new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 12

Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models

Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.

Recursive Introspection: Teaching Language Model Agents How to Self-Improve

A central piece in enabling intelligent agentic behavior in foundation models is to make them capable of introspecting upon their behavior, reasoning, and correcting their mistakes as more computation or interaction is available. Even the strongest proprietary large language models (LLMs) do not quite exhibit the ability of continually improving their responses sequentially, even in scenarios where they are explicitly told that they are making a mistake. In this paper, we develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to introduce this capability, despite prior work hypothesizing that this capability may not be possible to attain. Our approach prescribes an iterative fine-tuning procedure, which attempts to teach the model how to alter its response after having executed previously unsuccessful attempts to solve a hard test-time problem, with optionally additional environment feedback. RISE poses fine-tuning for a single-turn prompt as solving a multi-turn Markov decision process (MDP), where the initial state is the prompt. Inspired by principles in online imitation learning and reinforcement learning, we propose strategies for multi-turn data collection and training so as to imbue an LLM with the capability to recursively detect and correct its previous mistakes in subsequent iterations. Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks, outperforming several single-turn strategies given an equal amount of inference-time computation. We also find that RISE scales well, often attaining larger benefits with more capable models. Our analysis shows that RISE makes meaningful improvements to responses to arrive at the correct solution for challenging prompts, without disrupting one-turn abilities as a result of expressing more complex distributions.

Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search

Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.

Higher-Order Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions

Large language models (LLMs) are increasingly capable of simulating human behavior, offering cost-effective ways to estimate user responses during the early phases of survey design. While previous studies have examined whether models can reflect individual opinions or attitudes, we argue that a higher-order binding of virtual personas requires successfully approximating not only the opinions of a user as an identified member of a group, but also the nuanced ways in which that user perceives and evaluates those outside the group. In particular, faithfully simulating how humans perceive different social groups is critical for applying LLMs to various political science studies, including timely topics on polarization dynamics, inter-group conflict, and democratic backsliding. To this end, we propose a novel methodology for constructing virtual personas with synthetic user ``backstories" generated as extended, multi-turn interview transcripts. Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual, compared to previous methods. We show that virtual personas conditioned on our backstories closely replicate human response distributions (up to an 87\% improvement as measured by Wasserstein Distance) and produce effect sizes that closely match those observed in the original studies. Altogether, our work extends the applicability of LLMs beyond estimating individual self-opinions, enabling their use in a broader range of human studies.

VisionTrap: Vision-Augmented Trajectory Prediction Guided by Textual Descriptions

Predicting future trajectories for other road agents is an essential task for autonomous vehicles. Established trajectory prediction methods primarily use agent tracks generated by a detection and tracking system and HD map as inputs. In this work, we propose a novel method that also incorporates visual input from surround-view cameras, allowing the model to utilize visual cues such as human gazes and gestures, road conditions, vehicle turn signals, etc, which are typically hidden from the model in prior methods. Furthermore, we use textual descriptions generated by a Vision-Language Model (VLM) and refined by a Large Language Model (LLM) as supervision during training to guide the model on what to learn from the input data. Despite using these extra inputs, our method achieves a latency of 53 ms, making it feasible for real-time processing, which is significantly faster than that of previous single-agent prediction methods with similar performance. Our experiments show that both the visual inputs and the textual descriptions contribute to improvements in trajectory prediction performance, and our qualitative analysis highlights how the model is able to exploit these additional inputs. Lastly, in this work we create and release the nuScenes-Text dataset, which augments the established nuScenes dataset with rich textual annotations for every scene, demonstrating the positive impact of utilizing VLM on trajectory prediction. Our project page is at https://moonseokha.github.io/VisionTrap/

Guiding Large Language Models via Directional Stimulus Prompting

We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs. Instead of directly adjusting LLMs, our method employs a small tunable policy model (e.g., T5) to generate an auxiliary directional stimulus prompt for each input instance. These directional stimulus prompts act as nuanced, instance-specific hints and clues to guide LLMs in generating desired outcomes, such as including specific keywords in the generated summary. Our approach sidesteps the challenges of direct LLM tuning by optimizing the policy model to explore directional stimulus prompts that align LLMs with desired behaviors. The policy model can be optimized through 1) supervised fine-tuning using labeled data and 2) reinforcement learning from offline or online rewards based on the LLM's output. We assess our method across summarization, dialogue response generation, and chain-of-thought reasoning tasks. Our experiments demonstrate that the framework consistently improves LLMs' (e.g., ChatGPT, Codex, InstructGPT) performance on these supervised tasks using minimal labeled data. Notably, using just 80 dialogues on the MultiWOZ dataset, our approach enhances ChatGPT's performance by an impressive 41.4%, matching or surpassing some fully supervised start-of-the-art models. Additionally, the instance-specific chain-of-thought prompt generated by our approach improves InstructGPT's reasoning accuracy compared to human-crafted or automatically generated prompts. The code and data are publicly available at https://github.com/Leezekun/Directional-Stimulus-Prompting.

GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving

Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.

WorldSimBench: Towards Video Generation Models as World Simulators

Recent advancements in predictive models have demonstrated exceptional capabilities in predicting the future state of objects and scenes. However, the lack of categorization based on inherent characteristics continues to hinder the progress of predictive model development. Additionally, existing benchmarks are unable to effectively evaluate higher-capability, highly embodied predictive models from an embodied perspective. In this work, we classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench. WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks, covering three representative embodied scenarios: Open-Ended Embodied Environment, Autonomous, Driving, and Robot Manipulation. In the Explicit Perceptual Evaluation, we introduce the HF-Embodied Dataset, a video assessment dataset based on fine-grained human feedback, which we use to train a Human Preference Evaluator that aligns with human perception and explicitly assesses the visual fidelity of World Simulators. In the Implicit Manipulative Evaluation, we assess the video-action consistency of World Simulators by evaluating whether the generated situation-aware video can be accurately translated into the correct control signals in dynamic environments. Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.

DRESS: Instructing Large Vision-Language Models to Align and Interact with Humans via Natural Language Feedback

We present DRESS, a large vision language model (LVLM) that innovatively exploits Natural Language feedback (NLF) from Large Language Models to enhance its alignment and interactions by addressing two key limitations in the state-of-the-art LVLMs. First, prior LVLMs generally rely only on the instruction finetuning stage to enhance alignment with human preferences. Without incorporating extra feedback, they are still prone to generate unhelpful, hallucinated, or harmful responses. Second, while the visual instruction tuning data is generally structured in a multi-turn dialogue format, the connections and dependencies among consecutive conversational turns are weak. This reduces the capacity for effective multi-turn interactions. To tackle these, we propose a novel categorization of the NLF into two key types: critique and refinement. The critique NLF identifies the strengths and weaknesses of the responses and is used to align the LVLMs with human preferences. The refinement NLF offers concrete suggestions for improvement and is adopted to improve the interaction ability of the LVLMs-- which focuses on LVLMs' ability to refine responses by incorporating feedback in multi-turn interactions. To address the non-differentiable nature of NLF, we generalize conditional reinforcement learning for training. Our experimental results demonstrate that DRESS can generate more helpful (9.76%), honest (11.52%), and harmless (21.03%) responses, and more effectively learn from feedback during multi-turn interactions compared to SOTA LVMLs.

Explaining Large Language Models Decisions Using Shapley Values

The emergence of large language models (LLMs) has opened up exciting possibilities for simulating human behavior and cognitive processes, with potential applications in various domains, including marketing research and consumer behavior analysis. However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain due to glaring divergences that suggest fundamentally different underlying processes at play and the sensitivity of LLM responses to prompt variations. This paper presents a novel approach based on Shapley values from cooperative game theory to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output. Through two applications - a discrete choice experiment and an investigation of cognitive biases - we demonstrate how the Shapley value method can uncover what we term "token noise" effects, a phenomenon where LLM decisions are disproportionately influenced by tokens providing minimal informative content. This phenomenon raises concerns about the robustness and generalizability of insights obtained from LLMs in the context of human behavior simulation. Our model-agnostic approach extends its utility to proprietary LLMs, providing a valuable tool for practitioners and researchers to strategically optimize prompts and mitigate apparent cognitive biases. Our findings underscore the need for a more nuanced understanding of the factors driving LLM responses before relying on them as substitutes for human subjects in survey settings. We emphasize the importance of researchers reporting results conditioned on specific prompt templates and exercising caution when drawing parallels between human behavior and LLMs.

Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning

Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.

Aligning Language Models Using Follow-up Likelihood as Reward Signal

In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.

Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction

Language models have demonstrated impressive ability in context understanding and generative performance. Inspired by the recent success of language foundation models, in this paper, we propose LMTraj (Language-based Multimodal Trajectory predictor), which recasts the trajectory prediction task into a sort of question-answering problem. Departing from traditional numerical regression models, which treat the trajectory coordinate sequence as continuous signals, we consider them as discrete signals like text prompts. Specially, we first transform an input space for the trajectory coordinate into the natural language space. Here, the entire time-series trajectories of pedestrians are converted into a text prompt, and scene images are described as text information through image captioning. The transformed numerical and image data are then wrapped into the question-answering template for use in a language model. Next, to guide the language model in understanding and reasoning high-level knowledge, such as scene context and social relationships between pedestrians, we introduce an auxiliary multi-task question and answering. We then train a numerical tokenizer with the prompt data. We encourage the tokenizer to separate the integer and decimal parts well, and leverage it to capture correlations between the consecutive numbers in the language model. Lastly, we train the language model using the numerical tokenizer and all of the question-answer prompts. Here, we propose a beam-search-based most-likely prediction and a temperature-based multimodal prediction to implement both deterministic and stochastic inferences. Applying our LMTraj, we show that the language-based model can be a powerful pedestrian trajectory predictor, and outperforms existing numerical-based predictor methods. Code is publicly available at https://github.com/inhwanbae/LMTrajectory .

AVIS: Autonomous Visual Information Seeking with Large Language Models

In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Despite their stellar performance on a wide range of tasks, including in-context tasks only revealed during inference, vanilla transformers and variants trained for next-token predictions (a) do not learn an explicit world model of their environment which can be flexibly queried and (b) cannot be used for planning or navigation. In this paper, we consider partially observed environments (POEs), where an agent receives perceptually aliased observations as it navigates, which makes path planning hard. We introduce a transformer with (multiple) discrete bottleneck(s), TDB, whose latent codes learn a compressed representation of the history of observations and actions. After training a TDB to predict the future observation(s) given the history, we extract interpretable cognitive maps of the environment from its active bottleneck(s) indices. These maps are then paired with an external solver to solve (constrained) path planning problems. First, we show that a TDB trained on POEs (a) retains the near perfect predictive performance of a vanilla transformer or an LSTM while (b) solving shortest path problems exponentially faster. Second, a TDB extracts interpretable representations from text datasets, while reaching higher in-context accuracy than vanilla sequence models. Finally, in new POEs, a TDB (a) reaches near-perfect in-context accuracy, (b) learns accurate in-context cognitive maps (c) solves in-context path planning problems.

Large Language Models as Zero-Shot Human Models for Human-Robot Interaction

Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.

LALM: Long-Term Action Anticipation with Language Models

Understanding human activity is a crucial yet intricate task in egocentric vision, a field that focuses on capturing visual perspectives from the camera wearer's viewpoint. While traditional methods heavily rely on representation learning trained on extensive video data, there exists a significant limitation: obtaining effective video representations proves challenging due to the inherent complexity and variability in human activities.Furthermore, exclusive dependence on video-based learning may constrain a model's capability to generalize across long-tail classes and out-of-distribution scenarios. In this study, we introduce a novel approach for long-term action anticipation using language models (LALM), adept at addressing the complex challenges of long-term activity understanding without the need for extensive training. Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details. By leveraging the context provided by these past events, we devise a prompting strategy for action anticipation using large language models (LLMs). Moreover, we implement Maximal Marginal Relevance for example selection to facilitate in-context learning of the LLMs. Our experimental results demonstrate that LALM surpasses the state-of-the-art methods in the task of long-term action anticipation on the Ego4D benchmark. We further validate LALM on two additional benchmarks, affirming its capacity for generalization across intricate activities with different sets of taxonomies. These are achieved without specific fine-tuning.

Adaptive Human Trajectory Prediction via Latent Corridors

Human trajectory prediction is typically posed as a zero-shot generalization problem: a predictor is learnt on a dataset of human motion in training scenes, and then deployed on unseen test scenes. While this paradigm has yielded tremendous progress, it fundamentally assumes that trends in human behavior within the deployment scene are constant over time. As such, current prediction models are unable to adapt to scene-specific transient human behaviors, such as crowds temporarily gathering to see buskers, pedestrians hurrying through the rain and avoiding puddles, or a protest breaking out. We formalize the problem of scene-specific adaptive trajectory prediction and propose a new adaptation approach inspired by prompt tuning called latent corridors. By augmenting the input of any pre-trained human trajectory predictor with learnable image prompts, the predictor can improve in the deployment scene by inferring trends from extremely small amounts of new data (e.g., 2 humans observed for 30 seconds). With less than 0.1% additional model parameters, we see up to 23.9% ADE improvement in MOTSynth simulated data and 16.4% ADE in MOT and Wildtrack real pedestrian data. Qualitatively, we observe that latent corridors imbue predictors with an awareness of scene geometry and scene-specific human behaviors that non-adaptive predictors struggle to capture. The project website can be found at https://neerja.me/atp_latent_corridors/.

SimpleToM: Exposing the Gap between Explicit ToM Inference and Implicit ToM Application in LLMs

While prior work has explored whether large language models (LLMs) possess a "theory of mind" (ToM) - the ability to attribute mental states to oneself and others - there has been little work testing whether LLMs can implicitly apply such knowledge to predict behavior, or to judge whether an observed behavior is rational. Such skills are critical for appropriate interaction in social environments. We create a new dataset, SimpleTom, containing concise, diverse stories (e.g., "The can of Pringles has moldy chips in it. Mary picks up the can in the supermarket and walks to the cashier."), each with three questions that test different degrees of ToM reasoning, asking models to predict (a) mental state ("Is Mary aware of the mold?"), (b) behavior ("Will Mary pay for the chips or report the mold?"), and (c) judgment ("Mary paid for the chips. Was that reasonable?"). To our knowledge, SimpleToM is the first dataset to systematically explore downstream reasoning requiring knowledge of mental states in realistic scenarios. Our experimental results are intriguing: While most models can reliably predict mental state on our dataset (a), they often fail to correctly predict the behavior (b), and fare even worse at judging whether given behaviors are reasonable (c), despite being correctly aware of the protagonist's mental state should make such secondary predictions obvious. We further show that we can help models do better at (b) and (c) via interventions such as reminding the model of its earlier mental state answer and mental-state-specific chain-of-thought prompting, raising the action prediction accuracies (e.g., from 49.5% to 93.5% for GPT-4o) and judgment accuracies (e.g., from 15.3% to 94.7% in GPT-4o). While this shows that models can be coaxed to perform well, it requires task-specific interventions, and the natural model performances remain low, a cautionary tale for LLM deployment.

Interactive Natural Language Processing

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Large Language Models Assume People are More Rational than We Really are

In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.

Beyond the Surface: Probing the Ideological Depth of Large Language Models

Large Language Models (LLMs) have demonstrated pronounced ideological leanings, yet the stability and depth of these positions remain poorly understood. Surface-level responses can often be manipulated through simple prompt engineering, calling into question whether they reflect a coherent underlying ideology. This paper investigates the concept of "ideological depth" in LLMs, defined as the robustness and complexity of their internal political representations. We employ a dual approach: first, we measure the "steerability" of two well-known open-source LLMs using instruction prompting and activation steering. We find that while some models can easily switch between liberal and conservative viewpoints, others exhibit resistance or an increased rate of refusal, suggesting a more entrenched ideological structure. Second, we probe the internal mechanisms of these models using Sparse Autoencoders (SAEs). Preliminary analysis reveals that models with lower steerability possess more distinct and abstract ideological features. Our evaluations reveal that one model can contain 7.3x more political features than another model of similar size. This allows targeted ablation of a core political feature in an ideologically "deep" model, leading to consistent, logical shifts in its reasoning across related topics, whereas the same intervention in a "shallow" model results in an increase in refusal outputs. Our findings suggest that ideological depth is a quantifiable property of LLMs and that steerability serves as a valuable window into their latent political architecture.

TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems

We present a data-driven, end-to-end approach to transaction-based dialog systems that performs at near-human levels in terms of verbal response quality and factual grounding accuracy. We show that two essential components of the system produce these results: a sufficiently large and diverse, in-domain labeled dataset, and a neural network-based, pre-trained model that generates both verbal responses and API call predictions. In terms of data, we introduce TicketTalk, a movie ticketing dialog dataset with 23,789 annotated conversations. The movie ticketing conversations range from completely open-ended and unrestricted to more structured, both in terms of their knowledge base, discourse features, and number of turns. In qualitative human evaluations, model-generated responses trained on just 10,000 TicketTalk dialogs were rated to "make sense" 86.5 percent of the time, almost the same as human responses in the same contexts. Our simple, API-focused annotation schema results in a much easier labeling task making it faster and more cost effective. It is also the key component for being able to predict API calls accurately. We handle factual grounding by incorporating API calls in the training data, allowing our model to learn which actions to take and when. Trained on the same 10,000-dialog set, the model's API call predictions were rated to be correct 93.9 percent of the time in our evaluations, surpassing the ratings for the corresponding human labels. We show how API prediction and response generation scores improve as the dataset size incrementally increases from 5000 to 21,000 dialogs. Our analysis also clearly illustrates the benefits of pre-training. We are publicly releasing the TicketTalk dataset with this paper to facilitate future work on transaction-based dialogs.

Language Models (Mostly) Know What They Know

We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.

What Do You Want? User-centric Prompt Generation for Text-to-image Synthesis via Multi-turn Guidance

The emergence of text-to-image synthesis (TIS) models has significantly influenced digital image creation by producing high-quality visuals from written descriptions. Yet these models heavily rely on the quality and specificity of textual prompts, posing a challenge for novice users who may not be familiar with TIS-model-preferred prompt writing. Existing solutions relieve this via automatic model-preferred prompt generation from user queries. However, this single-turn manner suffers from limited user-centricity in terms of result interpretability and user interactivity. To address these issues, we propose DialPrompt, a multi-turn dialogue-based TIS prompt generation model that emphasises user-centricity. DialPrompt is designed to follow a multi-turn guidance workflow, where in each round of dialogue the model queries user with their preferences on possible optimization dimensions before generating the final TIS prompt. To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset. Through training on this dataset, DialPrompt can improve interpretability by allowing users to understand the correlation between specific phrases and image attributes. Additionally, it enables greater user control and engagement in the prompt generation process, leading to more personalized and visually satisfying outputs. Experiments indicate that DialPrompt achieves a competitive result in the quality of synthesized images, outperforming existing prompt engineering approaches by 5.7%. Furthermore, in our user evaluation, DialPrompt outperforms existing approaches by 46.5% in user-centricity score and is rated 7.9/10 by 19 human reviewers.

Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice

The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.

Keyword-Guided Neural Conversational Model

We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.

LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models

Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.

Foundation Models for Decision Making: Problems, Methods, and Opportunities

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles

User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications.

VEDIT: Latent Prediction Architecture For Procedural Video Representation Learning

Procedural video representation learning is an active research area where the objective is to learn an agent which can anticipate and forecast the future given the present video input, typically in conjunction with textual annotations. Prior works often rely on large-scale pretraining of visual encoders and prediction models with language supervision. However, the necessity and effectiveness of extending compute intensive pretraining to learn video clip sequences with noisy text supervision have not yet been fully validated by previous works. In this work, we show that a strong off-the-shelf frozen pretrained visual encoder, along with a well designed prediction model, can achieve state-of-the-art (SoTA) performance in forecasting and procedural planning without the need for pretraining the prediction model, nor requiring additional supervision from language or ASR. Instead of learning representations from pixel space, our method utilizes the latent embedding space of publicly available vision encoders. By conditioning on frozen clip-level embeddings from observed steps to predict the actions of unseen steps, our prediction model is able to learn robust representations for forecasting through iterative denoising - leveraging the recent advances in diffusion transformers (Peebles & Xie, 2023). Empirical studies over a total of five procedural learning tasks across four datasets (NIV, CrossTask, COIN and Ego4D-v2) show that our model advances the strong baselines in long-horizon action anticipation (+2.6% in Verb ED@20, +3.1% in Noun ED@20), and significantly improves the SoTA in step forecasting (+5.0%), task classification (+3.8%), and procedure planning tasks (up to +2.28% in success rate, +3.39% in mAcc, and +0.90% in mIoU).

S^3: Social-network Simulation System with Large Language Model-Empowered Agents

Social network simulation plays a crucial role in addressing various challenges within social science. It offers extensive applications such as state prediction, phenomena explanation, and policy-making support, among others. In this work, we harness the formidable human-like capabilities exhibited by large language models (LLMs) in sensing, reasoning, and behaving, and utilize these qualities to construct the S^3 system (short for Social network Simulation System). Adhering to the widely employed agent-based simulation paradigm, we employ prompt engineering and prompt tuning techniques to ensure that the agent's behavior closely emulates that of a genuine human within the social network. Specifically, we simulate three pivotal aspects: emotion, attitude, and interaction behaviors. By endowing the agent in the system with the ability to perceive the informational environment and emulate human actions, we observe the emergence of population-level phenomena, including the propagation of information, attitudes, and emotions. We conduct an evaluation encompassing two levels of simulation, employing real-world social network data. Encouragingly, the results demonstrate promising accuracy. This work represents an initial step in the realm of social network simulation empowered by LLM-based agents. We anticipate that our endeavors will serve as a source of inspiration for the development of simulation systems within, but not limited to, social science.

The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)

Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory skills, such as visual understanding, to achieve stronger generic intelligence. In this paper, we analyze the latest model, GPT-4V(ision), to deepen the understanding of LMMs. The analysis focuses on the intriguing tasks that GPT-4V can perform, containing test samples to probe the quality and genericity of GPT-4V's capabilities, its supported inputs and working modes, and the effective ways to prompt the model. In our approach to exploring GPT-4V, we curate and organize a collection of carefully designed qualitative samples spanning a variety of domains and tasks. Observations from these samples demonstrate that GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs and the genericity of its capabilities together make GPT-4V a powerful multimodal generalist system. Furthermore, GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods such as visual referring prompting. We conclude the report with in-depth discussions on the emerging application scenarios and the future research directions for GPT-4V-based systems. We hope that this preliminary exploration will inspire future research on the next-generation multimodal task formulation, new ways to exploit and enhance LMMs to solve real-world problems, and gaining better understanding of multimodal foundation models.

Conditional Generative Adversarial Networks for Speed Control in Trajectory Simulation

Motion behaviour is driven by several factors -- goals, presence and actions of neighbouring agents, social relations, physical and social norms, the environment with its variable characteristics, and further. Most factors are not directly observable and must be modelled from context. Trajectory prediction, is thus a hard problem, and has seen increasing attention from researchers in the recent years. Prediction of motion, in application, must be realistic, diverse and controllable. In spite of increasing focus on multimodal trajectory generation, most methods still lack means for explicitly controlling different modes of the data generation. Further, most endeavours invest heavily in designing special mechanisms to learn the interactions in latent space. We present Conditional Speed GAN (CSG), that allows controlled generation of diverse and socially acceptable trajectories, based on user controlled speed. During prediction, CSG forecasts future speed from latent space and conditions its generation based on it. CSG is comparable to state-of-the-art GAN methods in terms of the benchmark distance metrics, while being simple and useful for simulation and data augmentation for different contexts such as fast or slow paced environments. Additionally, we compare the effect of different aggregation mechanisms and show that a naive approach of concatenation works comparable to its attention and pooling alternatives.

Neural Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic Scenes

Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-centric objectives, to models that future predict in the latent space of purely static image-based or dynamic video-based pretrained foundation models. We find strong differentiation across these model classes in their ability to predict neural and behavioral data both within and across diverse environments. In particular, we find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation are thus far most consistent with being optimized to future predict on dynamic, reusable visual representations that are useful for embodied AI more generally.

Controlling Large Language Model Agents with Entropic Activation Steering

The generality of pretrained large language models (LLMs) has prompted increasing interest in their use as in-context learning agents. To be successful, such agents must form beliefs about how to achieve their goals based on limited interaction with their environment, resulting in uncertainty about the best action to take at each step. In this paper, we study how LLM agents form and act on these beliefs by conducting experiments in controlled sequential decision-making tasks. To begin, we find that LLM agents are overconfident: They draw strong conclusions about what to do based on insufficient evidence, resulting in inadequately explorative behavior. We dig deeper into this phenomenon and show how it emerges from a collapse in the entropy of the action distribution implied by sampling from the LLM. We then demonstrate that existing token-level sampling techniques are by themselves insufficient to make the agent explore more. Motivated by this fact, we introduce Entropic Activation Steering (EAST), an activation steering method for in-context LLM agents. EAST computes a steering vector as an entropy-weighted combination of representations, and uses it to manipulate an LLM agent's uncertainty over actions by intervening on its activations during the forward pass. We show that EAST can reliably increase the entropy in an LLM agent's actions, causing more explorative behavior to emerge. Finally, EAST modifies the subjective uncertainty an LLM agent expresses, paving the way to interpreting and controlling how LLM agents represent uncertainty about their decisions.

How to Build a Pre-trained Multimodal model for Simultaneously Chatting and Decision-making?

Existing large pre-trained models typically map text input to text output in an end-to-end manner, such as ChatGPT, or map a segment of text input to a hierarchy of action decisions, such as OpenVLA. However, humans can simultaneously generate text and actions when receiving specific input signals. For example, a driver can make precise driving decisions while conversing with a friend in the passenger seat. Motivated by this observation, we consider the following question in this work: is it possible to construct a pre-trained model that can provide both language interaction and precise decision-making capabilities in dynamic open scenarios. We provide a definitive answer to this question by developing a new model architecture termed Visual Language Action model for Chatting and Decision Making (VLA4CD), and further demonstrating its performance in challenging autonomous driving tasks. Specifically, we leverage LoRA to fine-tune a pre-trained LLM with data of multiple modalities covering language, visual, and action. Unlike the existing LoRA operations used for LLM fine-tuning, we have designed new computational modules and training cost functions for VLA4CD. These designs enable VLA4CD to provide continuous-valued action decisions while outputting text responses. In contrast, existing LLMs can only output text responses, and current VLA models can only output action decisions. Moreover, these VLA models handle action data by discretizing and then tokenizing the discretized actions, a method unsuitable for complex decision-making tasks involving high-dimensional continuous-valued action vectors, such as autonomous driving. The experimental results on CARLA validate that: (1) our proposed model construction method is effective; (2) compared to the SOTA VLA model, VLA4CD can provide more accurate real-time decision-making while retaining the text interaction capability inherent to LLMs.

Creating General User Models from Computer Use

Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture that user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.

On Task Performance and Model Calibration with Supervised and Self-Ensembled In-Context Learning

Following the standard supervised fine-tuning (SFT) paradigm, in-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs), yielding promising performance across various tasks in few-shot data setups. However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration), especially in such limited data setups. In this work, we deliver an in-depth analysis of the behavior across different choices of learning methods from the perspective of both performance and calibration, as well as their interplay. Through extensive controlled experiments, we find that simultaneous gains for both task performance and calibration are difficult to achieve, and the problem of miscalibration exists across all learning methods in low-resource scenarios. To address this challenging trade-off between performance and calibration, we then investigate the potential of self-ensembling techniques applied at different modeling stages (e.g., variations of in-context examples or variations in prompts or different ensembling strategies). We justify the feasibility of self-ensembling on SFT in addition to ICL, to make the predictions more calibrated and have comparable or even better performance. Our work sheds light on which learning paradigm to choose and how to enhance both task performance and calibration of LLMs.

ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights

Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.

BehaveGPT: A Foundation Model for Large-scale User Behavior Modeling

In recent years, foundational models have revolutionized the fields of language and vision, demonstrating remarkable abilities in understanding and generating complex data; however, similar advances in user behavior modeling have been limited, largely due to the complexity of behavioral data and the challenges involved in capturing intricate temporal and contextual relationships in user activities. To address this, we propose BehaveGPT, a foundational model designed specifically for large-scale user behavior prediction. Leveraging transformer-based architecture and a novel pretraining paradigm, BehaveGPT is trained on vast user behavior datasets, allowing it to learn complex behavior patterns and support a range of downstream tasks, including next behavior prediction, long-term generation, and cross-domain adaptation. Our approach introduces the DRO-based pretraining paradigm tailored for user behavior data, which improves model generalization and transferability by equitably modeling both head and tail behaviors. Extensive experiments on real-world datasets demonstrate that BehaveGPT outperforms state-of-the-art baselines, achieving more than a 10% improvement in macro and weighted recall, showcasing its ability to effectively capture and predict user behavior. Furthermore, we measure the scaling law in the user behavior domain for the first time on the Honor dataset, providing insights into how model performance scales with increased data and parameter sizes.

Transformers Can Navigate Mazes With Multi-Step Prediction

Despite their remarkable success in language modeling, transformers trained to predict the next token in a sequence struggle with long-term planning. This limitation is particularly evident in tasks requiring foresight to plan multiple steps ahead such as maze navigation. The standard next single token prediction objective, however, offers no explicit mechanism to predict multiple steps ahead - or revisit the path taken so far. Consequently, in this work we study whether explicitly predicting multiple steps ahead (and backwards) can improve transformers' maze navigation. We train parameter-matched transformers from scratch, under identical settings, to navigate mazes of varying types and sizes with standard next token prediction and MLM-U, an objective explicitly predicting multiple steps ahead and backwards. We find that MLM-U considerably improves transformers' ability to navigate mazes compared to standard next token prediction across maze types and complexities. We also find MLM-U training is 4x more sample efficient and converges 2x faster in terms of GPU training hours relative to next token training. Finally, for more complex mazes we find MLM-U benefits from scaling to larger transformers. Remarkably, we find transformers trained with MLM-U outperform larger transformers trained with next token prediction using additional supervision from A* search traces. We hope these findings underscore the promise of learning objectives to advance transformers' capacity for long-term planning.

Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment

Multimodal LLMs have reached remarkable levels of proficiency in understanding multimodal inputs, driving extensive research to develop increasingly powerful models. However, much less attention has been paid to understanding and explaining the underlying mechanisms of these models. Most existing explainability research examines these models only in their final states, overlooking the dynamic representational shifts that occur during training. In this work, we systematically analyze the evolution of hidden state representations to reveal how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks. Using a concept-based approach, we map hidden states to interpretable visual and textual concepts, enabling us to trace changes in encoded concepts across modalities as training progresses. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by shifting those in the original model. Finally, we explore the practical impact of our findings on model steering, showing that we can adjust multimodal LLMs behaviors without any training, such as modifying answer types, captions style, or biasing the model toward specific responses. Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks. The code for this project is publicly available at https://github.com/mshukor/xl-vlms.

Latent Compass: Creation by Navigation

In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue

We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx

Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs

Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.

Hidden in Plain Sight: Probing Implicit Reasoning in Multimodal Language Models

Multimodal large language models (MLLMs) are increasingly deployed in open-ended, real-world environments where inputs are messy, underspecified, and not always trustworthy. Unlike curated benchmarks, these settings frequently involve instructions that refer to missing objects or contradictory facts, rely on ambiguous references, or request infeasible actions. In such cases, success hinges not on task execution alone, but on a model's ability to detect when something is silently wrong. This paper presents a systematic analysis of how current MLLMs handle such implicit reasoning scenarios: cases where the flaw is not explicitly stated but must be inferred from context. Using a curated diagnostic suite spanning four categories of real-world failure modes, we evaluate six MLLMs, including o3 and GPT-4o, and find that models frequently fail to surface hidden issues, even when they possess the necessary perceptual and reasoning skills. Explicit prompting reveals that the underlying capabilities exist but are often suppressed in favor of user compliance. We further show that simple inference-time interventions, such as cautious persona prompting and, in particular, requiring a clarifying question, can dramatically recover performance. Our findings highlight a persistent gap between reasoning competence and behavioral compliance in current MLLMs and suggest practical strategies for making these models more trustworthy in underconstrained environments.

StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving

While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.

Reinforcement Learning from User Feedback

As large language models (LLMs) are increasingly deployed in diverse user facing applications, aligning them with real user preferences becomes essential. Existing methods like Reinforcement Learning from Human Feedback (RLHF) rely on expert annotators trained on manually defined guidelines, whose judgments may not reflect the priorities of everyday users. We introduce Reinforcement Learning from User Feedback (RLUF), a framework for aligning LLMs directly to implicit signals from users in production. RLUF addresses key challenges of user feedback: user feedback is often binary (e.g., emoji reactions), sparse, and occasionally adversarial. We train a reward model, P[Love], to predict the likelihood that an LLM response will receive a Love Reaction, a lightweight form of positive user feedback, and integrate P[Love] into a multi-objective policy optimization framework alongside helpfulness and safety objectives. In large-scale experiments, we show that P[Love] is predictive of increased positive feedback and serves as a reliable offline evaluator of future user behavior. Policy optimization using P[Love] significantly raises observed positive-feedback rates, including a 28% increase in Love Reactions during live A/B tests. However, optimizing for positive reactions introduces reward hacking challenges, requiring careful balancing of objectives. By directly leveraging implicit signals from users, RLUF offers a path to aligning LLMs with real-world user preferences at scale.

Evaluating Vision-Language Models as Evaluators in Path Planning

Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.

A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications

Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.

TITAN: Future Forecast using Action Priors

We consider the problem of predicting the future trajectory of scene agents from egocentric views obtained from a moving platform. This problem is important in a variety of domains, particularly for autonomous systems making reactive or strategic decisions in navigation. In an attempt to address this problem, we introduce TITAN (Trajectory Inference using Targeted Action priors Network), a new model that incorporates prior positions, actions, and context to forecast future trajectory of agents and future ego-motion. In the absence of an appropriate dataset for this task, we created the TITAN dataset that consists of 700 labeled video-clips (with odometry) captured from a moving vehicle on highly interactive urban traffic scenes in Tokyo. Our dataset includes 50 labels including vehicle states and actions, pedestrian age groups, and targeted pedestrian action attributes that are organized hierarchically corresponding to atomic, simple/complex-contextual, transportive, and communicative actions. To evaluate our model, we conducted extensive experiments on the TITAN dataset, revealing significant performance improvement against baselines and state-of-the-art algorithms. We also report promising results from our Agent Importance Mechanism (AIM), a module which provides insight into assessment of perceived risk by calculating the relative influence of each agent on the future ego-trajectory. The dataset is available at https://usa.honda-ri.com/titan

RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following

Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.

IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation

Recent sequential recommendation models rely increasingly on consecutive short-term user-item interaction sequences to model user interests. These approaches have, however, raised concerns about both short- and long-term interests. (1) {\it short-term}: interaction sequences may not result from a monolithic interest, but rather from several intertwined interests, even within a short period of time, resulting in their failures to model skip behaviors; (2) {\it long-term}: interaction sequences are primarily observed sparsely at discrete intervals, other than consecutively over the long run. This renders difficulty in inferring long-term interests, since only discrete interest representations can be derived, without taking into account interest dynamics across sequences. In this study, we address these concerns by learning (1) multi-scale representations of short-term interests; and (2) dynamics-aware representations of long-term interests. To this end, we present an Interest Dynamics modeling framework using generative Neural Processes, coined IDNP, to model user interests from a functional perspective. IDNP learns a global interest function family to define each user's long-term interest as a function instantiation, manifesting interest dynamics through function continuity. Specifically, IDNP first encodes each user's short-term interactions into multi-scale representations, which are then summarized as user context. By combining latent global interest with user context, IDNP then reconstructs long-term user interest functions and predicts interactions at upcoming query timestep. Moreover, IDNP can model such interest functions even when interaction sequences are limited and non-consecutive. Extensive experiments on four real-world datasets demonstrate that our model outperforms state-of-the-arts on various evaluation metrics.

Progressive Pretext Task Learning for Human Trajectory Prediction

Human trajectory prediction is a practical task of predicting the future positions of pedestrians on the road, which typically covers all temporal ranges from short-term to long-term within a trajectory. However, existing works attempt to address the entire trajectory prediction with a singular, uniform training paradigm, neglecting the distinction between short-term and long-term dynamics in human trajectories. To overcome this limitation, we introduce a novel Progressive Pretext Task learning (PPT) framework, which progressively enhances the model's capacity of capturing short-term dynamics and long-term dependencies for the final entire trajectory prediction. Specifically, we elaborately design three stages of training tasks in the PPT framework. In the first stage, the model learns to comprehend the short-term dynamics through a stepwise next-position prediction task. In the second stage, the model is further enhanced to understand long-term dependencies through a destination prediction task. In the final stage, the model aims to address the entire future trajectory task by taking full advantage of the knowledge from previous stages. To alleviate the knowledge forgetting, we further apply a cross-task knowledge distillation. Additionally, we design a Transformer-based trajectory predictor, which is able to achieve highly efficient two-step reasoning by integrating a destination-driven prediction strategy and a group of learnable prompt embeddings. Extensive experiments on popular benchmarks have demonstrated that our proposed approach achieves state-of-the-art performance with high efficiency. Code is available at https://github.com/iSEE-Laboratory/PPT.

Language Models as Black-Box Optimizers for Vision-Language Models

Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated remarkable capabilities on downstream tasks when fine-tuned with minimal data. However, many VLMs rely on proprietary data and are not open-source, which restricts the use of white-box approaches for fine-tuning. As such, we aim to develop a black-box approach to optimize VLMs through natural language prompts, thereby avoiding the need to access model parameters, feature embeddings, or even output logits. We propose employing chat-based LLMs to search for the best text prompt for VLMs. Specifically, we adopt an automatic hill-climbing procedure that converges to an effective prompt by evaluating the performance of current prompts and asking LLMs to refine them based on textual feedback, all within a conversational process without human-in-the-loop. In a challenging 1-shot image classification setup, our simple approach surpasses the white-box continuous prompting method (CoOp) by an average of 1.5% across 11 datasets including ImageNet. Our approach also outperforms both human-engineered and LLM-generated prompts. We highlight the advantage of conversational feedback that incorporates both positive and negative prompts, suggesting that LLMs can utilize the implicit gradient direction in textual feedback for a more efficient search. In addition, we find that the text prompts generated through our strategy are not only more interpretable but also transfer well across different VLM architectures in a black-box manner. Lastly, we demonstrate our framework on a state-of-the-art black-box VLM (DALL-E 3) for text-to-image optimization.

Leveraging Domain Knowledge for Efficient Reward Modelling in RLHF: A Case-Study in E-Commerce Opinion Summarization

Reinforcement Learning from Human Feedback (RLHF) has become a dominating strategy in steering Language Models (LMs) towards human values/goals. The key to the strategy is employing a reward model ({varphi}) which can reflect a latent reward model with humans. While this strategy has proven to be effective, the training methodology requires a lot of human preference annotation (usually of the order of tens of thousands) to train {varphi}. Such large-scale preference annotations can be achievable if the reward model can be ubiquitously used. However, human values/goals are subjective and depend on the nature of the task. This poses a challenge in collecting diverse preferences for downstream applications. To address this, we propose a novel methodology to infuse domain knowledge into {varphi}, which reduces the size of preference annotation required. We validate our approach in E-Commerce Opinion Summarization, with a significant reduction in dataset size (just 940 samples) while advancing the state-of-the-art. Our contributions include a novel Reward Modelling technique, a new dataset (PromptOpinSumm) for Opinion Summarization, and a human preference dataset (OpinPref). The proposed methodology opens avenues for efficient RLHF, making it more adaptable to diverse applications with varying human values. We release the artifacts for usage under MIT License.

AI-Augmented Surveys: Leveraging Large Language Models and Surveys for Opinion Prediction

Large language models (LLMs) that produce human-like responses have begun to revolutionize research practices in the social sciences. We develop a novel methodological framework that fine-tunes LLMs with repeated cross-sectional surveys to incorporate the meaning of survey questions, individual beliefs, and temporal contexts for opinion prediction. We introduce two new emerging applications of the AI-augmented survey: retrodiction (i.e., predict year-level missing responses) and unasked opinion prediction (i.e., predict entirely missing responses). Among 3,110 binarized opinions from 68,846 Americans in the General Social Survey from 1972 to 2021, our models based on Alpaca-7b excel in retrodiction (AUC = 0.86 for personal opinion prediction, rho = 0.98 for public opinion prediction). These remarkable prediction capabilities allow us to fill in missing trends with high confidence and pinpoint when public attitudes changed, such as the rising support for same-sex marriage. On the other hand, our fine-tuned Alpaca-7b models show modest success in unasked opinion prediction (AUC = 0.73, rho = 0.67). We discuss practical constraints and ethical concerns regarding individual autonomy and privacy when using LLMs for opinion prediction. Our study demonstrates that LLMs and surveys can mutually enhance each other's capabilities: LLMs can broaden survey potential, while surveys can improve the alignment of LLMs.

Beyond Binary Rewards: Training LMs to Reason About Their Uncertainty

When language models (LMs) are trained via reinforcement learning (RL) to generate natural language "reasoning chains", their performance improves on a variety of difficult question answering tasks. Today, almost all successful applications of RL for reasoning use binary reward functions that evaluate the correctness of LM outputs. Because such reward functions do not penalize guessing or low-confidence outputs, they often have the unintended side-effect of degrading calibration and increasing the rate at which LMs generate incorrect responses (or "hallucinate") in other problem domains. This paper describes RLCR (Reinforcement Learning with Calibration Rewards), an approach to training reasoning models that jointly improves accuracy and calibrated confidence estimation. During RLCR, LMs generate both predictions and numerical confidence estimates after reasoning. They are trained to optimize a reward function that augments a binary correctness score with a Brier score -- a scoring rule for confidence estimates that incentivizes calibrated prediction. We first prove that this reward function (or any analogous reward function that uses a bounded, proper scoring rule) yields models whose predictions are both accurate and well-calibrated. We next show that across diverse datasets, RLCR substantially improves calibration with no loss in accuracy, on both in-domain and out-of-domain evaluations -- outperforming both ordinary RL training and classifiers trained to assign post-hoc confidence scores. While ordinary RL hurts calibration, RLCR improves it. Finally, we demonstrate that verbalized confidence can be leveraged at test time to improve accuracy and calibration via confidence-weighted scaling methods. Our results show that explicitly optimizing for calibration can produce more generally reliable reasoning models.

Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF

Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate Q-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.

LACIE: Listener-Aware Finetuning for Confidence Calibration in Large Language Models

When answering questions, LLMs can convey not only an answer, but a level of confidence about the answer being correct. This includes explicit confidence markers (e.g. giving a numeric score) as well as implicit markers, like an authoritative tone or elaborating with additional knowledge. For LLMs to be trustworthy knowledge sources, the confidence they convey should match their actual expertise; however, most current models tend towards overconfidence. To calibrate both implicit and explicit confidence markers, we introduce a pragmatic, listener-aware finetuning method (LACIE) that models the listener, considering not only whether an answer is right, but whether it will be accepted by a listener. We cast calibration as preference optimization, creating data via a two-agent game, where a speaker model's outputs are judged by a simulated listener. We then finetune three LLMs (Mistral-7B, Llama3-8B, Llama3-70B) with LACIE, and show that the resulting models are better calibrated w.r.t. a simulated listener. Crucially, these trends transfer to human listeners, helping them correctly predict model correctness: we conduct a human evaluation where annotators accept or reject an LLM's answers, finding that training with LACIE results in 47% fewer incorrect answers being accepted while maintaining the same level of acceptance for correct answers. Furthermore, LACIE generalizes to another dataset, resulting in a large increase in truthfulness on TruthfulQA when trained on TriviaQA. Our analysis indicates that LACIE leads to a better confidence separation between correct and incorrect examples. Qualitatively, we find that a LACIE-trained model hedges more and implicitly signals certainty when it is correct by using an authoritative tone or including details. Finally, LACIE finetuning leads to an emergent increase in model abstention (e.g. saying "I don't know") for answers that are likely wrong.