into the generation process with minimal user intervention. However, existing studies primarily rely on prompt-level modeling with large-scale models, often leading to inaccurate personalization due to the limited input token capacity of T2I diffusion models. To address these limitations, we propose DrUM, a novel method that integrates user profiling with a transformer-based adapter to enable personalized generation through condition-level modeling in the latent space. DrUM demonstrates strong performance on large-scale datasets and seamlessly integrates with open-source text encoders, making it compatible with widely used foundation T2I models without requiring additional fine-tuning.
HLLM-Creator: Hierarchical LLM-based Personalized Creative Generation
AI-generated content technologies are widely used in content creation. However, current AIGC systems rely heavily on creators' inspiration, rarely generating truly user-personalized content. In real-world applications such as online advertising, a single product may have multiple selling points, with different users focusing on different features. This underscores the significant value of personalized, user-centric creative generation. Effective personalized content generation faces two main challenges: (1) accurately modeling user interests and integrating them into the content generation process while adhering to factual constraints, and (2) ensuring high efficiency and scalability to handle the massive user base in industrial scenarios. Additionally, the scarcity of personalized creative data in practice complicates model training, making data construction another key hurdle. We propose HLLM-Creator, a hierarchical LLM framework for efficient user interest modeling and personalized content generation. During inference, a combination of user clustering and a user-ad-matching-prediction based pruning strategy is employed to significantly enhance generation efficiency and reduce computational overhead, making the approach suitable for large-scale deployment. Moreover, we design a data construction pipeline based on chain-of-thought reasoning, which generates high-quality, user-specific creative titles and ensures factual consistency despite limited personalized data. This pipeline serves as a critical foundation for the effectiveness of our model. Extensive experiments on personalized title generation for Douyin Search Ads show the effectiveness of HLLM-Creator. Online A/B test shows a 0.476% increase on Adss, paving the way for more effective and efficient personalized generation in industrial scenarios. Codes for academic dataset are available at https://github.com/bytedance/HLLM.
MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use
Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs.
Enhancing Tool Retrieval with Iterative Feedback from Large Language Models
Tool learning aims to enhance and expand large language models' (LLMs) capabilities with external tools, which has gained significant attention recently. Current methods have shown that LLMs can effectively handle a certain amount of tools through in-context learning or fine-tuning. However, in real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component. Tool retrieval is nontrivial due to the following challenges: 1) complex user instructions and tool descriptions; 2) misalignment between tool retrieval and tool usage models. To address the above issues, we propose to enhance tool retrieval with iterative feedback from the large language model. Specifically, we prompt the tool usage model, i.e., the LLM, to provide feedback for the tool retriever model in multi-round, which could progressively improve the tool retriever's understanding of instructions and tools and reduce the gap between the two standalone components. We build a unified and comprehensive benchmark to evaluate tool retrieval models. The extensive experiments indicate that our proposed approach achieves advanced performance in both in-domain evaluation and out-of-domain evaluation.
When Large Language Models Meet Personalization: Perspectives of Challenges and Opportunities
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
When Personalization Harms: Reconsidering the Use of Group Attributes in Prediction
Machine learning models are often personalized with categorical attributes that are protected, sensitive, self-reported, or costly to acquire. In this work, we show models that are personalized with group attributes can reduce performance at a group level. We propose formal conditions to ensure the "fair use" of group attributes in prediction tasks by training one additional model -- i.e., collective preference guarantees to ensure that each group who provides personal data will receive a tailored gain in performance in return. We present sufficient conditions to ensure fair use in empirical risk minimization and characterize failure modes that lead to fair use violations due to standard practices in model development and deployment. We present a comprehensive empirical study of fair use in clinical prediction tasks. Our results demonstrate the prevalence of fair use violations in practice and illustrate simple interventions to mitigate their harm.
Vision-Based Hand Gesture Customization from a Single Demonstration
Hand gesture recognition is becoming a more prevalent mode of human-computer interaction, especially as cameras proliferate across everyday devices. Despite continued progress in this field, gesture customization is often underexplored. Customization is crucial since it enables users to define and demonstrate gestures that are more natural, memorable, and accessible. However, customization requires efficient usage of user-provided data. We introduce a method that enables users to easily design bespoke gestures with a monocular camera from one demonstration. We employ transformers and meta-learning techniques to address few-shot learning challenges. Unlike prior work, our method supports any combination of one-handed, two-handed, static, and dynamic gestures, including different viewpoints. We evaluated our customization method through a user study with 20 gestures collected from 21 participants, achieving up to 97% average recognition accuracy from one demonstration. Our work provides a viable path for vision-based gesture customization, laying the foundation for future advancements in this domain.
Personalized Graph-Based Retrieval for Large Language Models
As large language models (LLMs) evolve, their ability to deliver personalized and context-aware responses offers transformative potential for improving user experiences. Existing personalization approaches, however, often rely solely on user history to augment the prompt, limiting their effectiveness in generating tailored outputs, especially in cold-start scenarios with sparse data. To address these limitations, we propose Personalized Graph-based Retrieval-Augmented Generation (PGraphRAG), a framework that leverages user-centric knowledge graphs to enrich personalization. By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraphRAG enhances contextual understanding and output quality. We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable. Experimental results show that PGraphRAG significantly outperforms state-of-the-art personalization methods across diverse tasks, demonstrating the unique advantages of graph-based retrieval for personalization.
Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases
Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).
SMART: Self-Aware Agent for Tool Overuse Mitigation
Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness, failing to balance these approaches effectively. This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks solvable with parametric knowledge, increasing computational overhead. Inspired by human metacognition, we introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse. To support this paradigm, we introduce SMART-ER, a dataset spanning three domains, where reasoning alternates between parametric knowledge and tool-dependent steps, with each step enriched by rationales explaining when tools are necessary. Through supervised training, we develop SMARTAgent, a family of models that dynamically balance parametric knowledge and tool use. Evaluations show that SMARTAgent reduces tool use by 24% while improving performance by over 37%, enabling 7B-scale models to match its 70B counterpart and GPT-4o. Additionally, SMARTAgent generalizes to out-of-distribution test data like GSM8K and MINTQA, maintaining accuracy with just one-fifth the tool calls. These highlight the potential of strategic tool use to enhance reasoning, mitigate overuse, and bridge the gap between model size and performance, advancing intelligent and resource-efficient agent designs.
Data Minimization at Inference Time
In domains with high stakes such as law, recruitment, and healthcare, learning models frequently rely on sensitive user data for inference, necessitating the complete set of features. This not only poses significant privacy risks for individuals but also demands substantial human effort from organizations to verify information accuracy. This paper asks whether it is necessary to use all input features for accurate predictions at inference time. The paper demonstrates that, in a personalized setting, individuals may only need to disclose a small subset of their features without compromising decision-making accuracy. The paper also provides an efficient sequential algorithm to determine the appropriate attributes for each individual to provide. Evaluations across various learning tasks show that individuals can potentially report as little as 10\% of their information while maintaining the same accuracy level as a model that employs the full set of user information.
PersonalLLM: Tailoring LLMs to Individual Preferences
As LLMs become capable of complex tasks, there is growing potential for personalized interactions tailored to the subtle and idiosyncratic preferences of the user. We present a public benchmark, PersonalLLM, focusing on adapting LLMs to provide maximal benefits for a particular user. Departing from existing alignment benchmarks that implicitly assume uniform preferences, we curate open-ended prompts paired with many high-quality answers over which users would be expected to display heterogeneous latent preferences. Instead of persona-prompting LLMs based on high-level attributes (e.g., user's race or response length), which yields homogeneous preferences relative to humans, we develop a method that can simulate a large user base with diverse preferences from a set of pre-trained reward models. Our dataset and generated personalities offer an innovative testbed for developing personalization algorithms that grapple with continual data sparsity--few relevant feedback from the particular user--by leveraging historical data from other (similar) users. We explore basic in-context learning and meta-learning baselines to illustrate the utility of PersonalLLM and highlight the need for future methodological development. Our dataset is available at https://huggingface.co/datasets/namkoong-lab/PersonalLLM
Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization
The recent emergence of Large Language Models (LLMs) has heralded a new era of human-AI interaction. These sophisticated models, exemplified by Chat-GPT and its successors, have exhibited remarkable capabilities in language understanding. However, as these LLMs have undergone exponential growth, a crucial dimension that remains understudied is the personalization of these models. Large foundation models such as GPT-3 etc. focus on creating a universal model that serves a broad range of tasks and users. This approach emphasizes the model's generalization capabilities, treating users as a collective rather than as distinct individuals. While practical for many common applications, this one-size-fits-all approach often fails to address the rich tapestry of human diversity and individual needs. To explore this issue we introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization. consists of a series of user-centered tasks containing diverse and individualized expressions where the preferences of users can potentially differ for the same input. Using PEFT-U, we explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
Characterizing LLM-Empowered Personalized Story-Reading and Interaction for Children: Insights from Multi-Stakeholder Perspectives
Personalized interaction is highly valued by parents in their story-reading activities with children. While AI-empowered story-reading tools have been increasingly used, their abilities to support personalized interaction with children are still limited. Recent advances in large language models (LLMs) show promise in facilitating personalized interactions, but little is known about how to effectively and appropriately use LLMs to enhance children's personalized story-reading experiences. This work explores this question through a design-based study. Drawing on a formative study, we designed and developed StoryMate, an LLM-empowered personalized interactive story-reading tool for children, following an empirical study with children, parents, and education experts. Our participants valued the personalized features in StoryMate, and also highlighted the need to support personalized content, guiding mechanisms, reading context variations, and interactive interfaces. Based on these findings, we propose a series of design recommendations for better using LLMs to empower children's personalized story reading and interaction.
TidyBot: Personalized Robot Assistance with Large Language Models
For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.
PersonaFeedback: A Large-scale Human-annotated Benchmark For Personalization
With the rapid improvement in the general capabilities of LLMs, LLM personalization, i.e., how to build LLM systems that can generate personalized responses or services that are tailored to distinct user personas, has become an increasingly important research and engineering problem. However, unlike many new challenging benchmarks being released for evaluating the general/reasoning capabilities, the lack of high-quality benchmarks for evaluating LLM personalization greatly hinders progress in this field. To address this, we introduce PersonaFeedback, a new benchmark that directly evaluates LLMs' ability to provide personalized responses given pre-defined user personas and queries. Unlike existing benchmarks that require models to infer implicit user personas from historical interactions, PersonaFeedback decouples persona inference from personalization, focusing on evaluating the model's ability to generate responses tailored to explicit personas. PersonaFeedback consists of 8298 human-annotated test cases, which are categorized into easy, medium, and hard tiers based on the contextual complexity of the user personas and the difficulty in distinguishing subtle differences between two personalized responses. We conduct comprehensive evaluations across a wide range of models. The empirical results reveal that even state-of-the-art LLMs that can solve complex real-world reasoning tasks could fall short on the hard tier of PersonaFeedback where even human evaluators may find the distinctions challenging. Furthermore, we conduct an in-depth analysis of failure modes across various types of systems, demonstrating that the current retrieval-augmented framework should not be seen as a de facto solution for personalization tasks. All benchmark data, annotation protocols, and the evaluation pipeline will be publicly available to facilitate future research on LLM personalization.
Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
Large Language Models (LLMs) have succeeded considerably in In-Context-Learning (ICL) based summarization. However, saliency is subject to the users' specific preference histories. Hence, we need reliable In-Context Personalization Learning (ICPL) capabilities within such LLMs. For any arbitrary LLM to exhibit ICPL, it needs to have the ability to discern contrast in user profiles. A recent study proposed a measure for degree-of-personalization called EGISES for the first time. EGISES measures a model's responsiveness to user profile differences. However, it cannot test if a model utilizes all three types of cues provided in ICPL prompts: (i) example summaries, (ii) user's reading histories, and (iii) contrast in user profiles. To address this, we propose the iCOPERNICUS framework, a novel In-COntext PERsonalization learNIng sCrUtiny of Summarization capability in LLMs that uses EGISES as a comparative measure. As a case-study, we evaluate 17 state-of-the-art LLMs based on their reported ICL performances and observe that 15 models' ICPL degrades (min: 1.6%; max: 3.6%) when probed with richer prompts, thereby showing lack of true ICPL.
FlexIP: Dynamic Control of Preservation and Personality for Customized Image Generation
With the rapid advancement of 2D generative models, preserving subject identity while enabling diverse editing has emerged as a critical research focus. Existing methods typically face inherent trade-offs between identity preservation and personalized manipulation. We introduce FlexIP, a novel framework that decouples these objectives through two dedicated components: a Personalization Adapter for stylistic manipulation and a Preservation Adapter for identity maintenance. By explicitly injecting both control mechanisms into the generative model, our framework enables flexible parameterized control during inference through dynamic tuning of the weight adapter. Experimental results demonstrate that our approach breaks through the performance limitations of conventional methods, achieving superior identity preservation while supporting more diverse personalized generation capabilities (Project Page: https://flexip-tech.github.io/flexip/).
FSPO: Few-Shot Preference Optimization of Synthetic Preference Data in LLMs Elicits Effective Personalization to Real Users
Effective personalization of LLMs is critical for a broad range of user-interfacing applications such as virtual assistants and content curation. Inspired by the strong in-context learning capabilities of LLMs, we propose Few-Shot Preference Optimization (FSPO), which reframes reward modeling as a meta-learning problem. Under this framework, an LLM learns to quickly adapt to a user via a few labeled preferences from that user, constructing a personalized reward function for them. Additionally, since real-world preference data is scarce and challenging to collect at scale, we propose careful design choices to construct synthetic preference datasets for personalization, generating over 1M synthetic personalized preferences using publicly available LLMs. In particular, to successfully transfer from synthetic data to real users, we find it crucial for the data to exhibit both high diversity and coherent, self-consistent structure. We evaluate FSPO on personalized open-ended generation for up to 1,500 synthetic users across across three domains: movie reviews, pedagogical adaptation based on educational background, and general question answering, along with a controlled human study. Overall, FSPO achieves an 87% Alpaca Eval winrate on average in generating responses that are personalized to synthetic users and a 72% winrate with real human users in open-ended question answering.
PersonaLens: A Benchmark for Personalization Evaluation in Conversational AI Assistants
Large language models (LLMs) have advanced conversational AI assistants. However, systematically evaluating how well these assistants apply personalization--adapting to individual user preferences while completing tasks--remains challenging. Existing personalization benchmarks focus on chit-chat, non-conversational tasks, or narrow domains, failing to capture the complexities of personalized task-oriented assistance. To address this, we introduce PersonaLens, a comprehensive benchmark for evaluating personalization in task-oriented AI assistants. Our benchmark features diverse user profiles equipped with rich preferences and interaction histories, along with two specialized LLM-based agents: a user agent that engages in realistic task-oriented dialogues with AI assistants, and a judge agent that employs the LLM-as-a-Judge paradigm to assess personalization, response quality, and task success. Through extensive experiments with current LLM assistants across diverse tasks, we reveal significant variability in their personalization capabilities, providing crucial insights for advancing conversational AI systems.
Participatory Personalization in Classification
Machine learning models are often personalized with information that is protected, sensitive, self-reported, or costly to acquire. These models use information about people but do not facilitate nor inform their consent. Individuals cannot opt out of reporting personal information to a model, nor tell if they benefit from personalization in the first place. We introduce a family of classification models, called participatory systems, that let individuals opt into personalization at prediction time. We present a model-agnostic algorithm to learn participatory systems for personalization with categorical group attributes. We conduct a comprehensive empirical study of participatory systems in clinical prediction tasks, benchmarking them with common approaches for personalization and imputation. Our results demonstrate that participatory systems can facilitate and inform consent while improving performance and data use across all groups who report personal data.
Personalized Image Generation with Large Multimodal Models
Personalized content filtering, such as recommender systems, has become a critical infrastructure to alleviate information overload. However, these systems merely filter existing content and are constrained by its limited diversity, making it difficult to meet users' varied content needs. To address this limitation, personalized content generation has emerged as a promising direction with broad applications. Nevertheless, most existing research focuses on personalized text generation, with relatively little attention given to personalized image generation. The limited work in personalized image generation faces challenges in accurately capturing users' visual preferences and needs from noisy user-interacted images and complex multimodal instructions. Worse still, there is a lack of supervised data for training personalized image generation models. To overcome the challenges, we propose a Personalized Image Generation Framework named Pigeon, which adopts exceptional large multimodal models with three dedicated modules to capture users' visual preferences and needs from noisy user history and multimodal instructions. To alleviate the data scarcity, we introduce a two-stage preference alignment scheme, comprising masked preference reconstruction and pairwise preference alignment, to align Pigeon with the personalized image generation task. We apply Pigeon to personalized sticker and movie poster generation, where extensive quantitative results and human evaluation highlight its superiority over various generative baselines.
Embodied Agents Meet Personalization: Exploring Memory Utilization for Personalized Assistance
Embodied agents empowered by large language models (LLMs) have shown strong performance in household object rearrangement tasks. However, these tasks primarily focus on single-turn interactions with simplified instructions, which do not truly reflect the challenges of providing meaningful assistance to users. To provide personalized assistance, embodied agents must understand the unique semantics that users assign to the physical world (e.g., favorite cup, breakfast routine) by leveraging prior interaction history to interpret dynamic, real-world instructions. Yet, the effectiveness of embodied agents in utilizing memory for personalized assistance remains largely underexplored. To address this gap, we present MEMENTO, a personalized embodied agent evaluation framework designed to comprehensively assess memory utilization capabilities to provide personalized assistance. Our framework consists of a two-stage memory evaluation process design that enables quantifying the impact of memory utilization on task performance. This process enables the evaluation of agents' understanding of personalized knowledge in object rearrangement tasks by focusing on its role in goal interpretation: (1) the ability to identify target objects based on personal meaning (object semantics), and (2) the ability to infer object-location configurations from consistent user patterns, such as routines (user patterns). Our experiments across various LLMs reveal significant limitations in memory utilization, with even frontier models like GPT-4o experiencing a 30.5% performance drop when required to reference multiple memories, particularly in tasks involving user patterns. These findings, along with our detailed analyses and case studies, provide valuable insights for future research in developing more effective personalized embodied agents. Project website: https://connoriginal.github.io/MEMENTO
Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning
Conventional recommender systems (RSs) face challenges in precisely capturing users' fine-grained preferences. Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools that may help address these challenges. However, existing LLM-based RSs suffer from hallucinations, misalignment between the semantic space of items and the behavior space of users, or overly simplistic control strategies (e.g., whether to rank or directly present existing results). To bridge these gap, we introduce ToolRec, a framework for LLM-empowered recommendations via tool learning that uses LLMs as surrogate users, thereby guiding the recommendation process and invoking external tools to generate a recommendation list that aligns closely with users' nuanced preferences. We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity. The process factors in the nuances of the context and user preferences. The LLM then invokes external tools based on a user's attribute instructions and probes different segments of the item pool. We consider two types of attribute-oriented tools: rank tools and retrieval tools. Through the integration of LLMs, ToolRec enables conventional recommender systems to become external tools with a natural language interface. Extensive experiments verify the effectiveness of ToolRec, particularly in scenarios that are rich in semantic content.
What Are Tools Anyway? A Survey from the Language Model Perspective
Language models (LMs) are powerful yet mostly for text generation tasks. Tools have substantially enhanced their performance for tasks that require complex skills. However, many works adopt the term "tool" in different ways, raising the question: What is a tool anyway? Subsequently, where and how do tools help LMs? In this survey, we provide a unified definition of tools as external programs used by LMs, and perform a systematic review of LM tooling scenarios and approaches. Grounded on this review, we empirically study the efficiency of various tooling methods by measuring their required compute and performance gains on various benchmarks, and highlight some challenges and potential future research in the field.
DexH2R: Task-oriented Dexterous Manipulation from Human to Robots
Dexterous manipulation is a critical aspect of human capability, enabling interaction with a wide variety of objects. Recent advancements in learning from human demonstrations and teleoperation have enabled progress for robots in such ability. However, these approaches either require complex data collection such as costly human effort for eye-robot contact, or suffer from poor generalization when faced with novel scenarios. To solve both challenges, we propose a framework, DexH2R, that combines human hand motion retargeting with a task-oriented residual action policy, improving task performance by bridging the embodiment gap between human and robotic dexterous hands. Specifically, DexH2R learns the residual policy directly from retargeted primitive actions and task-oriented rewards, eliminating the need for labor-intensive teleoperation systems. Moreover, we incorporate test-time guidance for novel scenarios by taking in desired trajectories of human hands and objects, allowing the dexterous hand to acquire new skills with high generalizability. Extensive experiments in both simulation and real-world environments demonstrate the effectiveness of our work, outperforming prior state-of-the-arts by 40% across various settings.
Creative Robot Tool Use with Large Language Models
Tool use is a hallmark of advanced intelligence, exemplified in both animal behavior and robotic capabilities. This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning. Leveraging Large Language Models (LLMs), we develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments. RoboTool incorporates four pivotal components: (i) an "Analyzer" that interprets natural language to discern key task-related concepts, (ii) a "Planner" that generates comprehensive strategies based on the language input and key concepts, (iii) a "Calculator" that computes parameters for each skill, and (iv) a "Coder" that translates these plans into executable Python code. Our results show that RoboTool can not only comprehend explicit or implicit physical constraints and environmental factors but also demonstrate creative tool use. Unlike traditional Task and Motion Planning (TAMP) methods that rely on explicit optimization, our LLM-based system offers a more flexible, efficient, and user-friendly solution for complex robotics tasks. Through extensive experiments, we validate that RoboTool is proficient in handling tasks that would otherwise be infeasible without the creative use of tools, thereby expanding the capabilities of robotic systems. Demos are available on our project page: https://creative-robotool.github.io/.
Unsupervised Human Preference Learning
Large language models demonstrate impressive reasoning abilities but struggle to provide personalized content due to their lack of individual user preference information. Existing methods, such as in-context learning and parameter-efficient fine-tuning, fall short in capturing the complexity of human preferences, especially given the small, personal datasets individuals possess. In this paper, we propose a novel approach utilizing small parameter models as preference agents to generate natural language rules that guide a larger, pre-trained model, enabling efficient personalization. Our method involves a small, local "steering wheel" model that directs the outputs of a much larger foundation model, producing content tailored to an individual's preferences while leveraging the extensive knowledge and capabilities of the large model. Importantly, this personalization is achieved without the need to fine-tune the large model. Experimental results on email and article datasets, demonstrate that our technique significantly outperforms baseline personalization methods. By allowing foundation models to adapt to individual preferences in a data and compute-efficient manner, our approach paves the way for highly personalized language model applications.
Panza: A Personalized Text Writing Assistant via Data Playback and Local Fine-Tuning
The availability of powerful open-source large language models (LLMs) opens exciting use-cases, such as automated personal assistants that adapt to the user's unique data and demands. Two key desiderata for such assistants are personalization-in the sense that the assistant should reflect the user's own style-and privacy-in the sense that users may prefer to always store their personal data locally, on their own computing device. We present a new design for such an automated assistant, for the specific use case of personal assistant for email generation, which we call Panza. Specifically, Panza can be both trained and inferenced locally on commodity hardware, and is personalized to the user's writing style. Panza's personalization features are based on a new technique called data playback, which allows us to fine-tune an LLM to better reflect a user's writing style using limited data. We show that, by combining efficient fine-tuning and inference methods, Panza can be executed entirely locally using limited resources-specifically, it can be executed within the same resources as a free Google Colab instance. Finally, our key methodological contribution is a careful study of evaluation metrics, and of how different choices of system components (e.g. the use of Retrieval-Augmented Generation or different fine-tuning approaches) impact the system's performance.
ResumeFlow: An LLM-facilitated Pipeline for Personalized Resume Generation and Refinement
Crafting the ideal, job-specific resume is a challenging task for many job applicants, especially for early-career applicants. While it is highly recommended that applicants tailor their resume to the specific role they are applying for, manually tailoring resumes to job descriptions and role-specific requirements is often (1) extremely time-consuming, and (2) prone to human errors. Furthermore, performing such a tailoring step at scale while applying to several roles may result in a lack of quality of the edited resumes. To tackle this problem, in this demo paper, we propose ResumeFlow: a Large Language Model (LLM) aided tool that enables an end user to simply provide their detailed resume and the desired job posting, and obtain a personalized resume specifically tailored to that specific job posting in the matter of a few seconds. Our proposed pipeline leverages the language understanding and information extraction capabilities of state-of-the-art LLMs such as OpenAI's GPT-4 and Google's Gemini, in order to (1) extract details from a job description, (2) extract role-specific details from the user-provided resume, and then (3) use these to refine and generate a role-specific resume for the user. Our easy-to-use tool leverages the user-chosen LLM in a completely off-the-shelf manner, thus requiring no fine-tuning. We demonstrate the effectiveness of our tool via a video demo and propose novel task-specific evaluation metrics to control for alignment and hallucination. Our tool is available at https://job-aligned-resume.streamlit.app.
Making Language Models Better Tool Learners with Execution Feedback
Tools serve as pivotal interfaces that enable humans to understand and reshape the world. With the advent of foundational models, AI systems can utilize tools to expand their capabilities and interact with the world. Existing tool learning methodologies, encompassing supervised fine-tuning and prompt engineering approaches, often induce language models to utilize tools indiscriminately, as complex problems often exceed their own competencies. However, introducing tools for simple tasks, which the models themselves can readily resolve, can inadvertently propagate errors rather than enhance performance. This leads to the research question: can we teach language models when and how to use tools? To meet this need, we propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution, thereby learning when and how to use tools effectively. Experimental results, backed by further analysis, show that TRICE can make the language model to selectively use tools by decreasing the model's dependency on tools while enhancing the performance. Code and datasets will be available in https://github.com/zjunlp/trice.
Enabling hand gesture customization on wrist-worn devices
We present a framework for gesture customization requiring minimal examples from users, all without degrading the performance of existing gesture sets. To achieve this, we first deployed a large-scale study (N=500+) to collect data and train an accelerometer-gyroscope recognition model with a cross-user accuracy of 95.7% and a false-positive rate of 0.6 per hour when tested on everyday non-gesture data. Next, we design a few-shot learning framework which derives a lightweight model from our pre-trained model, enabling knowledge transfer without performance degradation. We validate our approach through a user study (N=20) examining on-device customization from 12 new gestures, resulting in an average accuracy of 55.3%, 83.1%, and 87.2% on using one, three, or five shots when adding a new gesture, while maintaining the same recognition accuracy and false-positive rate from the pre-existing gesture set. We further evaluate the usability of our real-time implementation with a user experience study (N=20). Our results highlight the effectiveness, learnability, and usability of our customization framework. Our approach paves the way for a future where users are no longer bound to pre-existing gestures, freeing them to creatively introduce new gestures tailored to their preferences and abilities.
The 1st Workshop on Human-Centered Recommender Systems
Recommender systems are quintessential applications of human-computer interaction. Widely utilized in daily life, they offer significant convenience but also present numerous challenges, such as the information cocoon effect, privacy concerns, fairness issues, and more. Consequently, this workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems~(HCRS). HCRS refers to the creation of recommender systems that prioritize human needs, values, and capabilities at the core of their design and operation. In this workshop, topics will include, but are not limited to, robustness, privacy, transparency, fairness, diversity, accountability, ethical considerations, and user-friendly design. We hope to engage in discussions on how to implement and enhance these properties in recommender systems. Additionally, participants will explore diverse evaluation methods, including innovative metrics that capture user satisfaction and trust. This workshop seeks to foster a collaborative environment for researchers to share insights and advance the field toward more ethical, user-centric, and socially responsible recommender systems.
GAM Coach: Towards Interactive and User-centered Algorithmic Recourse
Machine learning (ML) recourse techniques are increasingly used in high-stakes domains, providing end users with actions to alter ML predictions, but they assume ML developers understand what input variables can be changed. However, a recourse plan's actionability is subjective and unlikely to match developers' expectations completely. We present GAM Coach, a novel open-source system that adapts integer linear programming to generate customizable counterfactual explanations for Generalized Additive Models (GAMs), and leverages interactive visualizations to enable end users to iteratively generate recourse plans meeting their needs. A quantitative user study with 41 participants shows our tool is usable and useful, and users prefer personalized recourse plans over generic plans. Through a log analysis, we explore how users discover satisfactory recourse plans, and provide empirical evidence that transparency can lead to more opportunities for everyday users to discover counterintuitive patterns in ML models. GAM Coach is available at: https://poloclub.github.io/gam-coach/.
Personalized Image Generation with Deep Generative Models: A Decade Survey
Recent advancements in generative models have significantly facilitated the development of personalized content creation. Given a small set of images with user-specific concept, personalized image generation allows to create images that incorporate the specified concept and adhere to provided text descriptions. Due to its wide applications in content creation, significant effort has been devoted to this field in recent years. Nonetheless, the technologies used for personalization have evolved alongside the development of generative models, with their distinct and interrelated components. In this survey, we present a comprehensive review of generalized personalized image generation across various generative models, including traditional GANs, contemporary text-to-image diffusion models, and emerging multi-model autoregressive models. We first define a unified framework that standardizes the personalization process across different generative models, encompassing three key components, i.e., inversion spaces, inversion methods, and personalization schemes. This unified framework offers a structured approach to dissecting and comparing personalization techniques across different generative architectures. Building upon this unified framework, we further provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations. Through comparative analysis, this survey elucidates the current landscape of personalized image generation, identifying commonalities and distinguishing features among existing methods. Finally, we discuss the open challenges in the field and propose potential directions for future research. We keep tracing related works at https://github.com/csyxwei/Awesome-Personalized-Image-Generation.
MeNTi: Bridging Medical Calculator and LLM Agent with Nested Tool Calling
Integrating tools into Large Language Models (LLMs) has facilitated the widespread application. Despite this, in specialized downstream task contexts, reliance solely on tools is insufficient to fully address the complexities of the real world. This particularly restricts the effective deployment of LLMs in fields such as medicine. In this paper, we focus on the downstream tasks of medical calculators, which use standardized tests to assess an individual's health status. We introduce MeNTi, a universal agent architecture for LLMs. MeNTi integrates a specialized medical toolkit and employs meta-tool and nested calling mechanisms to enhance LLM tool utilization. Specifically, it achieves flexible tool selection and nested tool calling to address practical issues faced in intricate medical scenarios, including calculator selection, slot filling, and unit conversion. To assess the capabilities of LLMs for quantitative assessment throughout the clinical process of calculator scenarios, we introduce CalcQA. This benchmark requires LLMs to use medical calculators to perform calculations and assess patient health status. CalcQA is constructed by professional physicians and includes 100 case-calculator pairs, complemented by a toolkit of 281 medical tools. The experimental results demonstrate significant performance improvements with our framework. This research paves new directions for applying LLMs in demanding scenarios of medicine.
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models
Personalization has emerged as a prominent aspect within the field of generative AI, enabling the synthesis of individuals in diverse contexts and styles, while retaining high-fidelity to their identities. However, the process of personalization presents inherent challenges in terms of time and memory requirements. Fine-tuning each personalized model needs considerable GPU time investment, and storing a personalized model per subject can be demanding in terms of storage capacity. To overcome these challenges, we propose HyperDreamBooth-a hypernetwork capable of efficiently generating a small set of personalized weights from a single image of a person. By composing these weights into the diffusion model, coupled with fast finetuning, HyperDreamBooth can generate a person's face in various contexts and styles, with high subject details while also preserving the model's crucial knowledge of diverse styles and semantic modifications. Our method achieves personalization on faces in roughly 20 seconds, 25x faster than DreamBooth and 125x faster than Textual Inversion, using as few as one reference image, with the same quality and style diversity as DreamBooth. Also our method yields a model that is 10000x smaller than a normal DreamBooth model. Project page: https://hyperdreambooth.github.io
ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution
The tool-using capability of large language models (LLMs) enables them to access up-to-date external information and handle complex tasks. Current approaches to enhancing this capability primarily rely on distilling advanced models by data synthesis. However, this method incurs significant costs associated with advanced model usage and often results in data compatibility issues, led by the high discrepancy in the knowledge scope between the advanced model and the target model. To address these challenges, we propose ToolACE-DEV, a self-improving framework for tool learning. First, we decompose the tool-learning objective into sub-tasks that enhance basic tool-making and tool-using abilities. Then, we introduce a self-evolving paradigm that allows lightweight models to self-improve, reducing reliance on advanced LLMs. Extensive experiments validate the effectiveness of our approach across models of varying scales and architectures.
Surgical tool classification and localization: results and methods from the MICCAI 2022 SurgToolLoc challenge
The ability to automatically detect and track surgical instruments in endoscopic videos can enable transformational interventions. Assessing surgical performance and efficiency, identifying skilled tool use and choreography, and planning operational and logistical aspects of OR resources are just a few of the applications that could benefit. Unfortunately, obtaining the annotations needed to train machine learning models to identify and localize surgical tools is a difficult task. Annotating bounding boxes frame-by-frame is tedious and time-consuming, yet large amounts of data with a wide variety of surgical tools and surgeries must be captured for robust training. Moreover, ongoing annotator training is needed to stay up to date with surgical instrument innovation. In robotic-assisted surgery, however, potentially informative data like timestamps of instrument installation and removal can be programmatically harvested. The ability to rely on tool installation data alone would significantly reduce the workload to train robust tool-tracking models. With this motivation in mind we invited the surgical data science community to participate in the challenge, SurgToolLoc 2022. The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools and localize them in video frames with bounding boxes. We present the results of this challenge along with many of the team's efforts. We conclude by discussing these results in the broader context of machine learning and surgical data science. The training data used for this challenge consisting of 24,695 video clips with tool presence labels is also being released publicly and can be accessed at https://console.cloud.google.com/storage/browser/isi-surgtoolloc-2022.
ViPer: Visual Personalization of Generative Models via Individual Preference Learning
Different users find different images generated for the same prompt desirable. This gives rise to personalized image generation which involves creating images aligned with an individual's visual preference. Current generative models are, however, unpersonalized, as they are tuned to produce outputs that appeal to a broad audience. Using them to generate images aligned with individual users relies on iterative manual prompt engineering by the user which is inefficient and undesirable. We propose to personalize the image generation process by first capturing the generic preferences of the user in a one-time process by inviting them to comment on a small selection of images, explaining why they like or dislike each. Based on these comments, we infer a user's structured liked and disliked visual attributes, i.e., their visual preference, using a large language model. These attributes are used to guide a text-to-image model toward producing images that are tuned towards the individual user's visual preference. Through a series of user studies and large language model guided evaluations, we demonstrate that the proposed method results in generations that are well aligned with individual users' visual preferences.
MemTool: Optimizing Short-Term Memory Management for Dynamic Tool Calling in LLM Agent Multi-Turn Conversations
Large Language Model (LLM) agents have shown significant autonomous capabilities in dynamically searching and incorporating relevant tools or Model Context Protocol (MCP) servers for individual queries. However, fixed context windows limit effectiveness in multi-turn interactions requiring repeated, independent tool usage. We introduce MemTool, a short-term memory framework enabling LLM agents to dynamically manage tools or MCP server contexts across multi-turn conversations. MemTool offers three agentic architectures: 1) Autonomous Agent Mode, granting full tool management autonomy, 2) Workflow Mode, providing deterministic control without autonomy, and 3) Hybrid Mode, combining autonomous and deterministic control. Evaluating each MemTool mode across 13+ LLMs on the ScaleMCP benchmark, we conducted experiments over 100 consecutive user interactions, measuring tool removal ratios (short-term memory efficiency) and task completion accuracy. In Autonomous Agent Mode, reasoning LLMs achieve high tool-removal efficiency (90-94% over a 3-window average), while medium-sized models exhibit significantly lower efficiency (0-60%). Workflow and Hybrid modes consistently manage tool removal effectively, whereas Autonomous and Hybrid modes excel at task completion. We present trade-offs and recommendations for each MemTool mode based on task accuracy, agency, and model capabilities.
GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency
Large language models (LLMs) are becoming more prevalent and have found a ubiquitous use in providing different forms of writing assistance. However, LLM-powered writing systems can frustrate users due to their limited personalization and control, which can be exacerbated when users lack experience with prompt engineering. We see design as one way to address these challenges and introduce GhostWriter, an AI-enhanced writing design probe where users can exercise enhanced agency and personalization. GhostWriter leverages LLMs to learn the user's intended writing style implicitly as they write, while allowing explicit teaching moments through manual style edits and annotations. We study 18 participants who use GhostWriter on two different writing tasks, observing that it helps users craft personalized text generations and empowers them by providing multiple ways to control the system's writing style. From this study, we present insights regarding people's relationship with AI-assisted writing and offer design recommendations for future work.
UNICON: A unified framework for behavior-based consumer segmentation in e-commerce
Data-driven personalization is a key practice in fashion e-commerce, improving the way businesses serve their consumers needs with more relevant content. While hyper-personalization offers highly targeted experiences to each consumer, it requires a significant amount of private data to create an individualized journey. To alleviate this, group-based personalization provides a moderate level of personalization built on broader common preferences of a consumer segment, while still being able to personalize the results. We introduce UNICON, a unified deep learning consumer segmentation framework that leverages rich consumer behavior data to learn long-term latent representations and utilizes them to extract two pivotal types of segmentation catering various personalization use-cases: lookalike, expanding a predefined target seed segment with consumers of similar behavior, and data-driven, revealing non-obvious consumer segments with similar affinities. We demonstrate through extensive experimentation our framework effectiveness in fashion to identify lookalike Designer audience and data-driven style segments. Furthermore, we present experiments that showcase how segment information can be incorporated in a hybrid recommender system combining hyper and group-based personalization to exploit the advantages of both alternatives and provide improvements on consumer experience.
FedSelect: Customized Selection of Parameters for Fine-Tuning during Personalized Federated Learning
Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10.
Exploring Safety-Utility Trade-Offs in Personalized Language Models
As large language models (LLMs) become increasingly integrated into daily applications, it is essential to ensure they operate fairly across diverse user demographics. In this work, we show that LLMs suffer from personalization bias, where their performance is impacted when they are personalized to a user's identity. We quantify personalization bias by evaluating the performance of LLMs along two axes - safety and utility. We measure safety by examining how benign LLM responses are to unsafe prompts with and without personalization. We measure utility by evaluating the LLM's performance on various tasks, including general knowledge, mathematical abilities, programming, and reasoning skills. We find that various LLMs, ranging from open-source models like Llama (Touvron et al., 2023) and Mistral (Jiang et al., 2023) to API-based ones like GPT-3.5 and GPT-4o (Ouyang et al., 2022), exhibit significant variance in performance in terms of safety-utility trade-offs depending on the user's identity. Finally, we discuss several strategies to mitigate personalization bias using preference tuning and prompt-based defenses.
DreamSteerer: Enhancing Source Image Conditioned Editability using Personalized Diffusion Models
Recent text-to-image personalization methods have shown great promise in teaching a diffusion model user-specified concepts given a few images for reusing the acquired concepts in a novel context. With massive efforts being dedicated to personalized generation, a promising extension is personalized editing, namely to edit an image using personalized concepts, which can provide a more precise guidance signal than traditional textual guidance. To address this, a straightforward solution is to incorporate a personalized diffusion model with a text-driven editing framework. However, such a solution often shows unsatisfactory editability on the source image. To address this, we propose DreamSteerer, a plug-in method for augmenting existing T2I personalization methods. Specifically, we enhance the source image conditioned editability of a personalized diffusion model via a novel Editability Driven Score Distillation (EDSD) objective. Moreover, we identify a mode trapping issue with EDSD, and propose a mode shifting regularization with spatial feature guided sampling to avoid such an issue. We further employ two key modifications to the Delta Denoising Score framework that enable high-fidelity local editing with personalized concepts. Extensive experiments validate that DreamSteerer can significantly improve the editability of several T2I personalization baselines while being computationally efficient.
Big-data-driven and AI-based framework to enable personalization in wireless networks
Current communication networks use design methodologies that prevent the realization of maximum network efficiency. In the first place, while users' perception of satisfactory service diverges widely, current networks are designed to be a "universal fit," where they are generally over-engineered to deliver services appealing to all types of users. Also, current networks lack user-level data cognitive intelligence that would enable fast personalized network decisions and actions through automation. Thus, in this article, we propose the utilization of AI, big data analytics, and real-time non-intrusive user feedback in order to enable the personalization of wireless networks. Based on each user's actual QoS requirements and context, a multi-objective formulation enables the network to micro-manage and optimize the provided QoS and user satisfaction levels simultaneously. Moreover, in order to enable user feedback tracking and measurement, we propose a user satisfaction model based on the zone of tolerance concept. Furthermore, we propose a big-data-driven and AI-based personalization framework to integrate personalization into wireless networks. Finally, we implement a personalized network prototype to demonstrate the proposed personalization concept and its potential benefits through a case study. The case study shows how personalization can be realized to enable the efficient optimization of network resources such that certain requirement levels of user satisfaction and revenue in the form of saved resources are achieved.
Navigating the Unknown: A Chat-Based Collaborative Interface for Personalized Exploratory Tasks
The rise of large language models (LLMs) has revolutionized user interactions with knowledge-based systems, enabling chatbots to synthesize vast amounts of information and assist with complex, exploratory tasks. However, LLM-based chatbots often struggle to provide personalized support, particularly when users start with vague queries or lack sufficient contextual information. This paper introduces the Collaborative Assistant for Personalized Exploration (CARE), a system designed to enhance personalization in exploratory tasks by combining a multi-agent LLM framework with a structured user interface. CARE's interface consists of a Chat Panel, Solution Panel, and Needs Panel, enabling iterative query refinement and dynamic solution generation. The multi-agent framework collaborates to identify both explicit and implicit user needs, delivering tailored, actionable solutions. In a within-subject user study with 22 participants, CARE was consistently preferred over a baseline LLM chatbot, with users praising its ability to reduce cognitive load, inspire creativity, and provide more tailored solutions. Our findings highlight CARE's potential to transform LLM-based systems from passive information retrievers to proactive partners in personalized problem-solving and exploration.
RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools
Humans excel in complex long-horizon soft body manipulation tasks via flexible tool use: bread baking requires a knife to slice the dough and a rolling pin to flatten it. Often regarded as a hallmark of human cognition, tool use in autonomous robots remains limited due to challenges in understanding tool-object interactions. Here we develop an intelligent robotic system, RoboCook, which perceives, models, and manipulates elasto-plastic objects with various tools. RoboCook uses point cloud scene representations, models tool-object interactions with Graph Neural Networks (GNNs), and combines tool classification with self-supervised policy learning to devise manipulation plans. We demonstrate that from just 20 minutes of real-world interaction data per tool, a general-purpose robot arm can learn complex long-horizon soft object manipulation tasks, such as making dumplings and alphabet letter cookies. Extensive evaluations show that RoboCook substantially outperforms state-of-the-art approaches, exhibits robustness against severe external disturbances, and demonstrates adaptability to different materials.
PersonaBench: Evaluating AI Models on Understanding Personal Information through Accessing (Synthetic) Private User Data
Personalization is critical in AI assistants, particularly in the context of private AI models that work with individual users. A key scenario in this domain involves enabling AI models to access and interpret a user's private data (e.g., conversation history, user-AI interactions, app usage) to understand personal details such as biographical information, preferences, and social connections. However, due to the sensitive nature of such data, there are no publicly available datasets that allow us to assess an AI model's ability to understand users through direct access to personal information. To address this gap, we introduce a synthetic data generation pipeline that creates diverse, realistic user profiles and private documents simulating human activities. Leveraging this synthetic data, we present PersonaBench, a benchmark designed to evaluate AI models' performance in understanding personal information derived from simulated private user data. We evaluate Retrieval-Augmented Generation (RAG) pipelines using questions directly related to a user's personal information, supported by the relevant private documents provided to the models. Our results reveal that current retrieval-augmented AI models struggle to answer private questions by extracting personal information from user documents, highlighting the need for improved methodologies to enhance personalization capabilities in AI.
Guided Profile Generation Improves Personalization with LLMs
In modern commercial systems, including Recommendation, Ranking, and E-Commerce platforms, there is a trend towards improving customer experiences by incorporating Personalization context as input into Large Language Models (LLMs). However, LLMs often struggle to effectively parse and utilize sparse and complex personal context without additional processing or contextual enrichment, underscoring the need for more sophisticated context understanding mechanisms. In this work, we propose Guided Profile Generation (GPG), a general method designed to generate personal profiles in natural language. As is observed, intermediate guided profile generation enables LLMs to summarize, and extract the important, distinctive features from the personal context into concise, descriptive sentences, precisely tailoring their generation more closely to an individual's unique habits and preferences. Our experimental results show that GPG improves LLM's personalization ability across different tasks, for example, it increases 37% accuracy in predicting personal preference compared to directly feeding the LLMs with raw personal context.
Embedding-to-Prefix: Parameter-Efficient Personalization for Pre-Trained Large Language Models
Large language models (LLMs) excel at generating contextually relevant content. However, tailoring these outputs to individual users for effective personalization is a significant challenge. While rich user-specific information often exists as pre-existing user representations, such as embeddings learned from preferences or behaviors, current methods to leverage these for LLM personalization typically require costly fine-tuning or token-heavy prompting. We propose Embedding-to-Prefix (E2P), a parameter-efficient method that injects pre-computed context embeddings into an LLM's hidden representation space through a learned projection to a single soft token prefix. This enables effective personalization while keeping the backbone model frozen and avoiding expensive adaptation techniques. We evaluate E2P across two public datasets and in a production setting: dialogue personalization on Persona-Chat, contextual headline generation on PENS, and large-scale personalization for music and podcast consumption. Results show that E2P preserves contextual signals and achieves strong performance with minimal computational overhead, offering a scalable, efficient solution for contextualizing generative AI systems.
OSTAF: A One-Shot Tuning Method for Improved Attribute-Focused T2I Personalization
Personalized text-to-image (T2I) models not only produce lifelike and varied visuals but also allow users to tailor the images to fit their personal taste. These personalization techniques can grasp the essence of a concept through a collection of images, or adjust a pre-trained text-to-image model with a specific image input for subject-driven or attribute-aware guidance. Yet, accurately capturing the distinct visual attributes of an individual image poses a challenge for these methods. To address this issue, we introduce OSTAF, a novel parameter-efficient one-shot fine-tuning method which only utilizes one reference image for T2I personalization. A novel hypernetwork-powered attribute-focused fine-tuning mechanism is employed to achieve the precise learning of various attribute features (e.g., appearance, shape or drawing style) from the reference image. Comparing to existing image customization methods, our method shows significant superiority in attribute identification and application, as well as achieves a good balance between efficiency and output quality.
Integrating Summarization and Retrieval for Enhanced Personalization via Large Language Models
Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language processing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model's output, a straightforward approach is to incorporate past user data into the language model prompt, but this approach can result in lengthy inputs exceeding limitations on input length and incurring latency and cost issues. Existing approaches tackle such challenges by selectively extracting relevant user data (i.e. selective retrieval) to construct a prompt for downstream tasks. However, retrieval-based methods are limited by potential information loss, lack of more profound user understanding, and cold-start challenges. To overcome these limitations, we propose a novel summary-augmented approach by extending retrieval-augmented personalization with task-aware user summaries generated by LLMs. The summaries can be generated and stored offline, enabling real-world systems with runtime constraints like voice assistants to leverage the power of LLMs. Experiments show our method with 75% less of retrieved user data is on-par or outperforms retrieval augmentation on most tasks in the LaMP personalization benchmark. We demonstrate that offline summarization via LLMs and runtime retrieval enables better performance for personalization on a range of tasks under practical constraints.
Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion
Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.
Tool-Planner: Dynamic Solution Tree Planning for Large Language Model with Tool Clustering
Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method.
Gaming Tool Preferences in Agentic LLMs
Large language models (LLMs) can now access a wide range of external tools, thanks to the Model Context Protocol (MCP). This greatly expands their abilities as various agents. However, LLMs rely entirely on the text descriptions of tools to decide which ones to use--a process that is surprisingly fragile. In this work, we expose a vulnerability in prevalent tool/function-calling protocols by investigating a series of edits to tool descriptions, some of which can drastically increase a tool's usage from LLMs when competing with alternatives. Through controlled experiments, we show that tools with properly edited descriptions receive over 10 times more usage from GPT-4.1 and Qwen2.5-7B than tools with original descriptions. We further evaluate how various edits to tool descriptions perform when competing directly with one another and how these trends generalize or differ across a broader set of 10 different models. These phenomenons, while giving developers a powerful way to promote their tools, underscore the need for a more reliable foundation for agentic LLMs to select and utilize tools and resources.
IDAdapter: Learning Mixed Features for Tuning-Free Personalization of Text-to-Image Models
Leveraging Stable Diffusion for the generation of personalized portraits has emerged as a powerful and noteworthy tool, enabling users to create high-fidelity, custom character avatars based on their specific prompts. However, existing personalization methods face challenges, including test-time fine-tuning, the requirement of multiple input images, low preservation of identity, and limited diversity in generated outcomes. To overcome these challenges, we introduce IDAdapter, a tuning-free approach that enhances the diversity and identity preservation in personalized image generation from a single face image. IDAdapter integrates a personalized concept into the generation process through a combination of textual and visual injections and a face identity loss. During the training phase, we incorporate mixed features from multiple reference images of a specific identity to enrich identity-related content details, guiding the model to generate images with more diverse styles, expressions, and angles compared to previous works. Extensive evaluations demonstrate the effectiveness of our method, achieving both diversity and identity fidelity in generated images.
AlignBot: Aligning VLM-powered Customized Task Planning with User Reminders Through Fine-Tuning for Household Robots
This paper presents AlignBot, a novel framework designed to optimize VLM-powered customized task planning for household robots by effectively aligning with user reminders. In domestic settings, aligning task planning with user reminders poses significant challenges due to the limited quantity, diversity, and multimodal nature of the reminders. To address these challenges, AlignBot employs a fine-tuned LLaVA-7B model, functioning as an adapter for GPT-4o. This adapter model internalizes diverse forms of user reminders-such as personalized preferences, corrective guidance, and contextual assistance-into structured instruction-formatted cues that prompt GPT-4o in generating customized task plans. Additionally, AlignBot integrates a dynamic retrieval mechanism that selects task-relevant historical successes as prompts for GPT-4o, further enhancing task planning accuracy. To validate the effectiveness of AlignBot, experiments are conducted in real-world household environments, which are constructed within the laboratory to replicate typical household settings. A multimodal dataset with over 1,500 entries derived from volunteer reminders is used for training and evaluation. The results demonstrate that AlignBot significantly improves customized task planning, outperforming existing LLM- and VLM-powered planners by interpreting and aligning with user reminders, achieving 86.8% success rate compared to the vanilla GPT-4o baseline at 21.6%, reflecting a 65% improvement and over four times greater effectiveness. Supplementary materials are available at: https://yding25.com/AlignBot/
Self-Aware Personalized Federated Learning
In the context of personalized federated learning (FL), the critical challenge is to balance local model improvement and global model tuning when the personal and global objectives may not be exactly aligned. Inspired by Bayesian hierarchical models, we develop a self-aware personalized FL method where each client can automatically balance the training of its local personal model and the global model that implicitly contributes to other clients' training. Such a balance is derived from the inter-client and intra-client uncertainty quantification. A larger inter-client variation implies more personalization is needed. Correspondingly, our method uses uncertainty-driven local training steps and aggregation rule instead of conventional local fine-tuning and sample size-based aggregation. With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance compared with the existing counterparts.
USER-VLM 360: Personalized Vision Language Models with User-aware Tuning for Social Human-Robot Interactions
The integration of vision-language models into robotic systems constitutes a significant advancement in enabling machines to interact with their surroundings in a more intuitive manner. While VLMs offer rich multimodal reasoning, existing approaches lack user-specific adaptability, often relying on generic interaction paradigms that fail to account for individual behavioral, contextual, or socio-emotional nuances. When customization is attempted, ethical concerns arise from unmitigated biases in user data, risking exclusion or unfair treatment. To address these dual challenges, we propose User-VLM 360{\deg}, a holistic framework integrating multimodal user modeling with bias-aware optimization. Our approach features: (1) user-aware tuning that adapts interactions in real time using visual-linguistic signals; (2) bias mitigation via preference optimization; and (3) curated 360{\deg} socio-emotive interaction datasets annotated with demographic, emotion, and relational metadata. Evaluations across eight benchmarks demonstrate state-of-the-art results: +35.3% F1 in personalized VQA, +47.5% F1 in facial features understanding, 15% bias reduction, and 30X speedup over baselines. Ablation studies confirm component efficacy, and deployment on the Pepper robot validates real-time adaptability across diverse users. We open-source parameter-efficient 3B/10B models and an ethical verification framework for responsible adaptation.
PALP: Prompt Aligned Personalization of Text-to-Image Models
Content creators often aim to create personalized images using personal subjects that go beyond the capabilities of conventional text-to-image models. Additionally, they may want the resulting image to encompass a specific location, style, ambiance, and more. Existing personalization methods may compromise personalization ability or the alignment to complex textual prompts. This trade-off can impede the fulfillment of user prompts and subject fidelity. We propose a new approach focusing on personalization methods for a single prompt to address this issue. We term our approach prompt-aligned personalization. While this may seem restrictive, our method excels in improving text alignment, enabling the creation of images with complex and intricate prompts, which may pose a challenge for current techniques. In particular, our method keeps the personalized model aligned with a target prompt using an additional score distillation sampling term. We demonstrate the versatility of our method in multi- and single-shot settings and further show that it can compose multiple subjects or use inspiration from reference images, such as artworks. We compare our approach quantitatively and qualitatively with existing baselines and state-of-the-art techniques.
Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration
Personalized federated learning (PFL) reduces the impact of non-independent and identically distributed (non-IID) data among clients by allowing each client to train a personalized model when collaborating with others. A key question in PFL is to decide which parameters of a client should be localized or shared with others. In current mainstream approaches, all layers that are sensitive to non-IID data (such as classifier layers) are generally personalized. The reasoning behind this approach is understandable, as localizing parameters that are easily influenced by non-IID data can prevent the potential negative effect of collaboration. However, we believe that this approach is too conservative for collaboration. For example, for a certain client, even if its parameters are easily influenced by non-IID data, it can still benefit by sharing these parameters with clients having similar data distribution. This observation emphasizes the importance of considering not only the sensitivity to non-IID data but also the similarity of data distribution when determining which parameters should be localized in PFL. This paper introduces a novel guideline for client collaboration in PFL. Unlike existing approaches that prohibit all collaboration of sensitive parameters, our guideline allows clients to share more parameters with others, leading to improved model performance. Additionally, we propose a new PFL method named FedCAC, which employs a quantitative metric to evaluate each parameter's sensitivity to non-IID data and carefully selects collaborators based on this evaluation. Experimental results demonstrate that FedCAC enables clients to share more parameters with others, resulting in superior performance compared to state-of-the-art methods, particularly in scenarios where clients have diverse distributions.
CREATOR: Disentangling Abstract and Concrete Reasonings of Large Language Models through Tool Creation
Large Language Models (LLMs) have demonstrated significant progress in utilizing external APIs as tools for various tasks. However, their tool-using ability is limited by the availability of suitable APIs and the instability of implicit reasoning, particularly when simultaneously engaging in reasoning about plans and actual calculations. To address these limitations, we propose CREATOR, a novel framework that empowers LLMs to create their own tools through documentation and code realization. CREATOR disentangles the LLM's ability into two distinct phases: abstract tool creation and concrete decision execution, which results in improved LLM performance. We evaluate CREATOR on two established benchmarks: MATH, which consists of challenging math competition problems, and TabMWP, which includes diverse tabular contents for problem-solving. Remarkably, CREATOR significantly outperforms existing chain-of-thought (CoT), program-of-thought (PoT), and tool-using baselines on these two benchmarks. Additionally, we present a new dataset, Creation Challenge, comprising 2K diverse questions, to highlight the necessity and benefits of LLMs' tool creation ability in effectively addressing these problems. Furthermore, our research reveals that leveraging LLMs as tool creators facilitates knowledge transfer, and LLMs exhibit varying levels of tool creation abilities, enabling them to flexibly tackle diverse situations. Our study represents a promising avenue for maximizing the potential of LLMs and advancing toward truly intelligent and adaptable AI systems.
ProTIP: Progressive Tool Retrieval Improves Planning
Large language models (LLMs) are increasingly employed for complex multi-step planning tasks, where the tool retrieval (TR) step is crucial for achieving successful outcomes. Two prevalent approaches for TR are single-step retrieval, which utilizes the complete query, and sequential retrieval using task decomposition (TD), where a full query is segmented into discrete atomic subtasks. While single-step retrieval lacks the flexibility to handle "inter-tool dependency," the TD approach necessitates maintaining "subtask-tool atomicity alignment," as the toolbox can evolve dynamically. To address these limitations, we introduce the Progressive Tool retrieval to Improve Planning (ProTIP) framework. ProTIP is a lightweight, contrastive learning-based framework that implicitly performs TD without the explicit requirement of subtask labels, while simultaneously maintaining subtask-tool atomicity. On the ToolBench dataset, ProTIP outperforms the ChatGPT task decomposition-based approach by a remarkable margin, achieving a 24% improvement in Recall@K=10 for TR and a 41% enhancement in tool accuracy for plan generation.
DreamBench++: A Human-Aligned Benchmark for Personalized Image Generation
Personalized image generation holds great promise in assisting humans in everyday work and life due to its impressive function in creatively generating personalized content. However, current evaluations either are automated but misalign with humans or require human evaluations that are time-consuming and expensive. In this work, we present DreamBench++, a human-aligned benchmark automated by advanced multimodal GPT models. Specifically, we systematically design the prompts to let GPT be both human-aligned and self-aligned, empowered with task reinforcement. Further, we construct a comprehensive dataset comprising diverse images and prompts. By benchmarking 7 modern generative models, we demonstrate that DreamBench++ results in significantly more human-aligned evaluation, helping boost the community with innovative findings.
ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback
Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance.
Persona-L has Entered the Chat: Leveraging LLM and Ability-based Framework for Personas of People with Complex Needs
We present Persona-L, a novel approach for creating personas using Large Language Models (LLMs) and an ability-based framework, specifically designed to improve the representation of users with complex needs. Traditional methods of persona creation often fall short of accurately depicting the dynamic and diverse nature of complex needs, resulting in oversimplified or stereotypical profiles. Persona-L enables users to create and interact with personas through a chat interface. Persona-L was evaluated through interviews with UX designers (N=6), where we examined its effectiveness in reflecting the complexities of lived experiences of people with complex needs. We report our findings that indicate the potential of Persona-L to increase empathy and understanding of complex needs while also revealing the need for transparency of data used in persona creation, the role of the language and tone, and the need to provide a more balanced presentation of abilities with constraints.
MATE: LLM-Powered Multi-Agent Translation Environment for Accessibility Applications
Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.
Latent Inter-User Difference Modeling for LLM Personalization
Large language models (LLMs) are increasingly integrated into users' daily lives, leading to a growing demand for personalized outputs. Previous work focuses on leveraging a user's own history, overlooking inter-user differences that are crucial for effective personalization. While recent work has attempted to model such differences, the reliance on language-based prompts often hampers the effective extraction of meaningful distinctions. To address these issues, we propose Difference-aware Embedding-based Personalization (DEP), a framework that models inter-user differences in the latent space instead of relying on language prompts. DEP constructs soft prompts by contrasting a user's embedding with those of peers who engaged with similar content, highlighting relative behavioral signals. A sparse autoencoder then filters and compresses both user-specific and difference-aware embeddings, preserving only task-relevant features before injecting them into a frozen LLM. Experiments on personalized review generation show that DEP consistently outperforms baseline methods across multiple metrics. Our code is available at https://github.com/SnowCharmQ/DEP.
LLMs Think, But Not In Your Flow: Reasoning-Level Personalization for Black-Box Large Language Models
Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
NextQuill: Causal Preference Modeling for Enhancing LLM Personalization
Personalizing large language models (LLMs) for individual users has become increasingly important as they are progressively integrated into real-world applications to support users' daily lives. However, existing personalization approaches often fail to distinguish which components of model predictions and training data truly reflect user preferences, leading to superficial personalization alignment. In this paper, we introduce NextQuill, a novel LLM personalization alignment framework grounded in causal preference modeling. We approach personalization from a causal perspective, treating both model predictions and ground-truth data generation as outcomes influenced by user preferences, along with other factors. We define the true preference effect as the causal impact of user history (which reflects preferences) on each token prediction or data generation instance, estimated through causal intervention techniques. Building on this insight, NextQuill introduces two complementary alignment strategies: (1) aligning model-internal causal preference effects on predictions with those reflected in ground-truth data, rather than indiscriminately fitting predictions, and (2) focusing on fitting preference-bearing tokens identified via ground-truth data preference effects, rather than treating all tokens uniformly. By integrating these strategies, NextQuill shifts the alignment process toward learning from causal preference effects, facilitating more effective and personalized adaptation. Experiments across multiple personalization benchmarks demonstrate that NextQuill significantly improves personalization quality, offering a principled, causal foundation for LLM personalization. Our codes are available on https://github.com/juntaoyou/NextQuill.
Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?
Artificial intelligence (AI) systems will increasingly be used to cause harm as they grow more capable. In fact, AI systems are already starting to be used to automate fraudulent activities, violate human rights, create harmful fake images, and identify dangerous toxins. To prevent some misuses of AI, we argue that targeted interventions on certain capabilities will be warranted. These restrictions may include controlling who can access certain types of AI models, what they can be used for, whether outputs are filtered or can be traced back to their user, and the resources needed to develop them. We also contend that some restrictions on non-AI capabilities needed to cause harm will be required. Though capability restrictions risk reducing use more than misuse (facing an unfavorable Misuse-Use Tradeoff), we argue that interventions on capabilities are warranted when other interventions are insufficient, the potential harm from misuse is high, and there are targeted ways to intervene on capabilities. We provide a taxonomy of interventions that can reduce AI misuse, focusing on the specific steps required for a misuse to cause harm (the Misuse Chain), and a framework to determine if an intervention is warranted. We apply this reasoning to three examples: predicting novel toxins, creating harmful images, and automating spear phishing campaigns.
WikiPersonas: What Can We Learn From Personalized Alignment to Famous People?
Preference alignment has become a standard pipeline in finetuning models to follow generic human preferences. Majority of work seeks to optimize model to produce responses that would be preferable on average, simplifying the diverse and often contradicting space of human preferences. While research has increasingly focused on personalized alignment: adapting models to individual user preferences, there is a lack of personalized preference dataset which focus on nuanced individual-level preferences. To address this, we introduce WikiPersona: the first fine-grained personalization using well-documented, famous individuals. Our dataset challenges models to align with these personas through an interpretable process: generating verifiable textual descriptions of a persona's background and preferences in addition to alignment. We systematically evaluate different personalization approaches and find that as few-shot prompting with preferences and fine-tuning fail to simultaneously ensure effectiveness and efficiency, using inferred personal preferences as prefixes enables effective personalization, especially in topics where preferences clash while leading to more equitable generalization across unseen personas.
Perpetuating Misogyny with Generative AI: How Model Personalization Normalizes Gendered Harm
Open-source text-to-image (TTI) pipelines have become dominant in the landscape of AI-generated visual content, driven by technological advances that enable users to personalize models through adapters tailored to specific tasks. While personalization methods such as LoRA offer unprecedented creative opportunities, they also facilitate harmful practices, including the generation of non-consensual deepfakes and the amplification of misogynistic or hypersexualized content. This study presents an exploratory sociotechnical analysis of CivitAI, the most active platform for sharing and developing open-source TTI models. Drawing on a dataset of more than 40 million user-generated images and over 230,000 models, we find a disproportionate rise in not-safe-for-work (NSFW) content and a significant number of models intended to mimic real individuals. We also observe a strong influence of internet subcultures on the tools and practices shaping model personalizations and resulting visual media. In response to these findings, we contextualize the emergence of exploitative visual media through feminist and constructivist perspectives on technology, emphasizing how design choices and community dynamics shape platform outcomes. Building on this analysis, we propose interventions aimed at mitigating downstream harm, including improved content moderation, rethinking tool design, and establishing clearer platform policies to promote accountability and consent.
Can LLM be a Personalized Judge?
Ensuring that large language models (LLMs) reflect diverse user values and preferences is crucial as their user bases expand globally. It is therefore encouraging to see the growing interest in LLM personalization within the research community. However, current works often rely on the LLM-as-a-Judge approach for evaluation without thoroughly examining its validity. In this paper, we investigate the reliability of LLM-as-a-Personalized-Judge, asking LLMs to judge user preferences based on personas. Our findings suggest that directly applying LLM-as-a-Personalized-Judge is less reliable than previously assumed, showing low and inconsistent agreement with human ground truth. The personas typically used are often overly simplistic, resulting in low predictive power. To address these issues, we introduce verbal uncertainty estimation into the LLM-as-a-Personalized-Judge pipeline, allowing the model to express low confidence on uncertain judgments. This adjustment leads to much higher agreement (above 80%) on high-certainty samples for binary tasks. Through human evaluation, we find that the LLM-as-a-Personalized-Judge achieves comparable performance to third-party humans evaluation and even surpasses human performance on high-certainty samples. Our work indicates that certainty-enhanced LLM-as-a-Personalized-Judge offers a promising direction for developing more reliable and scalable methods for evaluating LLM personalization.
IC-Custom: Diverse Image Customization via In-Context Learning
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction
To address intricate real-world tasks, there has been a rising interest in tool utilization in applications of large language models (LLMs). To develop LLM-based agents, it usually requires LLMs to understand many tool functions from different tool documentation. But these documentations could be diverse, redundant or incomplete, which immensely affects the capability of LLMs in using tools. To solve this, we introduce EASYTOOL, a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction for easier tool usage. EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i.e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents. Extensive experiments on multiple different tasks demonstrate that EasyTool can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios. Our code will be available at https://github.com/microsoft/JARVIS/ in the future.
CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
MagicTailor: Component-Controllable Personalization in Text-to-Image Diffusion Models
Recent advancements in text-to-image (T2I) diffusion models have enabled the creation of high-quality images from text prompts, but they still struggle to generate images with precise control over specific visual concepts. Existing approaches can replicate a given concept by learning from reference images, yet they lack the flexibility for fine-grained customization of the individual component within the concept. In this paper, we introduce component-controllable personalization, a novel task that pushes the boundaries of T2I models by allowing users to reconfigure specific components when personalizing visual concepts. This task is particularly challenging due to two primary obstacles: semantic pollution, where unwanted visual elements corrupt the personalized concept, and semantic imbalance, which causes disproportionate learning of the concept and component. To overcome these challenges, we design MagicTailor, an innovative framework that leverages Dynamic Masked Degradation (DM-Deg) to dynamically perturb undesired visual semantics and Dual-Stream Balancing (DS-Bal) to establish a balanced learning paradigm for desired visual semantics. Extensive comparisons, ablations, and analyses demonstrate that MagicTailor not only excels in this challenging task but also holds significant promise for practical applications, paving the way for more nuanced and creative image generation.
ModelScope-Agent: Building Your Customizable Agent System with Open-source Large Language Models
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent framework that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent libraryhttps://github.com/modelscope/modelscope-agent and online demohttps://modelscope.cn/studios/damo/ModelScopeGPT/summary are now publicly available.
Unveiling Bias in Fairness Evaluations of Large Language Models: A Critical Literature Review of Music and Movie Recommendation Systems
The rise of generative artificial intelligence, particularly Large Language Models (LLMs), has intensified the imperative to scrutinize fairness alongside accuracy. Recent studies have begun to investigate fairness evaluations for LLMs within domains such as recommendations. Given that personalization is an intrinsic aspect of recommendation systems, its incorporation into fairness assessments is paramount. Yet, the degree to which current fairness evaluation frameworks account for personalization remains unclear. Our comprehensive literature review aims to fill this gap by examining how existing frameworks handle fairness evaluations of LLMs, with a focus on the integration of personalization factors. Despite an exhaustive collection and analysis of relevant works, we discovered that most evaluations overlook personalization, a critical facet of recommendation systems, thereby inadvertently perpetuating unfair practices. Our findings shed light on this oversight and underscore the urgent need for more nuanced fairness evaluations that acknowledge personalization. Such improvements are vital for fostering equitable development within the AI community.
SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World
Recent advances in embodied agents with multimodal perception and reasoning capabilities based on large vision-language models (LVLMs), excel in autonomously interacting either real or cyber worlds, helping people make intelligent decisions in complex environments. However, the current works are normally optimized by golden action trajectories or ideal task-oriented solutions toward a definitive goal. This paradigm considers limited user-oriented factors, which could be the reason for their performance reduction in a wide range of personal assistant applications. To address this, we propose Chain-of-User-Thought (COUT), a novel embodied reasoning paradigm that takes a chain of thought from basic action thinking to explicit and implicit personalized preference thought to incorporate personalized factors into autonomous agent learning. To target COUT, we introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements as 1) interacting with GUI to access an item pool, 2) generating users' explicit requirements implied by previous actions, and 3) recommending items to fulfill users' implicit requirements. To demonstrate SmartAgent's capabilities, we also create a brand-new dataset SmartSpot that offers a full-stage personalized action-involved environment. To our best knowledge, our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning. Our extensive experiments on SmartSpot illuminate SmartAgent's functionality among a series of embodied and personalized sub-tasks. We will release code and data upon paper notification at https://github.com/tsinghua-fib-lab/SmartAgent.
UQABench: Evaluating User Embedding for Prompting LLMs in Personalized Question Answering
Large language models (LLMs) achieve remarkable success in natural language processing (NLP). In practical scenarios like recommendations, as users increasingly seek personalized experiences, it becomes crucial to incorporate user interaction history into the context of LLMs to enhance personalization. However, from a practical utility perspective, user interactions' extensive length and noise present challenges when used directly as text prompts. A promising solution is to compress and distill interactions into compact embeddings, serving as soft prompts to assist LLMs in generating personalized responses. Although this approach brings efficiency, a critical concern emerges: Can user embeddings adequately capture valuable information and prompt LLMs? To address this concern, we propose \name, a benchmark designed to evaluate the effectiveness of user embeddings in prompting LLMs for personalization. We establish a fair and standardized evaluation process, encompassing pre-training, fine-tuning, and evaluation stages. To thoroughly evaluate user embeddings, we design three dimensions of tasks: sequence understanding, action prediction, and interest perception. These evaluation tasks cover the industry's demands in traditional recommendation tasks, such as improving prediction accuracy, and its aspirations for LLM-based methods, such as accurately understanding user interests and enhancing the user experience. We conduct extensive experiments on various state-of-the-art methods for modeling user embeddings. Additionally, we reveal the scaling laws of leveraging user embeddings to prompt LLMs. The benchmark is available online.
A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
AI PERSONA: Towards Life-long Personalization of LLMs
In this work, we introduce the task of life-long personalization of large language models. While recent mainstream efforts in the LLM community mainly focus on scaling data and compute for improved capabilities of LLMs, we argue that it is also very important to enable LLM systems, or language agents, to continuously adapt to the diverse and ever-changing profiles of every distinct user and provide up-to-date personalized assistance. We provide a clear task formulation and introduce a simple, general, effective, and scalable framework for life-long personalization of LLM systems and language agents. To facilitate future research on LLM personalization, we also introduce methods to synthesize realistic benchmarks and robust evaluation metrics. We will release all codes and data for building and benchmarking life-long personalized LLM systems.
Interact-Custom: Customized Human Object Interaction Image Generation
Compositional Customized Image Generation aims to customize multiple target concepts within generation content, which has gained attention for its wild application. Existing approaches mainly concentrate on the target entity's appearance preservation, while neglecting the fine-grained interaction control among target entities. To enable the model of such interaction control capability, we focus on human object interaction scenario and propose the task of Customized Human Object Interaction Image Generation(CHOI), which simultaneously requires identity preservation for target human object and the interaction semantic control between them. Two primary challenges exist for CHOI:(1)simultaneous identity preservation and interaction control demands require the model to decompose the human object into self-contained identity features and pose-oriented interaction features, while the current HOI image datasets fail to provide ideal samples for such feature-decomposed learning.(2)inappropriate spatial configuration between human and object may lead to the lack of desired interaction semantics. To tackle it, we first process a large-scale dataset, where each sample encompasses the same pair of human object involving different interactive poses. Then we design a two-stage model Interact-Custom, which firstly explicitly models the spatial configuration by generating a foreground mask depicting the interaction behavior, then under the guidance of this mask, we generate the target human object interacting while preserving their identities features. Furthermore, if the background image and the union location of where the target human object should appear are provided by users, Interact-Custom also provides the optional functionality to specify them, offering high content controllability. Extensive experiments on our tailored metrics for CHOI task demonstrate the effectiveness of our approach.
Exploring the Potential of LLMs as Personalized Assistants: Dataset, Evaluation, and Analysis
Personalized AI assistants, a hallmark of the human-like capabilities of Large Language Models (LLMs), are a challenging application that intertwines multiple problems in LLM research. Despite the growing interest in the development of personalized assistants, the lack of an open-source conversational dataset tailored for personalization remains a significant obstacle for researchers in the field. To address this research gap, we introduce HiCUPID, a new benchmark to probe and unleash the potential of LLMs to deliver personalized responses. Alongside a conversational dataset, HiCUPID provides a Llama-3.2-based automated evaluation model whose assessment closely mirrors human preferences. We release our dataset, evaluation model, and code at https://github.com/12kimih/HiCUPID.
CUPID: Evaluating Personalized and Contextualized Alignment of LLMs from Interactions
Personalization of Large Language Models (LLMs) often assumes users hold static preferences that reflect globally in all tasks. In reality, humans hold dynamic preferences that change depending on the context. As users interact with an LLM in various contexts, they naturally reveal their contextual preferences, which a model must infer and apply in future contexts to ensure alignment. To assess this, we introduce CUPID, a benchmark of 756 human-curated interaction session histories between users and LLM-based chat assistants. In each interaction session, the user provides a request in a specific context and expresses their preference through multi-turn feedback. Given a new user request and prior interaction sessions, our benchmark assesses whether LLMs can infer the preference relevant to this request and generate a response that satisfies this preference. With CUPID, we evaluated 10 open and proprietary LLMs, revealing that state-of-the-art LLMs struggle to infer preferences from multi-turn interactions and fail to discern what previous context is relevant to a new request -- under 50% precision and 65% recall. Our work highlights the need to advance LLM capabilities for more contextually personalized interactions and proposes CUPID as a resource to drive these improvements.
Zero-shot causal learning
Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an existing intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel interventions (e.g., a newly invented drug), which these methods do not address. Here, we consider zero-shot causal learning: predicting the personalized effects of a novel intervention. We propose CaML, a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task. CaML trains a single meta-model across thousands of tasks, each constructed by sampling an intervention, along with its recipients and nonrecipients. By leveraging both intervention information (e.g., a drug's attributes) and individual features~(e.g., a patient's history), CaML is able to predict the personalized effects of novel interventions that do not exist at the time of training. Experimental results on real world datasets in large-scale medical claims and cell-line perturbations demonstrate the effectiveness of our approach. Most strikingly, CaML's zero-shot predictions outperform even strong baselines trained directly on data from the test interventions.
Large Language Models as Tool Makers
Recent research shows the potential of enhancing the problem-solving ability of large language models (LLMs) through the use of external tools. However, prior work along this line depends on the availability of existing tools. In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs As Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving. Our approach consists of two key phases: 1) tool making: an LLM acts as the tool maker that crafts tools for given tasks, where a tool is implemented as a Python utility function. 2) tool using: an LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving. The tool user can be either the same or a different LLM from the tool maker. Tool-making enables an LLM to continually generate tools that can be applied to different requests so that future requests can call the corresponding APIs when beneficial for solving the tasks. Furthermore, the division of labor among LLMs for tool-making and tool-using phases introduces the opportunity to achieve cost effectiveness without degrading the quality of generated tools and problem solutions. For example, recognizing that tool-making demands more sophisticated capabilities than tool-using, we can apply a powerful yet resource-intensive model as the tool maker, and a lightweight while cost-effective model as the tool user. We validate the effectiveness of our approach across a variety of complex reasoning tasks, including Big-Bench tasks. With GPT-4 as the tool maker and GPT-3.5 as the tool user, LATM can achieve performance that is on par with using GPT-4 for both tool making and tool using, while the inference cost is significantly reduced.
Generative Recommendation: Towards Next-generation Recommender Paradigm
Recommender systems typically retrieve items from an item corpus for personalized recommendations. However, such a retrieval-based recommender paradigm faces two limitations: 1) the human-generated items in the corpus might fail to satisfy the users' diverse information needs, and 2) users usually adjust the recommendations via inefficient passive feedback, e.g., clicks. Nowadays, AI-Generated Content (AIGC) has revealed significant success, offering the potential to overcome these limitations: 1) generative AI can produce personalized items to satisfy users' information needs, and 2) the newly emerged large language models significantly reduce the efforts of users to precisely express information needs via natural language instructions. In this light, the boom of AIGC points the way towards the next-generation recommender paradigm with two new objectives: 1) generating personalized content through generative AI, and 2) integrating user instructions to guide content generation. To this end, we propose a novel Generative Recommender paradigm named GeneRec, which adopts an AI generator to personalize content generation and leverages user instructions. Specifically, we pre-process users' instructions and traditional feedback via an instructor to output the generation guidance. Given the guidance, we instantiate the AI generator through an AI editor and an AI creator to repurpose existing items and create new items. Eventually, GeneRec can perform content retrieval, repurposing, and creation to satisfy users' information needs. Besides, to ensure the trustworthiness of the generated items, we emphasize various fidelity checks. Moreover, we provide a roadmap to envision future developments of GeneRec and several domain-specific applications of GeneRec with potential research tasks. Lastly, we study the feasibility of implementing AI editor and AI creator on micro-video generation.
Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
Interactive3D: Create What You Want by Interactive 3D Generation
3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at https://interactive-3d.github.io/.
3DTouch: Towards a Wearable 3D Input Device for 3D Applications
Three-dimensional (3D) applications have come to every corner of life. We present 3DTouch, a novel 3D wearable input device worn on the fingertip for interacting with 3D applications. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. Moreover, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices such as Kinect. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. We implemented a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. With 3DTouch project, we would like to provide an input device that reduces the gap between 3D applications and users.
Personalized Visual Instruction Tuning
Recent advancements in multimodal large language models (MLLMs) have demonstrated significant progress; however, these models exhibit a notable limitation, which we refer to as "face blindness". Specifically, they can engage in general conversations but fail to conduct personalized dialogues targeting at specific individuals. This deficiency hinders the application of MLLMs in personalized settings, such as tailored visual assistants on mobile devices, or domestic robots that need to recognize members of the family. In this paper, we introduce Personalized Visual Instruction Tuning (PVIT), a novel data curation and training framework designed to enable MLLMs to identify target individuals within an image and engage in personalized and coherent dialogues. Our approach involves the development of a sophisticated pipeline that autonomously generates training data containing personalized conversations. This pipeline leverages the capabilities of various visual experts, image generation models, and (multi-modal) large language models. To evaluate the personalized potential of MLLMs, we present a benchmark called P-Bench, which encompasses various question types with different levels of difficulty. The experiments demonstrate a substantial personalized performance enhancement after fine-tuning with our curated dataset.
SleepCoT: A Lightweight Personalized Sleep Health Model via Chain-of-Thought Distillation
We present a novel approach to personalized sleep health management using few-shot Chain-of-Thought (CoT) distillation, enabling small-scale language models (> 2B parameters) to rival the performance of large language models (LLMs) in specialized health domains. Our method simultaneously distills problem-solving strategies, long-tail expert knowledge, and personalized recommendation capabilities from larger models into more efficient, compact models. Unlike existing systems, our approach offers three key functionalities: generating personalized sleep health recommendations, supporting user-specific follow-up inquiries, and providing responses to domain-specific knowledge questions. We focus on sleep health due to its measurability via wearable devices and its impact on overall well-being. Our experimental setup, involving GPT-4o for data synthesis, Qwen-max for instruction set creation, and Qwen2.5 1.5B for model distillation, demonstrates significant improvements over baseline small-scale models in penalization, reasoning, and knowledge application. Experiments using 100 simulated sleep reports and 1,000 domain-specific questions shows our model achieves comparable performance to larger models while maintaining efficiency for real-world deployment. This research not only advances AI-driven health management but also provides a novel approach to leveraging LLM capabilities in resource-constrained environments, potentially enhancing the accessibility of personalized healthcare solutions.
ToolTalk: Evaluating Tool-Usage in a Conversational Setting
Large language models (LLMs) have displayed massive improvements in reason- ing and decision-making skills and can hold natural conversations with users. Many recent works seek to augment LLM-based assistants with external tools so they can access private or up-to-date information and carry out actions on behalf of users. To better measure the performance of these assistants, this paper introduces ToolTalk, a benchmark consisting of complex user intents re- quiring multi-step tool usage specified through dialogue. ToolTalk contains 28 tools grouped into 7 plugins, and includes a complete simulated implementa- tion of each tool, allowing for fully automated evaluation of assistants that rely on execution feedback. ToolTalk also emphasizes tools that externally affect the world rather than only tools for referencing or searching information. We evaluate GPT-3.5 and GPT-4 on ToolTalk resulting in success rates of 26% and 50% respectively. Our analysis of the errors reveals three major categories and suggests some future directions for improvement. We release ToolTalk at https://github.com/microsoft/ToolTalk.
I-Design: Personalized LLM Interior Designer
Interior design allows us to be who we are and live how we want - each design is as unique as our distinct personality. However, it is not trivial for non-professionals to express and materialize this since it requires aligning functional and visual expectations with the constraints of physical space; this renders interior design a luxury. To make it more accessible, we present I-Design, a personalized interior designer that allows users to generate and visualize their design goals through natural language communication. I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another, transforming textual user input into feasible scene graph designs with relative object relationships. Subsequently, an effective placement algorithm determines optimal locations for each object within the scene. The final design is then constructed in 3D by retrieving and integrating assets from an existing object database. Additionally, we propose a new evaluation protocol that utilizes a vision-language model and complements the design pipeline. Extensive quantitative and qualitative experiments show that I-Design outperforms existing methods in delivering high-quality 3D design solutions and aligning with abstract concepts that match user input, showcasing its advantages across detailed 3D arrangement and conceptual fidelity.
User Profile with Large Language Models: Construction, Updating, and Benchmarking
User profile modeling plays a key role in personalized systems, as it requires building accurate profiles and updating them with new information. In this paper, we present two high-quality open-source user profile datasets: one for profile construction and another for profile updating. These datasets offer a strong basis for evaluating user profile modeling techniques in dynamic settings. We also show a methodology that uses large language models (LLMs) to tackle both profile construction and updating. Our method uses a probabilistic framework to predict user profiles from input text, allowing for precise and context-aware profile generation. Our experiments demonstrate that models like Mistral-7b and Llama2-7b perform strongly in both tasks. LLMs improve the precision and recall of the generated profiles, and high evaluation scores confirm the effectiveness of our approach.
Panoramic Interests: Stylistic-Content Aware Personalized Headline Generation
Personalized news headline generation aims to provide users with attention-grabbing headlines that are tailored to their preferences. Prevailing methods focus on user-oriented content preferences, but most of them overlook the fact that diverse stylistic preferences are integral to users' panoramic interests, leading to suboptimal personalization. In view of this, we propose a novel Stylistic-Content Aware Personalized Headline Generation (SCAPE) framework. SCAPE extracts both content and stylistic features from headlines with the aid of large language model (LLM) collaboration. It further adaptively integrates users' long- and short-term interests through a contrastive learning-based hierarchical fusion network. By incorporating the panoramic interests into the headline generator, SCAPE reflects users' stylistic-content preferences during the generation process. Extensive experiments on the real-world dataset PENS demonstrate the superiority of SCAPE over baselines.
Writing Assistants Should Model Social Factors of Language
Intelligent writing assistants powered by large language models (LLMs) are more popular today than ever before, but their further widespread adoption is precluded by sub-optimal performance. In this position paper, we argue that a major reason for this sub-optimal performance and adoption is a singular focus on the information content of language while ignoring its social aspects. We analyze the different dimensions of these social factors in the context of writing assistants and propose their incorporation into building smarter, more effective, and truly personalized writing assistants that would enrich the user experience and contribute to increased user adoption.
UniPortrait: A Unified Framework for Identity-Preserving Single- and Multi-Human Image Personalization
This paper presents UniPortrait, an innovative human image personalization framework that unifies single- and multi-ID customization with high face fidelity, extensive facial editability, free-form input description, and diverse layout generation. UniPortrait consists of only two plug-and-play modules: an ID embedding module and an ID routing module. The ID embedding module extracts versatile editable facial features with a decoupling strategy for each ID and embeds them into the context space of diffusion models. The ID routing module then combines and distributes these embeddings adaptively to their respective regions within the synthesized image, achieving the customization of single and multiple IDs. With a carefully designed two-stage training scheme, UniPortrait achieves superior performance in both single- and multi-ID customization. Quantitative and qualitative experiments demonstrate the advantages of our method over existing approaches as well as its good scalability, e.g., the universal compatibility with existing generative control tools. The project page is at https://aigcdesigngroup.github.io/UniPortrait-Page/ .
ULMRec: User-centric Large Language Model for Sequential Recommendation
Recent advances in Large Language Models (LLMs) have demonstrated promising performance in sequential recommendation tasks, leveraging their superior language understanding capabilities. However, existing LLM-based recommendation approaches predominantly focus on modeling item-level co-occurrence patterns while failing to adequately capture user-level personalized preferences. This is problematic since even users who display similar behavioral patterns (e.g., clicking or purchasing similar items) may have fundamentally different underlying interests. To alleviate this problem, in this paper, we propose ULMRec, a framework that effectively integrates user personalized preferences into LLMs for sequential recommendation. Considering there has the semantic gap between item IDs and LLMs, we replace item IDs with their corresponding titles in user historical behaviors, enabling the model to capture the item semantics. For integrating the user personalized preference, we design two key components: (1) user indexing: a personalized user indexing mechanism that leverages vector quantization on user reviews and user IDs to generate meaningful and unique user representations, and (2) alignment tuning: an alignment-based tuning stage that employs comprehensive preference alignment tasks to enhance the model's capability in capturing personalized information. Through this design, ULMRec achieves deep integration of language semantics with user personalized preferences, facilitating effective adaptation to recommendation. Extensive experiments on two public datasets demonstrate that ULMRec significantly outperforms existing methods, validating the effectiveness of our approach.
How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization?
Custom diffusion models (CDMs) have attracted widespread attention due to their astonishing generative ability for personalized concepts. However, most existing CDMs unreasonably assume that personalized concepts are fixed and cannot change over time. Moreover, they heavily suffer from catastrophic forgetting and concept neglect on old personalized concepts when continually learning a series of new concepts. To address these challenges, we propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM), which can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner. Specifically, to surmount the catastrophic forgetting of old concepts, we develop a concept consolidation loss and an elastic weight aggregation module. They can explore task-specific and task-shared knowledge during training, and aggregate all low-rank weights of old concepts based on their contributions during inference. Moreover, in order to address concept neglect, we devise a context-controllable synthesis strategy that leverages expressive region features and noise estimation to control the contexts of generated images according to user conditions. Experiments validate that our CIDM surpasses existing custom diffusion models. The source codes are available at https://github.com/JiahuaDong/CIFC.
NutriGen: Personalized Meal Plan Generator Leveraging Large Language Models to Enhance Dietary and Nutritional Adherence
Maintaining a balanced diet is essential for overall health, yet many individuals struggle with meal planning due to nutritional complexity, time constraints, and lack of dietary knowledge. Personalized food recommendations can help address these challenges by tailoring meal plans to individual preferences, habits, and dietary restrictions. However, existing dietary recommendation systems often lack adaptability, fail to consider real-world constraints such as food ingredient availability, and require extensive user input, making them impractical for sustainable and scalable daily use. To address these limitations, we introduce NutriGen, a framework based on large language models (LLM) designed to generate personalized meal plans that align with user-defined dietary preferences and constraints. By building a personalized nutrition database and leveraging prompt engineering, our approach enables LLMs to incorporate reliable nutritional references like the USDA nutrition database while maintaining flexibility and ease-of-use. We demonstrate that LLMs have strong potential in generating accurate and user-friendly food recommendations, addressing key limitations in existing dietary recommendation systems by providing structured, practical, and scalable meal plans. Our evaluation shows that Llama 3.1 8B and GPT-3.5 Turbo achieve the lowest percentage errors of 1.55\% and 3.68\%, respectively, producing meal plans that closely align with user-defined caloric targets while minimizing deviation and improving precision. Additionally, we compared the performance of DeepSeek V3 against several established models to evaluate its potential in personalized nutrition planning.
ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities
Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox
Online Training of Large Language Models: Learn while chatting
Large Language Models(LLMs) have dramatically revolutionized the field of Natural Language Processing(NLP), offering remarkable capabilities that have garnered widespread usage. However, existing interaction paradigms between LLMs and users are constrained by either inflexibility, limitations in customization, or a lack of persistent learning. This inflexibility is particularly evident as users, especially those without programming skills, have restricted avenues to enhance or personalize the model. Existing frameworks further complicate the model training and deployment process due to their computational inefficiencies and lack of user-friendly interfaces. To overcome these challenges, this paper introduces a novel interaction paradigm-'Online Training using External Interactions'-that merges the benefits of persistent, real-time model updates with the flexibility for individual customization through external interactions such as AI agents or online/offline knowledge bases.
BlendScape: Enabling Unified and Personalized Video-Conferencing Environments through Generative AI
Today's video-conferencing tools support a rich range of professional and social activities, but their generic, grid-based environments cannot be easily adapted to meet the varying needs of distributed collaborators. To enable end-user customization, we developed BlendScape, a system for meeting participants to compose video-conferencing environments tailored to their collaboration context by leveraging AI image generation techniques. BlendScape supports flexible representations of task spaces by blending users' physical or virtual backgrounds into unified environments and implements multimodal interaction techniques to steer the generation. Through an evaluation with 15 end-users, we investigated their customization preferences for work and social scenarios. Participants could rapidly express their design intentions with BlendScape and envisioned using the system to structure collaboration in future meetings, but experienced challenges with preventing distracting elements. We implement scenarios to demonstrate BlendScape's expressiveness in supporting distributed collaboration techniques from prior work and propose composition techniques to improve the quality of environments.
FedPerfix: Towards Partial Model Personalization of Vision Transformers in Federated Learning
Personalized Federated Learning (PFL) represents a promising solution for decentralized learning in heterogeneous data environments. Partial model personalization has been proposed to improve the efficiency of PFL by selectively updating local model parameters instead of aggregating all of them. However, previous work on partial model personalization has mainly focused on Convolutional Neural Networks (CNNs), leaving a gap in understanding how it can be applied to other popular models such as Vision Transformers (ViTs). In this work, we investigate where and how to partially personalize a ViT model. Specifically, we empirically evaluate the sensitivity to data distribution of each type of layer. Based on the insights that the self-attention layer and the classification head are the most sensitive parts of a ViT, we propose a novel approach called FedPerfix, which leverages plugins to transfer information from the aggregated model to the local client as a personalization. Finally, we evaluate the proposed approach on CIFAR-100, OrganAMNIST, and Office-Home datasets and demonstrate its effectiveness in improving the model's performance compared to several advanced PFL methods.
Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation
We primarily focus on the field of large language models (LLMs) for recommendation, which has been actively explored recently and poses a significant challenge in effectively enhancing recommender systems with logical reasoning abilities and open-world knowledge. Current mainstream efforts mainly center around injecting personalized information from recommendation models into LLMs by customizing input templates or aligning representations between semantic and recommendation spaces at the prediction layer. However, they face three significant limitations: (1) LoRA is mostly used as a core component in existing works, but personalization is not well established in LoRA parameters as the LoRA matrix shared by every user may not cater to different users' characteristics, leading to suboptimal performance. (2) Although lifelong personalized behavior sequences are ideal for personalization, their use raises effectiveness and efficiency issues since LLMs require escalating training and inference time to extend text lengths. (3) Existing approaches aren't scalable for large datasets due to training efficiency constraints. Thus, LLMs only see a small fraction of the datasets (e.g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space. To address these problems, we propose RecLoRA. This model incorporates a Personalized LoRA module that maintains independent LoRAs for different users and a Long-Short Modality Retriever that retrieves different history lengths for different modalities, significantly improving performance while adding minimal time cost. Furthermore, we design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces. Extensive experiments on public datasets demonstrate the efficacy of our RecLoRA compared to existing baseline models.
MIRACLE: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control
Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (e.g., language style, inner character nuances), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose \textsc{Miracle}, a novel personalized dialogue generation method through MultIple PeRsonal Attributes Control within Latent-Space Energy-based Models. ttributes Control within Latent-Space Energy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that Miracle outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at https://github.com/LZY-the-boys/MIRACLE
Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems but often struggle with long, conditional workflows that involve external tool calls and depend on user-specific information. We present Workflow Adherence via Runtime Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent orchestration with runtime personalization to improve workflow adherence in LLM-based systems. By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime. WARPP deploys a parallelized architecture where a dedicated Personalizer agent operates alongside modular, domain-specific agents to dynamically tailor execution paths in real time. The framework is evaluated across five representative user intents of varying complexity within three domains: banking, flights, and healthcare. Our evaluation leverages synthetic datasets and LLM-powered simulated users to test scenarios with conditional dependencies. Our results demonstrate that WARPP outperforms both the non-personalized method and the ReAct baseline, achieving increasingly larger gains in parameter fidelity and tool accuracy as intent complexity grows, while also reducing average token usage, without any additional training.
Control Plane as a Tool: A Scalable Design Pattern for Agentic AI Systems
Agentic AI systems represent a new frontier in artificial intelligence, where agents often based on large language models(LLMs) interact with tools, environments, and other agents to accomplish tasks with a degree of autonomy. These systems show promise across a range of domains, but their architectural underpinnings remain immature. This paper conducts a comprehensive review of the types of agents, their modes of interaction with the environment, and the infrastructural and architectural challenges that emerge. We identify a gap in how these systems manage tool orchestration at scale and propose a reusable design abstraction: the "Control Plane as a Tool" pattern. This pattern allows developers to expose a single tool interface to an agent while encapsulating modular tool routing logic behind it. We position this pattern within the broader context of agent design and argue that it addresses several key challenges in scaling, safety, and extensibility.
MobileAgent: enhancing mobile control via human-machine interaction and SOP integration
Agents centered around Large Language Models (LLMs) are now capable of automating mobile device operations for users. After fine-tuning to learn a user's mobile operations, these agents can adhere to high-level user instructions online. They execute tasks such as goal decomposition, sequencing of sub-goals, and interactive environmental exploration, until the final objective is achieved. However, privacy concerns related to personalized user data arise during mobile operations, requiring user confirmation. Moreover, users' real-world operations are exploratory, with action data being complex and redundant, posing challenges for agent learning. To address these issues, in our practical application, we have designed interactive tasks between agents and humans to identify sensitive information and align with personalized user needs. Additionally, we integrated Standard Operating Procedure (SOP) information within the model's in-context learning to enhance the agent's comprehension of complex task execution. Our approach is evaluated on the new device control benchmark AitW, which encompasses 30K unique instructions across multi-step tasks, including application operation, web searching, and web shopping. Experimental results show that the SOP-based agent achieves state-of-the-art performance in LLMs without incurring additional inference costs, boasting an overall action success rate of 66.92\%. The code and data examples are available at https://github.com/alipay/mobile-agent.
Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine
Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.
DemoCaricature: Democratising Caricature Generation with a Rough Sketch
In this paper, we democratise caricature generation, empowering individuals to effortlessly craft personalised caricatures with just a photo and a conceptual sketch. Our objective is to strike a delicate balance between abstraction and identity, while preserving the creativity and subjectivity inherent in a sketch. To achieve this, we present Explicit Rank-1 Model Editing alongside single-image personalisation, selectively applying nuanced edits to cross-attention layers for a seamless merge of identity and style. Additionally, we propose Random Mask Reconstruction to enhance robustness, directing the model to focus on distinctive identity and style features. Crucially, our aim is not to replace artists but to eliminate accessibility barriers, allowing enthusiasts to engage in the artistry.
Exploring Personality-Aware Interactions in Salesperson Dialogue Agents
The integration of dialogue agents into the sales domain requires a deep understanding of how these systems interact with users possessing diverse personas. This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents. Through large-scale testing and analysis, we assess the pre-trained agent's effectiveness, adaptability, and personalization capabilities across a wide range of MBTI-defined user types. Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies to better align with varying personality traits. This work not only provides actionable insights for building more adaptive and user-centric conversational systems in the sales domain but also contributes broadly to the field by releasing persona-defined user simulators. These simulators, unconstrained by domain, offer valuable tools for future research and demonstrate the potential for scaling personalized dialogue systems across diverse applications.
LettinGo: Explore User Profile Generation for Recommendation System
User profiling is pivotal for recommendation systems, as it transforms raw user interaction data into concise and structured representations that drive personalized recommendations. While traditional embedding-based profiles lack interpretability and adaptability, recent advances with large language models (LLMs) enable text-based profiles that are semantically richer and more transparent. However, existing methods often adhere to fixed formats that limit their ability to capture the full diversity of user behaviors. In this paper, we introduce LettinGo, a novel framework for generating diverse and adaptive user profiles. By leveraging the expressive power of LLMs and incorporating direct feedback from downstream recommendation tasks, our approach avoids the rigid constraints imposed by supervised fine-tuning (SFT). Instead, we employ Direct Preference Optimization (DPO) to align the profile generator with task-specific performance, ensuring that the profiles remain adaptive and effective. LettinGo operates in three stages: (1) exploring diverse user profiles via multiple LLMs, (2) evaluating profile quality based on their impact in recommendation systems, and (3) aligning the profile generation through pairwise preference data derived from task performance. Experimental results demonstrate that our framework significantly enhances recommendation accuracy, flexibility, and contextual awareness. This work enhances profile generation as a key innovation for next-generation recommendation systems.
Learning to Use Tools via Cooperative and Interactive Agents
Tool learning empowers large language models (LLMs) as agents to use external tools to extend their capability. Existing methods employ one single LLM-based agent to iteratively select and execute tools, thereafter incorporating the result into the next action prediction. However, they still suffer from potential performance degradation when addressing complex tasks due to: (1) the limitation of the inherent capability of a single LLM to perform diverse actions, and (2) the struggle to adaptively correct mistakes when the task fails. To mitigate these problems, we propose the ConAgents, a Cooperative and interactive Agents framework, which modularizes the workflow of tool learning into Grounding, Execution, and Observing agents. We also introduce an iterative calibration (IterCali) method, enabling the agents to adapt themselves based on the feedback from the tool environment. Experiments conducted on three datasets demonstrate the superiority of our ConAgents (e.g., 6 point improvement over the SOTA baseline). We further provide fine-granularity analysis for the efficiency and consistency of our framework.
Customized Generation Reimagined: Fidelity and Editability Harmonized
Customized generation aims to incorporate a novel concept into a pre-trained text-to-image model, enabling new generations of the concept in novel contexts guided by textual prompts. However, customized generation suffers from an inherent trade-off between concept fidelity and editability, i.e., between precisely modeling the concept and faithfully adhering to the prompts. Previous methods reluctantly seek a compromise and struggle to achieve both high concept fidelity and ideal prompt alignment simultaneously. In this paper, we propose a Divide, Conquer, then Integrate (DCI) framework, which performs a surgical adjustment in the early stage of denoising to liberate the fine-tuned model from the fidelity-editability trade-off at inference. The two conflicting components in the trade-off are decoupled and individually conquered by two collaborative branches, which are then selectively integrated to preserve high concept fidelity while achieving faithful prompt adherence. To obtain a better fine-tuned model, we introduce an Image-specific Context Optimization} (ICO) strategy for model customization. ICO replaces manual prompt templates with learnable image-specific contexts, providing an adaptive and precise fine-tuning direction to promote the overall performance. Extensive experiments demonstrate the effectiveness of our method in reconciling the fidelity-editability trade-off.
LaMP-QA: A Benchmark for Personalized Long-form Question Answering
Personalization is essential for question answering systems that are user-centric. Despite its importance, personalization in answer generation has been relatively underexplored. This is mainly due to lack of resources for training and evaluating personalized question answering systems. We address this gap by introducing LaMP-QA -- a benchmark designed for evaluating personalized long-form answer generation. The benchmark covers questions from three major categories: (1) Arts & Entertainment, (2) Lifestyle & Personal Development, and (3) Society & Culture, encompassing over 45 subcategories in total. To assess the quality and potential impact of the LaMP-QA benchmark for personalized question answering, we conduct comprehensive human and automatic evaluations, to compare multiple evaluation strategies for evaluating generated personalized responses and measure their alignment with human preferences. Furthermore, we benchmark a number of non-personalized and personalized approaches based on open-source and proprietary large language models (LLMs). Our results show that incorporating the personalized context provided leads to performance improvements of up to 39%. The benchmark is publicly released to support future research in this area.
Object-Centric Dexterous Manipulation from Human Motion Data
Manipulating objects to achieve desired goal states is a basic but important skill for dexterous manipulation. Human hand motions demonstrate proficient manipulation capability, providing valuable data for training robots with multi-finger hands. Despite this potential, substantial challenges arise due to the embodiment gap between human and robot hands. In this work, we introduce a hierarchical policy learning framework that uses human hand motion data for training object-centric dexterous robot manipulation. At the core of our method is a high-level trajectory generative model, learned with a large-scale human hand motion capture dataset, to synthesize human-like wrist motions conditioned on the desired object goal states. Guided by the generated wrist motions, deep reinforcement learning is further used to train a low-level finger controller that is grounded in the robot's embodiment to physically interact with the object to achieve the goal. Through extensive evaluation across 10 household objects, our approach not only demonstrates superior performance but also showcases generalization capability to novel object geometries and goal states. Furthermore, we transfer the learned policies from simulation to a real-world bimanual dexterous robot system, further demonstrating its applicability in real-world scenarios. Project website: https://cypypccpy.github.io/obj-dex.github.io/.
Crafting Personalized Agents through Retrieval-Augmented Generation on Editable Memory Graphs
In the age of mobile internet, user data, often referred to as memories, is continuously generated on personal devices. Effectively managing and utilizing this data to deliver services to users is a compelling research topic. In this paper, we introduce a novel task of crafting personalized agents powered by large language models (LLMs), which utilize a user's smartphone memories to enhance downstream applications with advanced LLM capabilities. To achieve this goal, we introduce EMG-RAG, a solution that combines Retrieval-Augmented Generation (RAG) techniques with an Editable Memory Graph (EMG). This approach is further optimized using Reinforcement Learning to address three distinct challenges: data collection, editability, and selectability. Extensive experiments on a real-world dataset validate the effectiveness of EMG-RAG, achieving an improvement of approximately 10% over the best existing approach. Additionally, the personalized agents have been transferred into a real smartphone AI assistant, which leads to enhanced usability.
On the Conversational Persuasiveness of Large Language Models: A Randomized Controlled Trial
The development and popularization of large language models (LLMs) have raised concerns that they will be used to create tailor-made, convincing arguments to push false or misleading narratives online. Early work has found that language models can generate content perceived as at least on par and often more persuasive than human-written messages. However, there is still limited knowledge about LLMs' persuasive capabilities in direct conversations with human counterparts and how personalization can improve their performance. In this pre-registered study, we analyze the effect of AI-driven persuasion in a controlled, harmless setting. We create a web-based platform where participants engage in short, multiple-round debates with a live opponent. Each participant is randomly assigned to one of four treatment conditions, corresponding to a two-by-two factorial design: (1) Games are either played between two humans or between a human and an LLM; (2) Personalization might or might not be enabled, granting one of the two players access to basic sociodemographic information about their opponent. We found that participants who debated GPT-4 with access to their personal information had 81.7% (p < 0.01; N=820 unique participants) higher odds of increased agreement with their opponents compared to participants who debated humans. Without personalization, GPT-4 still outperforms humans, but the effect is lower and statistically non-significant (p=0.31). Overall, our results suggest that concerns around personalization are meaningful and have important implications for the governance of social media and the design of new online environments.
Implicit Personalization in Language Models: A Systematic Study
Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at https://github.com/jiarui-liu/IP.
Large Language Models for Robotics: A Survey
The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.
Operationalizing Contextual Integrity in Privacy-Conscious Assistants
Advanced AI assistants combine frontier LLMs and tool access to autonomously perform complex tasks on behalf of users. While the helpfulness of such assistants can increase dramatically with access to user information including emails and documents, this raises privacy concerns about assistants sharing inappropriate information with third parties without user supervision. To steer information-sharing assistants to behave in accordance with privacy expectations, we propose to operationalize contextual integrity (CI), a framework that equates privacy with the appropriate flow of information in a given context. In particular, we design and evaluate a number of strategies to steer assistants' information-sharing actions to be CI compliant. Our evaluation is based on a novel form filling benchmark composed of synthetic data and human annotations, and it reveals that prompting frontier LLMs to perform CI-based reasoning yields strong results.
GEMRec: Towards Generative Model Recommendation
Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at https://github.com/MAPS-research/GEMRec.
"I Want It That Way": Enabling Interactive Decision Support Using Large Language Models and Constraint Programming
A critical factor in the success of decision support systems is the accurate modeling of user preferences. Psychology research has demonstrated that users often develop their preferences during the elicitation process, highlighting the pivotal role of system-user interaction in developing personalized systems. This paper introduces a novel approach, combining Large Language Models (LLMs) with Constraint Programming to facilitate interactive decision support. We study this hybrid framework through the lens of meeting scheduling, a time-consuming daily activity faced by a multitude of information workers. We conduct three studies to evaluate the novel framework, including a diary study (n=64) to characterize contextual scheduling preferences, a quantitative evaluation of the system's performance, and a user study (n=10) with a prototype system. Our work highlights the potential for a hybrid LLM and optimization approach for iterative preference elicitation and design considerations for building systems that support human-system collaborative decision-making processes.
A Comprehensive Survey of Evaluation Techniques for Recommendation Systems
The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.
FedJETs: Efficient Just-In-Time Personalization with Federated Mixture of Experts
One of the goals in Federated Learning (FL) is to create personalized models that can adapt to the context of each participating client, while utilizing knowledge from a shared global model. Yet, often, personalization requires a fine-tuning step using clients' labeled data in order to achieve good performance. This may not be feasible in scenarios where incoming clients are fresh and/or have privacy concerns. It, then, remains open how one can achieve just-in-time personalization in these scenarios. We propose FedJETs, a novel solution by using a Mixture-of-Experts (MoE) framework within a FL setup. Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s). Our gating function harnesses the knowledge of a pretrained model common expert to enhance its routing decisions on-the-fly. As a highlight, our approach can improve accuracy up to 18\% in state of the art FL settings, while maintaining competitive zero-shot performance. In practice, our method can handle non-homogeneous data distributions, scale more efficiently, and improve the state-of-the-art performance on common FL benchmarks.
Group Personalized Federated Learning
Federated learning (FL) can help promote data privacy by training a shared model in a de-centralized manner on the physical devices of clients. In the presence of highly heterogeneous distributions of local data, personalized FL strategy seeks to mitigate the potential client drift. In this paper, we present the group personalization approach for applications of FL in which there exist inherent partitions among clients that are significantly distinct. In our method, the global FL model is fine-tuned through another FL training process over each homogeneous group of clients, after which each group-specific FL model is further adapted and personalized for any client. The proposed method can be well interpreted from a Bayesian hierarchical modeling perspective. With experiments on two real-world datasets, we demonstrate this approach can achieve superior personalization performance than other FL counterparts.
IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
An Improved Method for Personalizing Diffusion Models
Diffusion models have demonstrated impressive image generation capabilities. Personalized approaches, such as textual inversion and Dreambooth, enhance model individualization using specific images. These methods enable generating images of specific objects based on diverse textual contexts. Our proposed approach aims to retain the model's original knowledge during new information integration, resulting in superior outcomes while necessitating less training time compared to Dreambooth and textual inversion.
Low-Rank Continual Personalization of Diffusion Models
Recent personalization methods for diffusion models, such as Dreambooth, allow fine-tuning pre-trained models to generate new concepts. However, applying these techniques across multiple tasks in order to include, e.g., several new objects or styles, leads to mutual interference between their adapters. While recent studies attempt to mitigate this issue by combining trained adapters across tasks after fine-tuning, we adopt a more rigorous regime and investigate the personalization of large diffusion models under a continual learning scenario, where such interference leads to catastrophic forgetting of previous knowledge. To that end, we evaluate the na\"ive continual fine-tuning of customized models and compare this approach with three methods for consecutive adapters' training: sequentially merging new adapters, merging orthogonally initialized adapters, and updating only relevant parameters according to the task. In our experiments, we show that the proposed approaches mitigate forgetting when compared to the na\"ive approach.
PaperBot: Learning to Design Real-World Tools Using Paper
Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate and time-consuming. In this paper, we propose PaperBot, an approach that directly learns to design and use a tool in the real world using paper without human intervention. We demonstrated the effectiveness and efficiency of PaperBot on two tool design tasks: 1. learning to fold and throw paper airplanes for maximum travel distance 2. learning to cut paper into grippers that exert maximum gripping force. We present a self-supervised learning framework that learns to perform a sequence of folding, cutting, and dynamic manipulation actions in order to optimize the design and use of a tool. We deploy our system to a real-world two-arm robotic system to solve challenging design tasks that involve aerodynamics (paper airplane) and friction (paper gripper) that are impossible to simulate accurately.
Per-Query Visual Concept Learning
Visual concept learning, also known as Text-to-image personalization, is the process of teaching new concepts to a pretrained model. This has numerous applications from product placement to entertainment and personalized design. Here we show that many existing methods can be substantially augmented by adding a personalization step that is (1) specific to the prompt and noise seed, and (2) using two loss terms based on the self- and cross- attention, capturing the identity of the personalized concept. Specifically, we leverage PDM features -- previously designed to capture identity -- and show how they can be used to improve personalized semantic similarity. We evaluate the benefit that our method gains on top of six different personalization methods, and several base text-to-image models (both UNet- and DiT-based). We find significant improvements even over previous per-query personalization methods.
TextBoost: Towards One-Shot Personalization of Text-to-Image Models via Fine-tuning Text Encoder
Recent breakthroughs in text-to-image models have opened up promising research avenues in personalized image generation, enabling users to create diverse images of a specific subject using natural language prompts. However, existing methods often suffer from performance degradation when given only a single reference image. They tend to overfit the input, producing highly similar outputs regardless of the text prompt. This paper addresses the challenge of one-shot personalization by mitigating overfitting, enabling the creation of controllable images through text prompts. Specifically, we propose a selective fine-tuning strategy that focuses on the text encoder. Furthermore, we introduce three key techniques to enhance personalization performance: (1) augmentation tokens to encourage feature disentanglement and alleviate overfitting, (2) a knowledge-preservation loss to reduce language drift and promote generalizability across diverse prompts, and (3) SNR-weighted sampling for efficient training. Extensive experiments demonstrate that our approach efficiently generates high-quality, diverse images using only a single reference image while significantly reducing memory and storage requirements.
eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures
If human experience is any guide, operating effectively in unstructured environments -- like homes and offices -- requires robots to sense the forces during physical interaction. Yet, the lack of a versatile, accessible, and easily customizable tactile sensor has led to fragmented, sensor-specific solutions in robotic manipulation -- and in many cases, to force-unaware, sensorless approaches. With eFlesh, we bridge this gap by introducing a magnetic tactile sensor that is low-cost, easy to fabricate, and highly customizable. Building an eFlesh sensor requires only four components: a hobbyist 3D printer, off-the-shelf magnets (<$5), a CAD model of the desired shape, and a magnetometer circuit board. The sensor is constructed from tiled, parameterized microstructures, which allow for tuning the sensor's geometry and its mechanical response. We provide an open-source design tool that converts convex OBJ/STL files into 3D-printable STLs for fabrication. This modular design framework enables users to create application-specific sensors, and to adjust sensitivity depending on the task. Our sensor characterization experiments demonstrate the capabilities of eFlesh: contact localization RMSE of 0.5 mm, and force prediction RMSE of 0.27 N for normal force and 0.12 N for shear force. We also present a learned slip detection model that generalizes to unseen objects with 95% accuracy, and visuotactile control policies that improve manipulation performance by 40% over vision-only baselines -- achieving 91% average success rate for four precise tasks that require sub-mm accuracy for successful completion. All design files, code and the CAD-to-eFlesh STL conversion tool are open-sourced and available on https://e-flesh.com.
CloChat: Understanding How People Customize, Interact, and Experience Personas in Large Language Models
Large language models (LLMs) have facilitated significant strides in generating conversational agents, enabling seamless, contextually relevant dialogues across diverse topics. However, the existing LLM-driven conversational agents have fixed personalities and functionalities, limiting their adaptability to individual user needs. Creating personalized agent personas with distinct expertise or traits can address this issue. Nonetheless, we lack knowledge of how people customize and interact with agent personas. In this research, we investigated how users customize agent personas and their impact on interaction quality, diversity, and dynamics. To this end, we developed CloChat, an interface supporting easy and accurate customization of agent personas in LLMs. We conducted a study comparing how participants interact with CloChat and ChatGPT. The results indicate that participants formed emotional bonds with the customized agents, engaged in more dynamic dialogues, and showed interest in sustaining interactions. These findings contribute to design implications for future systems with conversational agents using LLMs.
MedAgentBench: A Realistic Virtual EHR Environment to Benchmark Medical LLM Agents
Recent large language models (LLMs) have demonstrated significant advancements, particularly in their ability to serve as agents thereby surpassing their traditional role as chatbots. These agents can leverage their planning and tool utilization capabilities to address tasks specified at a high level. However, a standardized dataset to benchmark the agent capabilities of LLMs in medical applications is currently lacking, making the evaluation of LLMs on complex tasks in interactive healthcare environments challenging. To address this gap, we introduce MedAgentBench, a broad evaluation suite designed to assess the agent capabilities of large language models within medical records contexts. MedAgentBench encompasses 300 patient-specific clinically-derived tasks from 10 categories written by human physicians, realistic profiles of 100 patients with over 700,000 data elements, a FHIR-compliant interactive environment, and an accompanying codebase. The environment uses the standard APIs and communication infrastructure used in modern EMR systems, so it can be easily migrated into live EMR systems. MedAgentBench presents an unsaturated agent-oriented benchmark that current state-of-the-art LLMs exhibit some ability to succeed at. The best model (Claude 3.5 Sonnet v2) achieves a success rate of 69.67%. However, there is still substantial space for improvement which gives the community a next direction to optimize. Furthermore, there is significant variation in performance across task categories. MedAgentBench establishes this and is publicly available at https://github.com/stanfordmlgroup/MedAgentBench , offering a valuable framework for model developers to track progress and drive continuous improvements in the agent capabilities of large language models within the medical domain.
LLM Agents Making Agent Tools
Tool use has turned large language models (LLMs) into powerful agents that can perform complex multi-step tasks by dynamically utilising external software components. However, these tools must be implemented in advance by human developers, hindering the applicability of LLM agents in domains which demand large numbers of highly specialised tools, like in life sciences and medicine. Motivated by the growing trend of scientific studies accompanied by public code repositories, we propose ToolMaker, a novel agentic framework that autonomously transforms papers with code into LLM-compatible tools. Given a short task description and a repository URL, ToolMaker autonomously installs required dependencies and generates code to perform the task, using a closed-loop self-correction mechanism to iteratively diagnose and rectify errors. To evaluate our approach, we introduce a benchmark comprising 15 diverse and complex computational tasks spanning both medical and non-medical domains with over 100 unit tests to objectively assess tool correctness and robustness. ToolMaker correctly implements 80% of the tasks, substantially outperforming current state-of-the-art software engineering agents. ToolMaker therefore is a step towards fully autonomous agent-based scientific workflows.
Vital Insight: Assisting Experts' Sensemaking Process of Multi-modal Personal Tracking Data Using Visualization and LLM
Researchers have long recognized the socio-technical gaps in personal tracking research, where machines can never fully model the complexity of human behavior, making it only able to produce basic rule-based outputs or "black-box" results that lack clear explanations. Real-world deployments rely on experts for this complex translation from sparse data to meaningful insights. In this study, we consider this translation process from data to insights by experts as "sensemaking" and explore how HCI researchers can support it through Vital Insight, an evidence-based 'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models. We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
CoGenesis: A Framework Collaborating Large and Small Language Models for Secure Context-Aware Instruction Following
With the advancement of language models (LMs), their exposure to private data is increasingly inevitable, and their deployment (especially for smaller ones) on personal devices, such as PCs and smartphones, has become a prevailing trend. In contexts laden with user information, enabling models to both safeguard user privacy and execute commands efficiently emerges as an essential research imperative. In this paper, we propose CoGenesis, a collaborative generation framework integrating large (hosted on cloud infrastructure) and small models (deployed on local devices) to address privacy concerns logically. Initially, we design a pipeline to create personalized writing instruction datasets enriched with extensive context details as the testbed of this research issue. Subsequently, we introduce two variants of CoGenesis based on sketch and logits respectively. Our experimental findings, based on our synthesized dataset and two additional open-source datasets, indicate that: 1) Large-scale models perform well when provided with user context but struggle in the absence of such context. 2) While specialized smaller models fine-tuned on the synthetic dataset show promise, they still lag behind their larger counterparts. 3) Our CoGenesis framework, utilizing mixed-scale models, showcases competitive performance, providing a feasible solution to privacy issues.
DynASyn: Multi-Subject Personalization Enabling Dynamic Action Synthesis
Recent advances in text-to-image diffusion models spurred research on personalization, i.e., a customized image synthesis, of subjects within reference images. Although existing personalization methods are able to alter the subjects' positions or to personalize multiple subjects simultaneously, they often struggle to modify the behaviors of subjects or their dynamic interactions. The difficulty is attributable to overfitting to reference images, which worsens if only a single reference image is available. We propose DynASyn, an effective multi-subject personalization from a single reference image addressing these challenges. DynASyn preserves the subject identity in the personalization process by aligning concept-based priors with subject appearances and actions. This is achieved by regularizing the attention maps between the subject token and images through concept-based priors. In addition, we propose concept-based prompt-and-image augmentation for an enhanced trade-off between identity preservation and action diversity. We adopt an SDE-based editing guided by augmented prompts to generate diverse appearances and actions while maintaining identity consistency in the augmented images. Experiments show that DynASyn is capable of synthesizing highly realistic images of subjects with novel contexts and dynamic interactions with the surroundings, and outperforms baseline methods in both quantitative and qualitative aspects.
From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents
Since the first instances of online education, where courses were uploaded to accessible and shared online platforms, this form of scaling the dissemination of human knowledge to reach a broader audience has sparked extensive discussion and widespread adoption. Recognizing that personalized learning still holds significant potential for improvement, new AI technologies have been continuously integrated into this learning format, resulting in a variety of educational AI applications such as educational recommendation and intelligent tutoring. The emergence of intelligence in large language models (LLMs) has allowed for these educational enhancements to be built upon a unified foundational model, enabling deeper integration. In this context, we propose MAIC (Massive AI-empowered Course), a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom, balancing scalability with adaptivity. Beyond exploring the conceptual framework and technical innovations, we conduct preliminary experiments at Tsinghua University, one of China's leading universities. Drawing from over 100,000 learning records of more than 500 students, we obtain a series of valuable observations and initial analyses. This project will continue to evolve, ultimately aiming to establish a comprehensive open platform that supports and unifies research, technology, and applications in exploring the possibilities of online education in the era of large model AI. We envision this platform as a collaborative hub, bringing together educators, researchers, and innovators to collectively explore the future of AI-driven online education.
ProPILE: Probing Privacy Leakage in Large Language Models
The rapid advancement and widespread use of large language models (LLMs) have raised significant concerns regarding the potential leakage of personally identifiable information (PII). These models are often trained on vast quantities of web-collected data, which may inadvertently include sensitive personal data. This paper presents ProPILE, a novel probing tool designed to empower data subjects, or the owners of the PII, with awareness of potential PII leakage in LLM-based services. ProPILE lets data subjects formulate prompts based on their own PII to evaluate the level of privacy intrusion in LLMs. We demonstrate its application on the OPT-1.3B model trained on the publicly available Pile dataset. We show how hypothetical data subjects may assess the likelihood of their PII being included in the Pile dataset being revealed. ProPILE can also be leveraged by LLM service providers to effectively evaluate their own levels of PII leakage with more powerful prompts specifically tuned for their in-house models. This tool represents a pioneering step towards empowering the data subjects for their awareness and control over their own data on the web.
Customization Assistant for Text-to-image Generation
Customizing pre-trained text-to-image generation model has attracted massive research interest recently, due to its huge potential in real-world applications. Although existing methods are able to generate creative content for a novel concept contained in single user-input image, their capability are still far from perfection. Specifically, most existing methods require fine-tuning the generative model on testing images. Some existing methods do not require fine-tuning, while their performance are unsatisfactory. Furthermore, the interaction between users and models are still limited to directive and descriptive prompts such as instructions and captions. In this work, we build a customization assistant based on pre-trained large language model and diffusion model, which can not only perform customized generation in a tuning-free manner, but also enable more user-friendly interactions: users can chat with the assistant and input either ambiguous text or clear instruction. Specifically, we propose a new framework consists of a new model design and a novel training strategy. The resulting assistant can perform customized generation in 2-5 seconds without any test time fine-tuning. Extensive experiments are conducted, competitive results have been obtained across different domains, illustrating the effectiveness of the proposed method.
Exploring the Convergence of HCI and Evolving Technologies in Information Systems
Modern technology driven information systems are part of our daily lives. However, this deep integration poses new challenges to the human computer interaction (HCI) professionals. With the rapid growth of mobile and cloud computing and the Internet of Things (IoT), the demand for HCI specialists to design user-friendly and adaptable interfaces has never been more pressing. Especially for diverse user groups such as children, the elderly and people with disabilities who need interfaces tailored to their needs regardless of time and location. This study reviewed 50 recent papers on HCI interface design for modern information systems. The goal is to see how well these methods address the demands of current technology. The findings show that most HCI design methods are still based on old desktop models and do not support mobile users and location-based services well. Most existing interface design guidelines do not align with the flexibility and dynamism of emerging technologies. The goal of this study is to improve interface design by combining agile methodologies with human-centered design principles. Future studies should also incorporate both qualitative and quantitative approaches, particularly in the context of cloud-based technologies and organizational information systems. This approach aims to bridge the gap between current interface design practices and the changing technological landscape.
Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, but current safety mechanisms apply uniform standards that often fail to account for individual user preferences. These models overlook the diverse safety boundaries shaped by factors like age, mental health, and personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that allows user-specific control over safety behaviors in generative models. PSA integrates personalized user profiles into the diffusion process, adjusting the model's behavior to match individual safety preferences while preserving image quality. We introduce a new dataset, Sage, which captures user-specific safety preferences and incorporates these profiles through a cross-attention mechanism. Experiments show that PSA outperforms existing methods in harmful content suppression and aligns generated content better with user constraints, achieving higher Win Rate and Pass Rate scores. Our code, data, and models are publicly available at https://torpedo2648.github.io/PSAlign/.
Personalized Resource Allocation in Wireless Networks: An AI-Enabled and Big Data-Driven Multi-Objective Optimization
The design and optimization of wireless networks have mostly been based on strong mathematical and theoretical modeling. Nonetheless, as novel applications emerge in the era of 5G and beyond, unprecedented levels of complexity will be encountered in the design and optimization of the network. As a result, the use of Artificial Intelligence (AI) is envisioned for wireless network design and optimization due to the flexibility and adaptability it offers in solving extremely complex problems in real-time. One of the main future applications of AI is enabling user-level personalization for numerous use cases. AI will revolutionize the way we interact with computers in which computers will be able to sense commands and emotions from humans in a non-intrusive manner, making the entire process transparent to users. By leveraging this capability, and accelerated by the advances in computing technologies, wireless networks can be redesigned to enable the personalization of network services to the user level in real-time. While current wireless networks are being optimized to achieve a predefined set of quality requirements, the personalization technology advocated in this article is supported by an intelligent big data-driven layer designed to micro-manage the scarce network resources. This layer provides the intelligence required to decide the necessary service quality that achieves the target satisfaction level for each user. Due to its dynamic and flexible design, personalized networks are expected to achieve unprecedented improvements in optimizing two contradicting objectives in wireless networks: saving resources and improving user satisfaction levels.
xbench: Tracking Agents Productivity Scaling with Profession-Aligned Real-World Evaluations
We introduce xbench, a dynamic, profession-aligned evaluation suite designed to bridge the gap between AI agent capabilities and real-world productivity. While existing benchmarks often focus on isolated technical skills, they may not accurately reflect the economic value agents deliver in professional settings. To address this, xbench targets commercially significant domains with evaluation tasks defined by industry professionals. Our framework creates metrics that strongly correlate with productivity value, enables prediction of Technology-Market Fit (TMF), and facilitates tracking of product capabilities over time. As our initial implementations, we present two benchmarks: Recruitment and Marketing. For Recruitment, we collect 50 tasks from real-world headhunting business scenarios to evaluate agents' abilities in company mapping, information retrieval, and talent sourcing. For Marketing, we assess agents' ability to match influencers with advertiser needs, evaluating their performance across 50 advertiser requirements using a curated pool of 836 candidate influencers. We present initial evaluation results for leading contemporary agents, establishing a baseline for these professional domains. Our continuously updated evalsets and evaluations are available at https://xbench.org.
RE-GAINS & EnChAnT: Intelligent Tool Manipulation Systems For Enhanced Query Responses
Large Language Models (LLMs) currently struggle with tool invocation and chaining, as they often hallucinate or miss essential steps in a sequence. We propose RE-GAINS and EnChAnT, two novel frameworks that empower LLMs to tackle complex user queries by making API calls to external tools based on tool descriptions and argument lists. Tools are chained based on the expected output, without receiving the actual results from each individual call. EnChAnT, an open-source solution, leverages an LLM format enforcer, OpenChat 3.5 (an LLM), and ToolBench's API Retriever. RE-GAINS utilizes OpenAI models and embeddings with a specialized prompt based on the Reasoning via Planning (RAP) framework. Both frameworks are low cost (0.01\$ per query). Our key contribution is enabling LLMs for tool invocation and chaining using modifiable, externally described tools.
Conceptrol: Concept Control of Zero-shot Personalized Image Generation
Personalized image generation with text-to-image diffusion models generates unseen images based on reference image content. Zero-shot adapter methods such as IP-Adapter and OminiControl are especially interesting because they do not require test-time fine-tuning. However, they struggle to balance preserving personalized content and adherence to the text prompt. We identify a critical design flaw resulting in this performance gap: current adapters inadequately integrate personalization images with the textual descriptions. The generated images, therefore, replicate the personalized content rather than adhere to the text prompt instructions. Yet the base text-to-image has strong conceptual understanding capabilities that can be leveraged. We propose Conceptrol, a simple yet effective framework that enhances zero-shot adapters without adding computational overhead. Conceptrol constrains the attention of visual specification with a textual concept mask that improves subject-driven generation capabilities. It achieves as much as 89% improvement on personalization benchmarks over the vanilla IP-Adapter and can even outperform fine-tuning approaches such as Dreambooth LoRA. The source code is available at https://github.com/QY-H00/Conceptrol.
Metarobotics for Industry and Society: Vision, Technologies, and Opportunities
Metarobotics aims to combine next generation wireless communication, multi-sense immersion, and collective intelligence to provide a pervasive, itinerant, and non-invasive access and interaction with distant robotized applications. Industry and society are expected to benefit from these functionalities. For instance, robot programmers will no longer travel worldwide to plan and test robot motions, even collaboratively. Instead, they will have a personalized access to robots and their environments from anywhere, thus spending more time with family and friends. Students enrolled in robotics courses will be taught under authentic industrial conditions in real-time. This paper describes objectives of Metarobotics in society, industry, and in-between. It identifies and surveys technologies likely to enable their completion and provides an architecture to put forward the interplay of key components of Metarobotics. Potentials for self-determination, self-efficacy, and work-life-flexibility in robotics-related applications in Society 5.0, Industry 4.0, and Industry 5.0 are outlined.
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: https://functional-manipulation-benchmark.github.io
GraphiMind: LLM-centric Interface for Information Graphics Design
Information graphics are pivotal in effective information dissemination and storytelling. However, creating such graphics is extremely challenging for non-professionals, since the design process requires multifaceted skills and comprehensive knowledge. Thus, despite the many available authoring tools, a significant gap remains in enabling non-experts to produce compelling information graphics seamlessly, especially from scratch. Recent breakthroughs show that Large Language Models (LLMs), especially when tool-augmented, can autonomously engage with external tools, making them promising candidates for enabling innovative graphic design applications. In this work, we propose a LLM-centric interface with the agent GraphiMind for automatic generation, recommendation, and composition of information graphics design resources, based on user intent expressed through natural language. Our GraphiMind integrates a Textual Conversational Interface, powered by tool-augmented LLM, with a traditional Graphical Manipulation Interface, streamlining the entire design process from raw resource curation to composition and refinement. Extensive evaluations highlight our tool's proficiency in simplifying the design process, opening avenues for its use by non-professional users. Moreover, we spotlight the potential of LLMs in reshaping the domain of information graphics design, offering a blend of automation, versatility, and user-centric interactivity.
Personalized Over-the-Air Federated Learning with Personalized Reconfigurable Intelligent Surfaces
Over-the-air federated learning (OTA-FL) provides bandwidth-efficient learning by leveraging the inherent superposition property of wireless channels. Personalized federated learning balances performance for users with diverse datasets, addressing real-life data heterogeneity. We propose the first personalized OTA-FL scheme through multi-task learning, assisted by personal reconfigurable intelligent surfaces (RIS) for each user. We take a cross-layer approach that optimizes communication and computation resources for global and personalized tasks in time-varying channels with imperfect channel state information, using multi-task learning for non-i.i.d data. Our PROAR-PFed algorithm adaptively designs power, local iterations, and RIS configurations. We present convergence analysis for non-convex objectives and demonstrate that PROAR-PFed outperforms state-of-the-art on the Fashion-MNIST dataset.
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos
Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the visual features used are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Extensive experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
HealthGenie: Empowering Users with Healthy Dietary Guidance through Knowledge Graph and Large Language Models
Seeking dietary guidance often requires navigating complex professional knowledge while accommodating individual health conditions. Knowledge Graphs (KGs) offer structured and interpretable nutritional information, whereas Large Language Models (LLMs) naturally facilitate conversational recommendation delivery. In this paper, we present HealthGenie, an interactive system that combines the strengths of LLMs and KGs to provide personalized dietary recommendations along with hierarchical information visualization for a quick and intuitive overview. Upon receiving a user query, HealthGenie performs query refinement and retrieves relevant information from a pre-built KG. The system then visualizes and highlights pertinent information, organized by defined categories, while offering detailed, explainable recommendation rationales. Users can further tailor these recommendations by adjusting preferences interactively. Our evaluation, comprising a within-subject comparative experiment and an open-ended discussion, demonstrates that HealthGenie effectively supports users in obtaining personalized dietary guidance based on their health conditions while reducing interaction effort and cognitive load. These findings highlight the potential of LLM-KG integration in supporting decision-making through explainable and visualized information. We examine the system's usefulness and effectiveness with an N=12 within-subject study and provide design considerations for future systems that integrate conversational LLM and KG.
Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios
The recent trend of using Large Language Models (LLMs) as intelligent agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs' ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset during planning. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.
Clinical knowledge in LLMs does not translate to human interactions
Global healthcare providers are exploring use of large language models (LLMs) to provide medical advice to the public. LLMs now achieve nearly perfect scores on medical licensing exams, but this does not necessarily translate to accurate performance in real-world settings. We tested if LLMs can assist members of the public in identifying underlying conditions and choosing a course of action (disposition) in ten medical scenarios in a controlled study with 1,298 participants. Participants were randomly assigned to receive assistance from an LLM (GPT-4o, Llama 3, Command R+) or a source of their choice (control). Tested alone, LLMs complete the scenarios accurately, correctly identifying conditions in 94.9% of cases and disposition in 56.3% on average. However, participants using the same LLMs identified relevant conditions in less than 34.5% of cases and disposition in less than 44.2%, both no better than the control group. We identify user interactions as a challenge to the deployment of LLMs for medical advice. Standard benchmarks for medical knowledge and simulated patient interactions do not predict the failures we find with human participants. Moving forward, we recommend systematic human user testing to evaluate interactive capabilities prior to public deployments in healthcare.
Beyond Relevance: An Adaptive Exploration-Based Framework for Personalized Recommendations
Recommender systems must balance personalization, diversity, and robustness to cold-start scenarios to remain effective in dynamic content environments. This paper introduces an adaptive, exploration-based recommendation framework that adjusts to evolving user preferences and content distributions to promote diversity and novelty without compromising relevance. The system represents items using sentence-transformer embeddings and organizes them into semantically coherent clusters through an online algorithm with adaptive thresholding. A user-controlled exploration mechanism enhances diversity by selectively sampling from under-explored clusters. Experiments on the MovieLens dataset show that enabling exploration reduces intra-list similarity from 0.34 to 0.26 and increases unexpectedness to 0.73, outperforming collaborative filtering and popularity-based baselines. A/B testing with 300 simulated users reveals a strong link between interaction history and preference for diversity, with 72.7% of long-term users favoring exploratory recommendations. Computational analysis confirms that clustering and recommendation processes scale linearly with the number of clusters. These results demonstrate that adaptive exploration effectively mitigates over-specialization while preserving personalization and efficiency.