Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePersuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good
Developing intelligent persuasive conversational agents to change people's opinions and actions for social good is the frontier in advancing the ethical development of automated dialogue systems. To do so, the first step is to understand the intricate organization of strategic disclosures and appeals employed in human persuasion conversations. We designed an online persuasion task where one participant was asked to persuade the other to donate to a specific charity. We collected a large dataset with 1,017 dialogues and annotated emerging persuasion strategies from a subset. Based on the annotation, we built a baseline classifier with context information and sentence-level features to predict the 10 persuasion strategies used in the corpus. Furthermore, to develop an understanding of personalized persuasion processes, we analyzed the relationships between individuals' demographic and psychological backgrounds including personality, morality, value systems, and their willingness for donation. Then, we analyzed which types of persuasion strategies led to a greater amount of donation depending on the individuals' personal backgrounds. This work lays the ground for developing a personalized persuasive dialogue system.
Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language
We are exposed to much information trying to influence us, such as teaser messages, debates, politically framed news, and propaganda - all of which use persuasive language. With the recent interest in Large Language Models (LLMs), we study the ability of LLMs to produce persuasive text. As opposed to prior work which focuses on particular domains or types of persuasion, we conduct a general study across various domains to measure and benchmark to what degree LLMs produce persuasive text - both when explicitly instructed to rewrite text to be more or less persuasive and when only instructed to paraphrase. To this end, we construct a new dataset, Persuasive-Pairs, of pairs each consisting of a short text and of a text rewritten by an LLM to amplify or diminish persuasive language. We multi-annotate the pairs on a relative scale for persuasive language. This data is not only a valuable resource in itself, but we also show that it can be used to train a regression model to predict a score of persuasive language between text pairs. This model can score and benchmark new LLMs across domains, thereby facilitating the comparison of different LLMs. Finally, we discuss effects observed for different system prompts. Notably, we find that different 'personas' in the system prompt of LLaMA3 change the persuasive language in the text substantially, even when only instructed to paraphrase. These findings underscore the importance of investigating persuasive language in LLM generated text.
Optimal Rates and Efficient Algorithms for Online Bayesian Persuasion
Bayesian persuasion studies how an informed sender should influence beliefs of rational receivers who take decisions through Bayesian updating of a common prior. We focus on the online Bayesian persuasion framework, in which the sender repeatedly faces one or more receivers with unknown and adversarially selected types. First, we show how to obtain a tight tilde O(T^{1/2}) regret bound in the case in which the sender faces a single receiver and has partial feedback, improving over the best previously known bound of tilde O(T^{4/5}). Then, we provide the first no-regret guarantees for the multi-receiver setting under partial feedback. Finally, we show how to design no-regret algorithms with polynomial per-iteration running time by exploiting type reporting, thereby circumventing known intractability results on online Bayesian persuasion. We provide efficient algorithms guaranteeing a O(T^{1/2}) regret upper bound both in the single- and multi-receiver scenario when type reporting is allowed.
LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
Large Language Models Are More Persuasive Than Incentivized Human Persuaders
We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
Zero-shot Persuasive Chatbots with LLM-Generated Strategies and Information Retrieval
Persuasion plays a pivotal role in a wide range of applications from health intervention to the promotion of social good. Persuasive chatbots can accelerate the positive effects of persuasion in such applications. Existing methods rely on fine-tuning persuasive chatbots with task-specific training data which is costly, if not infeasible, to collect. To address this issue, we propose a method to leverage the generalizability and inherent persuasive abilities of large language models (LLMs) in creating effective and truthful persuasive chatbot for any given domain in a zero-shot manner. Unlike previous studies which used pre-defined persuasion strategies, our method first uses an LLM to generate responses, then extracts the strategies used on the fly, and replaces any unsubstantiated claims in the response with retrieved facts supporting the strategies. We applied our chatbot, PersuaBot, to three significantly different domains needing persuasion skills: donation solicitation, recommendations, and health intervention. Our experiments on simulated and human conversations show that our zero-shot approach is more persuasive than prior work, while achieving factual accuracy surpassing state-of-the-art knowledge-oriented chatbots. Our study demonstrated that when persuasive chatbots are employed responsibly for social good, it is an enabler of positive individual and social change.
RESPER: Computationally Modelling Resisting Strategies in Persuasive Conversations
Modelling persuasion strategies as predictors of task outcome has several real-world applications and has received considerable attention from the computational linguistics community. However, previous research has failed to account for the resisting strategies employed by an individual to foil such persuasion attempts. Grounded in prior literature in cognitive and social psychology, we propose a generalised framework for identifying resisting strategies in persuasive conversations. We instantiate our framework on two distinct datasets comprising persuasion and negotiation conversations. We also leverage a hierarchical sequence-labelling neural architecture to infer the aforementioned resisting strategies automatically. Our experiments reveal the asymmetry of power roles in non-collaborative goal-directed conversations and the benefits accrued from incorporating resisting strategies on the final conversation outcome. We also investigate the role of different resisting strategies on the conversation outcome and glean insights that corroborate with past findings. We also make the code and the dataset of this work publicly available at https://github.com/americast/resper.
Persuasion Should be Double-Blind: A Multi-Domain Dialogue Dataset With Faithfulness Based on Causal Theory of Mind
Persuasive dialogue plays a pivotal role in human communication, influencing various domains. Recent persuasive dialogue datasets often fail to align with real-world interpersonal interactions, leading to unfaithful representations. For instance, unrealistic scenarios may arise, such as when the persuadee explicitly instructs the persuader on which persuasion strategies to employ, with each of the persuadee's questions corresponding to a specific strategy for the persuader to follow. This issue can be attributed to a violation of the "Double Blind" condition, where critical information is fully shared between participants. In actual human interactions, however, key information such as the mental state of the persuadee and the persuasion strategies of the persuader is not directly accessible. The persuader must infer the persuadee's mental state using Theory of Mind capabilities and construct arguments that align with the persuadee's motivations. To address this gap, we introduce ToMMA, a novel multi-agent framework for dialogue generation that is guided by causal Theory of Mind. This framework ensures that information remains undisclosed between agents, preserving "double-blind" conditions, while causal ToM directs the persuader's reasoning, enhancing alignment with human-like persuasion dynamics. Consequently, we present CToMPersu, a multi-domain, multi-turn persuasive dialogue dataset that tackles both double-blind and logical coherence issues, demonstrating superior performance across multiple metrics and achieving better alignment with real human dialogues. Our dataset and prompts are available at https://github.com/DingyiZhang/ToMMA-CToMPersu .
Persuasion at Play: Understanding Misinformation Dynamics in Demographic-Aware Human-LLM Interactions
Existing challenges in misinformation exposure and susceptibility vary across demographic groups, as some populations are more vulnerable to misinformation than others. Large language models (LLMs) introduce new dimensions to these challenges through their ability to generate persuasive content at scale and reinforcing existing biases. This study investigates the bidirectional persuasion dynamics between LLMs and humans when exposed to misinformative content. We analyze human-to-LLM influence using human-stance datasets and assess LLM-to-human influence by generating LLM-based persuasive arguments. Additionally, we use a multi-agent LLM framework to analyze the spread of misinformation under persuasion among demographic-oriented LLM agents. Our findings show that demographic factors influence susceptibility to misinformation in LLMs, closely reflecting the demographic-based patterns seen in human susceptibility. We also find that, similar to human demographic groups, multi-agent LLMs exhibit echo chamber behavior. This research explores the interplay between humans and LLMs, highlighting demographic differences in the context of misinformation and offering insights for future interventions.
Persuasion with Large Language Models: a Survey
The rapid rise of Large Language Models (LLMs) has created new disruptive possibilities for persuasive communication, by enabling fully-automated personalized and interactive content generation at an unprecedented scale. In this paper, we survey the research field of LLM-based persuasion that has emerged as a result. We begin by exploring the different modes in which LLM Systems are used to influence human attitudes and behaviors. In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness. We identify key factors influencing their effectiveness, such as the manner of personalization and whether the content is labelled as AI-generated. We also summarize the experimental designs that have been used to evaluate progress. Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks, including the spread of misinformation, the magnification of biases, and the invasion of privacy. These risks underscore the urgent need for ethical guidelines and updated regulatory frameworks to avoid the widespread deployment of irresponsible and harmful LLM Systems.
Measuring and Improving Persuasiveness of Large Language Models
LLMs are increasingly being used in workflows involving generating content to be consumed by humans (e.g., marketing) and also in directly interacting with humans (e.g., through chatbots). The development of such systems that are capable of generating verifiably persuasive messages presents both opportunities and challenges for society. On the one hand, such systems could positively impact domains like advertising and social good, such as addressing drug addiction, and on the other, they could be misused for spreading misinformation and shaping political opinions. To channel LLMs' impact on society, we need to develop systems to measure and benchmark their persuasiveness. With this motivation, we introduce PersuasionBench and PersuasionArena, the first large-scale benchmark and arena containing a battery of tasks to measure the persuasion ability of generative models automatically. We investigate to what extent LLMs know and leverage linguistic patterns that can help them generate more persuasive language. Our findings indicate that the persuasiveness of LLMs correlates positively with model size, but smaller models can also be made to have a higher persuasiveness than much larger models. Notably, targeted training using synthetic and natural datasets significantly enhances smaller models' persuasive capabilities, challenging scale-dependent assumptions. Our findings carry key implications for both model developers and policymakers. For instance, while the EU AI Act and California's SB-1047 aim to regulate AI models based on the number of floating point operations, we demonstrate that simple metrics like this alone fail to capture the full scope of AI's societal impact. We invite the community to explore and contribute to PersuasionArena and PersuasionBench, available at https://bit.ly/measure-persuasion, to advance our understanding of AI-driven persuasion and its societal implications.
How Johnny Can Persuade LLMs to Jailbreak Them: Rethinking Persuasion to Challenge AI Safety by Humanizing LLMs
Most traditional AI safety research has approached AI models as machines and centered on algorithm-focused attacks developed by security experts. As large language models (LLMs) become increasingly common and competent, non-expert users can also impose risks during daily interactions. This paper introduces a new perspective to jailbreak LLMs as human-like communicators, to explore this overlooked intersection between everyday language interaction and AI safety. Specifically, we study how to persuade LLMs to jailbreak them. First, we propose a persuasion taxonomy derived from decades of social science research. Then, we apply the taxonomy to automatically generate interpretable persuasive adversarial prompts (PAP) to jailbreak LLMs. Results show that persuasion significantly increases the jailbreak performance across all risk categories: PAP consistently achieves an attack success rate of over 92% on Llama 2-7b Chat, GPT-3.5, and GPT-4 in 10 trials, surpassing recent algorithm-focused attacks. On the defense side, we explore various mechanisms against PAP and, found a significant gap in existing defenses, and advocate for more fundamental mitigation for highly interactive LLMs
ToMAP: Training Opponent-Aware LLM Persuaders with Theory of Mind
Large language models (LLMs) have shown promising potential in persuasion, but existing works on training LLM persuaders are still preliminary. Notably, while humans are skilled in modeling their opponent's thoughts and opinions proactively and dynamically, current LLMs struggle with such Theory of Mind (ToM) reasoning, resulting in limited diversity and opponent awareness. To address this limitation, we introduce Theory of Mind Augmented Persuader (ToMAP), a novel approach for building more flexible persuader agents by incorporating two theory of mind modules that enhance the persuader's awareness and analysis of the opponent's mental state. Specifically, we begin by prompting the persuader to consider possible objections to the target central claim, and then use a text encoder paired with a trained MLP classifier to predict the opponent's current stance on these counterclaims. Our carefully designed reinforcement learning schema enables the persuader learns how to analyze opponent-related information and utilize it to generate more effective arguments. Experiments show that the ToMAP persuader, while containing only 3B parameters, outperforms much larger baselines, like GPT-4o, with a relative gain of 39.4% across multiple persuadee models and diverse corpora. Notably, ToMAP exhibits complex reasoning chains and reduced repetition during training, which leads to more diverse and effective arguments. The opponent-aware feature of ToMAP also makes it suitable for long conversations and enables it to employ more logical and opponent-aware strategies. These results underscore our method's effectiveness and highlight its potential for developing more persuasive language agents. Code is available at: https://github.com/ulab-uiuc/ToMAP.
The Persuasive Power of Large Language Models
The increasing capability of Large Language Models to act as human-like social agents raises two important questions in the area of opinion dynamics. First, whether these agents can generate effective arguments that could be injected into the online discourse to steer the public opinion. Second, whether artificial agents can interact with each other to reproduce dynamics of persuasion typical of human social systems, opening up opportunities for studying synthetic social systems as faithful proxies for opinion dynamics in human populations. To address these questions, we designed a synthetic persuasion dialogue scenario on the topic of climate change, where a 'convincer' agent generates a persuasive argument for a 'skeptic' agent, who subsequently assesses whether the argument changed its internal opinion state. Different types of arguments were generated to incorporate different linguistic dimensions underpinning psycho-linguistic theories of opinion change. We then asked human judges to evaluate the persuasiveness of machine-generated arguments. Arguments that included factual knowledge, markers of trust, expressions of support, and conveyed status were deemed most effective according to both humans and agents, with humans reporting a marked preference for knowledge-based arguments. Our experimental framework lays the groundwork for future in-silico studies of opinion dynamics, and our findings suggest that artificial agents have the potential of playing an important role in collective processes of opinion formation in online social media.
Teaching Models to Balance Resisting and Accepting Persuasion
Large language models (LLMs) are susceptible to persuasion, which can pose risks when models are faced with an adversarial interlocutor. We take a first step towards defending models against persuasion while also arguing that defense against adversarial (i.e. negative) persuasion is only half of the equation: models should also be able to accept beneficial (i.e. positive) persuasion to improve their answers. We show that optimizing models for only one side results in poor performance on the other. In order to balance positive and negative persuasion, we introduce Persuasion-Balanced Training (or PBT), which leverages multi-agent recursive dialogue trees to create data and trains models via preference optimization to accept persuasion when appropriate. PBT consistently improves resistance to misinformation and resilience to being challenged while also resulting in the best overall performance on holistic data containing both positive and negative persuasion. Crucially, we show that PBT models are better teammates in multi-agent debates. We find that without PBT, pairs of stronger and weaker models have unstable performance, with the order in which the models present their answers determining whether the team obtains the stronger or weaker model's performance. PBT leads to better and more stable results and less order dependence, with the stronger model consistently pulling the weaker one up.
Refine and Imitate: Reducing Repetition and Inconsistency in Persuasion Dialogues via Reinforcement Learning and Human Demonstration
Persuasion dialogue systems reflect the machine's ability to make strategic moves beyond verbal communication, and therefore differentiate themselves from task-oriented or open-domain dialogue systems and have their own unique values. However, the repetition and inconsistency problems still persist in dialogue response generation and could substantially impact user experience and impede the persuasion outcome. Besides, although reinforcement learning (RL) approaches have achieved big success in strategic tasks such as games, they require a sophisticated user simulator to provide real-time feedback to the dialogue system, which limits the application of RL on persuasion dialogues. To address these issues towards a better persuasion dialogue system, we apply RL to refine a language model baseline without user simulators, and distill sentence-level information about repetition, inconsistency, and task relevance through rewards. Moreover, to better accomplish the persuasion task, the model learns from human demonstration to imitate human persuasion behavior and selects the most persuasive responses. Experiments show that our model outperforms previous state-of-the-art dialogue models on both automatic metrics and human evaluation results on a donation persuasion task, and generates more diverse, consistent and persuasive conversations according to the user feedback.
Human Choice Prediction in Language-based Persuasion Games: Simulation-based Off-Policy Evaluation
Recent advances in Large Language Models (LLMs) have spurred interest in designing LLM-based agents for tasks that involve interaction with human and artificial agents. This paper addresses a key aspect in the design of such agents: Predicting human decision in off-policy evaluation (OPE), focusing on language-based persuasion games, where the agent's goal is to influence its partner's decisions through verbal messages. Using a dedicated application, we collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents. Our approach involves training a model on human interactions with one agents subset to predict decisions when interacting with another. To enhance off-policy performance, we propose a simulation technique involving interactions across the entire agent space and simulated decision makers. Our learning strategy yields significant OPE gains, e.g., improving prediction accuracy in the top 15% challenging cases by 7.1%. Our code and the large dataset we collected and generated are submitted as supplementary material and publicly available in our GitHub repository: https://github.com/eilamshapira/HumanChoicePrediction
On the Conversational Persuasiveness of Large Language Models: A Randomized Controlled Trial
The development and popularization of large language models (LLMs) have raised concerns that they will be used to create tailor-made, convincing arguments to push false or misleading narratives online. Early work has found that language models can generate content perceived as at least on par and often more persuasive than human-written messages. However, there is still limited knowledge about LLMs' persuasive capabilities in direct conversations with human counterparts and how personalization can improve their performance. In this pre-registered study, we analyze the effect of AI-driven persuasion in a controlled, harmless setting. We create a web-based platform where participants engage in short, multiple-round debates with a live opponent. Each participant is randomly assigned to one of four treatment conditions, corresponding to a two-by-two factorial design: (1) Games are either played between two humans or between a human and an LLM; (2) Personalization might or might not be enabled, granting one of the two players access to basic sociodemographic information about their opponent. We found that participants who debated GPT-4 with access to their personal information had 81.7% (p < 0.01; N=820 unique participants) higher odds of increased agreement with their opponents compared to participants who debated humans. Without personalization, GPT-4 still outperforms humans, but the effect is lower and statistically non-significant (p=0.31). Overall, our results suggest that concerns around personalization are meaningful and have important implications for the governance of social media and the design of new online environments.
Alternating Recurrent Dialog Model with Large-scale Pre-trained Language Models
Existing dialog system models require extensive human annotations and are difficult to generalize to different tasks. The recent success of large pre-trained language models such as BERT and GPT-2 (Devlin et al., 2019; Radford et al., 2019) have suggested the effectiveness of incorporating language priors in down-stream NLP tasks. However, how much pre-trained language models can help dialog response generation is still under exploration. In this paper, we propose a simple, general, and effective framework: Alternating Roles Dialog Model (ARDM). ARDM models each speaker separately and takes advantage of the large pre-trained language model. It requires no supervision from human annotations such as belief states or dialog acts to achieve effective conversations. ARDM outperforms or is on par with state-of-the-art methods on two popular task-oriented dialog datasets: CamRest676 and MultiWOZ. Moreover, we can generalize ARDM to more challenging, non-collaborative tasks such as persuasion. In persuasion tasks, ARDM is capable of generating human-like responses to persuade people to donate to a charity.
BCAmirs at SemEval-2024 Task 4: Beyond Words: A Multimodal and Multilingual Exploration of Persuasion in Memes
Memes, combining text and images, frequently use metaphors to convey persuasive messages, shaping public opinion. Motivated by this, our team engaged in SemEval-2024 Task 4, a hierarchical multi-label classification task designed to identify rhetorical and psychological persuasion techniques embedded within memes. To tackle this problem, we introduced a caption generation step to assess the modality gap and the impact of additional semantic information from images, which improved our result. Our best model utilizes GPT-4 generated captions alongside meme text to fine-tune RoBERTa as the text encoder and CLIP as the image encoder. It outperforms the baseline by a large margin in all 12 subtasks. In particular, it ranked in top-3 across all languages in Subtask 2a, and top-4 in Subtask 2b, demonstrating quantitatively strong performance. The improvement achieved by the introduced intermediate step is likely attributable to the metaphorical essence of images that challenges visual encoders. This highlights the potential for improving abstract visual semantics encoding.
Language of Persuasion and Misrepresentation in Business Communication: A Textual Detection Approach
Business communication digitisation has reorganised the process of persuasive discourse, which allows not only greater transparency but also advanced deception. This inquiry synthesises classical rhetoric and communication psychology with linguistic theory and empirical studies in the financial reporting, sustainability discourse, and digital marketing to explain how deceptive language can be systematically detected using persuasive lexicon. In controlled settings, detection accuracies of greater than 99% were achieved by using computational textual analysis as well as personalised transformer models. However, reproducing this performance in multilingual settings is also problematic and, to a large extent, this is because it is not easy to find sufficient data, and because few multilingual text-processing infrastructures are in place. This evidence shows that there has been an increasing gap between the theoretical representations of communication and those empirically approximated, and therefore, there is a need to have strong automatic text-identification systems where AI-based discourse is becoming more realistic in communicating with humans.
Investigating Prompt Engineering in Diffusion Models
With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects.