new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

DEIM: DETR with Improved Matching for Fast Convergence

We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.

  • 6 authors
·
Dec 5, 2024 1

TopNet: Transformer-based Object Placement Network for Image Compositing

We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.

  • 6 authors
·
Apr 6, 2023

SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding

Different from Object Detection, Visual Grounding deals with detecting a bounding box for each text-image pair. This one box for each text-image data provides sparse supervision signals. Although previous works achieve impressive results, their passive utilization of annotation, i.e. the sole use of the box annotation as regression ground truth, results in a suboptimal performance. In this paper, we present SegVG, a novel method transfers the box-level annotation as Segmentation signals to provide an additional pixel-level supervision for Visual Grounding. Specifically, we propose the Multi-layer Multi-task Encoder-Decoder as the target grounding stage, where we learn a regression query and multiple segmentation queries to ground the target by regression and segmentation of the box in each decoding layer, respectively. This approach allows us to iteratively exploit the annotation as signals for both box-level regression and pixel-level segmentation. Moreover, as the backbones are typically initialized by pretrained parameters learned from unimodal tasks and the queries for both regression and segmentation are static learnable embeddings, a domain discrepancy remains among these three types of features, which impairs subsequent target grounding. To mitigate this discrepancy, we introduce the Triple Alignment module, where the query, text, and vision tokens are triangularly updated to share the same space by triple attention mechanism. Extensive experiments on five widely used datasets validate our state-of-the-art (SOTA) performance.

  • 4 authors
·
Jul 3, 2024

Finding Meaning in Points: Weakly Supervised Semantic Segmentation for Event Cameras

Event cameras excel in capturing high-contrast scenes and dynamic objects, offering a significant advantage over traditional frame-based cameras. Despite active research into leveraging event cameras for semantic segmentation, generating pixel-wise dense semantic maps for such challenging scenarios remains labor-intensive. As a remedy, we present EV-WSSS: a novel weakly supervised approach for event-based semantic segmentation that utilizes sparse point annotations. To fully leverage the temporal characteristics of event data, the proposed framework performs asymmetric dual-student learning between 1) the original forward event data and 2) the longer reversed event data, which contain complementary information from the past and the future, respectively. Besides, to mitigate the challenges posed by sparse supervision, we propose feature-level contrastive learning based on class-wise prototypes, carefully aggregated at both spatial region and sample levels. Additionally, we further excavate the potential of our dual-student learning model by exchanging prototypes between the two learning paths, thereby harnessing their complementary strengths. With extensive experiments on various datasets, including DSEC Night-Point with sparse point annotations newly provided by this paper, the proposed method achieves substantial segmentation results even without relying on pixel-level dense ground truths. The code and dataset are available at https://github.com/Chohoonhee/EV-WSSS.

  • 4 authors
·
Jul 15, 2024

Hydra-SGG: Hybrid Relation Assignment for One-stage Scene Graph Generation

DETR introduces a simplified one-stage framework for scene graph generation (SGG) but faces challenges of sparse supervision and false negative samples. The former occurs because each image typically contains fewer than 10 relation annotations, while DETR-based SGG models employ over 100 relation queries. Each ground truth relation is assigned to only one query during training. The latter arises when one ground truth relation may have multiple queries with similar matching scores, leading to suboptimally matched queries being treated as negative samples. To address these, we propose Hydra-SGG, a one-stage SGG method featuring a Hybrid Relation Assignment. This approach combines a One-to-One Relation Assignment with an IoU-based One-to-Many Relation Assignment, increasing positive training samples and mitigating sparse supervision. In addition, we empirically demonstrate that removing self-attention between relation queries leads to duplicate predictions, which actually benefits the proposed One-to-Many Relation Assignment. With this insight, we introduce Hydra Branch, an auxiliary decoder without self-attention layers, to further enhance One-to-Many Relation Assignment by promoting different queries to make the same relation prediction. Hydra-SGG achieves state-of-the-art performance on multiple datasets, including VG150 (16.0 mR@50), Open Images V6 (50.1 weighted score), and GQA (12.7 mR@50).

  • 4 authors
·
Sep 16, 2024

DETRs with Collaborative Hybrid Assignments Training

In this paper, we provide the observation that too few queries assigned as positive samples in DETR with one-to-one set matching leads to sparse supervision on the encoder's output which considerably hurt the discriminative feature learning of the encoder and vice visa for attention learning in the decoder. To alleviate this, we present a novel collaborative hybrid assignments training scheme, namely Co-DETR, to learn more efficient and effective DETR-based detectors from versatile label assignment manners. This new training scheme can easily enhance the encoder's learning ability in end-to-end detectors by training the multiple parallel auxiliary heads supervised by one-to-many label assignments such as ATSS and Faster RCNN. In addition, we conduct extra customized positive queries by extracting the positive coordinates from these auxiliary heads to improve the training efficiency of positive samples in the decoder. In inference, these auxiliary heads are discarded and thus our method introduces no additional parameters and computational cost to the original detector while requiring no hand-crafted non-maximum suppression (NMS). We conduct extensive experiments to evaluate the effectiveness of the proposed approach on DETR variants, including DAB-DETR, Deformable-DETR, and DINO-Deformable-DETR. The state-of-the-art DINO-Deformable-DETR with Swin-L can be improved from 58.5% to 59.5% AP on COCO val. Surprisingly, incorporated with ViT-L backbone, we achieve 66.0% AP on COCO test-dev and 67.9% AP on LVIS val, outperforming previous methods by clear margins with much fewer model sizes. Codes are available at https://github.com/Sense-X/Co-DETR.

  • 3 authors
·
Nov 22, 2022

Mantis: A Versatile Vision-Language-Action Model with Disentangled Visual Foresight

Recent advances in Vision-Language-Action (VLA) models demonstrate that visual signals can effectively complement sparse action supervisions. However, letting VLA directly predict high-dimensional visual states can distribute model capacity and incur prohibitive training cost, while compressing visual states into more compact supervisory signals inevitably incurs information bottlenecks. Moreover, existing methods often suffer from poor comprehension and reasoning capabilities due to the neglect of language supervision. This paper introduces Mantis, a novel framework featuring a Disentangled Visual Foresight (DVF) to tackle these issues. Specifically, Mantis decouples visual foresight prediction from the backbone with the combination of meta queries and a diffusion Transformer (DiT) head. With the current visual state provided to the DiT via a residual connection, a simple next-state prediction objective enables the meta queries to automatically capture the latent actions that delineate the visual trajectory, and hence boost the learning of explicit actions. The disentanglement reduces the burden of the VLA backbone, enabling it to maintain comprehension and reasoning capabilities through language supervision. Empirically, pretrained on human manipulation videos, robot demonstrations, and image-text pairs, Mantis achieves a 96.7% success rate on LIBERO benchmark after fine-tuning, surpassing powerful baselines while exhibiting high convergence speed. Real-world evaluations show that Mantis outperforms π_{0.5}, a leading open-source VLA model, particularly in instruction-following capability, generalization to unseen instructions, and reasoning ability. Code and weights are released to support the open-source community.

SJTU-Deng-Lab DENG Lab @ SJTU
·
Nov 20, 2025 2

Splannequin: Freezing Monocular Mannequin-Challenge Footage with Dual-Detection Splatting

Synthesizing high-fidelity frozen 3D scenes from monocular Mannequin-Challenge (MC) videos is a unique problem distinct from standard dynamic scene reconstruction. Instead of focusing on modeling motion, our goal is to create a frozen scene while strategically preserving subtle dynamics to enable user-controlled instant selection. To achieve this, we introduce a novel application of dynamic Gaussian splatting: the scene is modeled dynamically, which retains nearby temporal variation, and a static scene is rendered by fixing the model's time parameter. However, under this usage, monocular capture with sparse temporal supervision introduces artifacts like ghosting and blur for Gaussians that become unobserved or occluded at weakly supervised timestamps. We propose Splannequin, an architecture-agnostic regularization that detects two states of Gaussian primitives, hidden and defective, and applies temporal anchoring. Under predominantly forward camera motion, hidden states are anchored to their recent well-observed past states, while defective states are anchored to future states with stronger supervision. Our method integrates into existing dynamic Gaussian pipelines via simple loss terms, requires no architectural changes, and adds zero inference overhead. This results in markedly improved visual quality, enabling high-fidelity, user-selectable frozen-time renderings, validated by a 96% user preference. Project page: https://chien90190.github.io/splannequin/

  • 5 authors
·
Dec 4, 2025 2

Alpamayo-R1: Bridging Reasoning and Action Prediction for Generalizable Autonomous Driving in the Long Tail

End-to-end architectures trained via imitation learning have advanced autonomous driving by scaling model size and data, yet performance remains brittle in safety-critical long-tail scenarios where supervision is sparse and causal understanding is limited. To address this, we introduce Alpamayo-R1 (AR1), a vision-language-action model (VLA) that integrates Chain of Causation reasoning with trajectory planning to enhance decision-making in complex driving scenarios. Our approach features three key innovations: (1) the Chain of Causation (CoC) dataset, built through a hybrid auto-labeling and human-in-the-loop pipeline producing decision-grounded, causally linked reasoning traces aligned with driving behaviors; (2) a modular VLA architecture combining Cosmos-Reason, a Vision-Language Model pre-trained for Physical AI applications, with a diffusion-based trajectory decoder that generates dynamically feasible plans in real time; (3) a multi-stage training strategy using supervised fine-tuning to elicit reasoning and reinforcement learning (RL) to optimize reasoning quality via large reasoning model feedback and enforce reasoning-action consistency. Evaluation shows AR1 achieves up to a 12% improvement in planning accuracy on challenging cases compared to a trajectory-only baseline, with a 35% reduction in off-road rate and 25% reduction in close encounter rate in closed-loop simulation. RL post-training improves reasoning quality by 45% as measured by a large reasoning model critic and reasoning-action consistency by 37%. Model scaling from 0.5B to 7B parameters shows consistent improvements. On-vehicle road tests confirm real-time performance (99 ms latency) and successful urban deployment. By bridging interpretable reasoning with precise control, AR1 demonstrates a practical path towards Level 4 autonomous driving. We plan to release AR1 models and a subset of the CoC in a future update.

  • 43 authors
·
Oct 29, 2025

Reinforced Preference Optimization for Recommendation

Recent breakthroughs in large language models (LLMs) have fundamentally shifted recommender systems from discriminative to generative paradigms, where user behavior modeling is achieved by generating target items conditioned on historical interactions. Yet current generative recommenders still suffer from two core limitations: the lack of high-quality negative modeling and the reliance on implicit rewards. Reinforcement learning with verifiable rewards (RLVR) offers a natural solution by enabling on-policy sampling of harder negatives and grounding optimization in explicit reward signals. However, applying RLVR to generative recommenders remains non-trivial. Its unique generation space often leads to invalid or repetitive items that undermine sampling efficiency, and ranking supervision is sparse since most items receive identical zero rewards. To address these challenges, we propose Reinforced Preference Optimization for Recommendation (ReRe), a reinforcement-based paradigm tailored to LLM-based recommenders, an important direction in generative recommendation. ReRe incorporates constrained beam search to improve sampling efficiency and diversify hard negatives, while augmenting rule-based accuracy rewards with auxiliary ranking rewards for finer-grained supervision. Extensive experiments on three real-world datasets demonstrate that ReRe consistently outperforms both traditional and LLM-based recommenders in ranking performance. Further analysis shows that ReRe not only enhances performance across both base and SFT-initialized models but also generalizes robustly across different backbone families and scales. Beyond empirical gains, we systematically investigate the design space of RLVR in recommendation across generation, sampling strategy, reward modeling, and optimization algorithm, offering insights for future research.

  • 10 authors
·
Oct 14, 2025

Integrating SAM Supervision for 3D Weakly Supervised Point Cloud Segmentation

Current methods for 3D semantic segmentation propose training models with limited annotations to address the difficulty of annotating large, irregular, and unordered 3D point cloud data. They usually focus on the 3D domain only, without leveraging the complementary nature of 2D and 3D data. Besides, some methods extend original labels or generate pseudo labels to guide the training, but they often fail to fully use these labels or address the noise within them. Meanwhile, the emergence of comprehensive and adaptable foundation models has offered effective solutions for segmenting 2D data. Leveraging this advancement, we present a novel approach that maximizes the utility of sparsely available 3D annotations by incorporating segmentation masks generated by 2D foundation models. We further propagate the 2D segmentation masks into the 3D space by establishing geometric correspondences between 3D scenes and 2D views. We extend the highly sparse annotations to encompass the areas delineated by 3D masks, thereby substantially augmenting the pool of available labels. Furthermore, we apply confidence- and uncertainty-based consistency regularization on augmentations of the 3D point cloud and select the reliable pseudo labels, which are further spread on the 3D masks to generate more labels. This innovative strategy bridges the gap between limited 3D annotations and the powerful capabilities of 2D foundation models, ultimately improving the performance of 3D weakly supervised segmentation.

  • 8 authors
·
Aug 27, 2025

Splatography: Sparse multi-view dynamic Gaussian Splatting for filmmaking challenges

Deformable Gaussian Splatting (GS) accomplishes photorealistic dynamic 3-D reconstruction from dense multi-view video (MVV) by learning to deform a canonical GS representation. However, in filmmaking, tight budgets can result in sparse camera configurations, which limits state-of-the-art (SotA) methods when capturing complex dynamic features. To address this issue, we introduce an approach that splits the canonical Gaussians and deformation field into foreground and background components using a sparse set of masks for frames at t=0. Each representation is separately trained on different loss functions during canonical pre-training. Then, during dynamic training, different parameters are modeled for each deformation field following common filmmaking practices. The foreground stage contains diverse dynamic features so changes in color, position and rotation are learned. While, the background containing film-crew and equipment, is typically dimmer and less dynamic so only changes in point position are learned. Experiments on 3-D and 2.5-D entertainment datasets show that our method produces SotA qualitative and quantitative results; up to 3 PSNR higher with half the model size on 3-D scenes. Unlike the SotA and without the need for dense mask supervision, our method also produces segmented dynamic reconstructions including transparent and dynamic textures. Code and video comparisons are available online: https://interims-git.github.io/

  • 3 authors
·
Nov 7, 2025

NexusGS: Sparse View Synthesis with Epipolar Depth Priors in 3D Gaussian Splatting

Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have noticeably advanced photo-realistic novel view synthesis using images from densely spaced camera viewpoints. However, these methods struggle in few-shot scenarios due to limited supervision. In this paper, we present NexusGS, a 3DGS-based approach that enhances novel view synthesis from sparse-view images by directly embedding depth information into point clouds, without relying on complex manual regularizations. Exploiting the inherent epipolar geometry of 3DGS, our method introduces a novel point cloud densification strategy that initializes 3DGS with a dense point cloud, reducing randomness in point placement while preventing over-smoothing and overfitting. Specifically, NexusGS comprises three key steps: Epipolar Depth Nexus, Flow-Resilient Depth Blending, and Flow-Filtered Depth Pruning. These steps leverage optical flow and camera poses to compute accurate depth maps, while mitigating the inaccuracies often associated with optical flow. By incorporating epipolar depth priors, NexusGS ensures reliable dense point cloud coverage and supports stable 3DGS training under sparse-view conditions. Experiments demonstrate that NexusGS significantly enhances depth accuracy and rendering quality, surpassing state-of-the-art methods by a considerable margin. Furthermore, we validate the superiority of our generated point clouds by substantially boosting the performance of competing methods. Project page: https://usmizuki.github.io/NexusGS/.

  • 7 authors
·
Mar 24, 2025

Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology

Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.

  • 7 authors
·
Jun 2, 2025 1

CHASE: 3D-Consistent Human Avatars with Sparse Inputs via Gaussian Splatting and Contrastive Learning

Recent advancements in human avatar synthesis have utilized radiance fields to reconstruct photo-realistic animatable human avatars. However, both NeRFs-based and 3DGS-based methods struggle with maintaining 3D consistency and exhibit suboptimal detail reconstruction, especially with sparse inputs. To address this challenge, we propose CHASE, which introduces supervision from intrinsic 3D consistency across poses and 3D geometry contrastive learning, achieving performance comparable with sparse inputs to that with full inputs. Following previous work, we first integrate a skeleton-driven rigid deformation and a non-rigid cloth dynamics deformation to coordinate the movements of individual Gaussians during animation, reconstructing basic avatar with coarse 3D consistency. To improve 3D consistency under sparse inputs, we design Dynamic Avatar Adjustment(DAA) to adjust deformed Gaussians based on a selected similar pose/image from the dataset. Minimizing the difference between the image rendered by adjusted Gaussians and the image with the similar pose serves as an additional form of supervision for avatar. Furthermore, we propose a 3D geometry contrastive learning strategy to maintain the 3D global consistency of generated avatars. Though CHASE is designed for sparse inputs, it surprisingly outperforms current SOTA methods in both full and sparse settings on the ZJU-MoCap and H36M datasets, demonstrating that our CHASE successfully maintains avatar's 3D consistency, hence improving rendering quality.

  • 4 authors
·
Aug 18, 2024

From <Answer> to <Think>: Multidimensional Supervision of Reasoning Process for LLM Optimization

Improving the multi-step reasoning ability of Large Language Models (LLMs) is a critical yet challenging task. The dominant paradigm, outcome-supervised reinforcement learning (RLVR), rewards only correct final answers, often propagating flawed reasoning and suffering from sparse reward signals. While process-level reward models (PRMs) provide denser, step-by-step feedback, they lack generalizability and interpretability, requiring task-specific segmentation of the reasoning process. To this end, we propose the Dimension-level Reward Model (DRM), a new supervision framework that bridges the gap between these two approaches. DRM evaluates the quality of a reasoning process along three fundamental, complementary, and interpretable dimensions: Confidence for uncertainty calibration, Relevance for semantic alignment, and Coherence for logical consistency. Together, these dimensions capture aspects beyond final answer correctness and enable interpretable assessment without requiring ground truth answers. Experimental results show that DRM provides effective supervision signals, guides the optimization of LLMs and enhances their reasoning ability. In particular, DRM-supervised training achieves consistent gains on both in-distribution and out-of-distribution open-domain tasks, including mathematics, question answering, code execution, and puzzles. Our findings demonstrate that multidimensional supervision of the reasoning process can improve the generalized reasoning ability of LLMs beyond the training distribution.

  • 8 authors
·
Oct 13, 2025

Learning to Distill Global Representation for Sparse-View CT

Sparse-view computed tomography (CT) -- using a small number of projections for tomographic reconstruction -- enables much lower radiation dose to patients and accelerated data acquisition. The reconstructed images, however, suffer from strong artifacts, greatly limiting their diagnostic value. Current trends for sparse-view CT turn to the raw data for better information recovery. The resultant dual-domain methods, nonetheless, suffer from secondary artifacts, especially in ultra-sparse view scenarios, and their generalization to other scanners/protocols is greatly limited. A crucial question arises: have the image post-processing methods reached the limit? Our answer is not yet. In this paper, we stick to image post-processing methods due to great flexibility and propose global representation (GloRe) distillation framework for sparse-view CT, termed GloReDi. First, we propose to learn GloRe with Fourier convolution, so each element in GloRe has an image-wide receptive field. Second, unlike methods that only use the full-view images for supervision, we propose to distill GloRe from intermediate-view reconstructed images that are readily available but not explored in previous literature. The success of GloRe distillation is attributed to two key components: representation directional distillation to align the GloRe directions, and band-pass-specific contrastive distillation to gain clinically important details. Extensive experiments demonstrate the superiority of the proposed GloReDi over the state-of-the-art methods, including dual-domain ones. The source code is available at https://github.com/longzilicart/GloReDi.

  • 5 authors
·
Aug 16, 2023

RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning

Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.

WestlakeUniversity Westlake University
·
Oct 2, 2025 2

Repurposing Synthetic Data for Fine-grained Search Agent Supervision

LLM-based search agents are increasingly trained on entity-centric synthetic data to solve complex, knowledge-intensive tasks. However, prevailing training methods like Group Relative Policy Optimization (GRPO) discard this rich entity information, relying instead on sparse, outcome-based rewards. This critical limitation renders them unable to distinguish informative "near-miss" samples-those with substantially correct reasoning but a flawed final answer-from complete failures, thus discarding valuable learning signals. We address this by leveraging the very entities discarded during training. Our empirical analysis reveals a strong positive correlation between the number of ground-truth entities identified during an agent's reasoning process and final answer accuracy. Building on this insight, we introduce Entity-aware Group Relative Policy Optimization (E-GRPO), a novel framework that formulates a dense entity-aware reward function. E-GRPO assigns partial rewards to incorrect samples proportional to their entity match rate, enabling the model to effectively learn from these "near-misses". Experiments on diverse question-answering (QA) and deep research benchmarks show that E-GRPO consistently and significantly outperforms the GRPO baseline. Furthermore, our analysis reveals that E-GRPO not only achieves superior accuracy but also induces more efficient reasoning policies that require fewer tool calls, demonstrating a more effective and sample-efficient approach to aligning search agents.

AlibabaTongyiLab TongyiLab
·
Oct 28, 2025 2

PointOBB: Learning Oriented Object Detection via Single Point Supervision

Single point-supervised object detection is gaining attention due to its cost-effectiveness. However, existing approaches focus on generating horizontal bounding boxes (HBBs) while ignoring oriented bounding boxes (OBBs) commonly used for objects in aerial images. This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection. PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view. Upon the original view, we leverage the resized and rot/flp views to build a scale augmentation module and an angle acquisition module, respectively. In the former module, a Scale-Sensitive Consistency (SSC) loss is designed to enhance the deep network's ability to perceive the object scale. For accurate object angle predictions, the latter module incorporates self-supervised learning to predict angles, which is associated with a scale-guided Dense-to-Sparse (DS) matching strategy for aggregating dense angles corresponding to sparse objects. The resized and rot/flp views are switched using a progressive multi-view switching strategy during training to achieve coupled optimization of scale and angle. Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance, and significantly outperforms potential point-supervised baselines.

  • 6 authors
·
Nov 23, 2023

AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using Garment Rigging Model

Recent communities have seen significant progress in building photo-realistic animatable avatars from sparse multi-view videos. However, current workflows struggle to render realistic garment dynamics for loose-fitting characters as they predominantly rely on naked body models for human modeling while leaving the garment part un-modeled. This is mainly due to that the deformations yielded by loose garments are highly non-rigid, and capturing such deformations often requires dense views as supervision. In this paper, we introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos (4-8 in our setting). To allow the capturing and appearance learning of loose garments in such a situation, we employ a virtual bone-based garment rigging model obtained from physics-based simulation data. Such a model allows us to capture and render complex garment dynamics through a set of low-dimensional bone transformations. Technically, we develop a novel method for estimating temporal coherent garment dynamics from a sparse multi-view video. To build a realistic rendering for unseen garment status using coarse estimations, a pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts. At test time, the new garment poses can be captured from unseen situations, derived from a physics-based or neural network-based simulator to drive unseen garment dynamics. To evaluate our approach, we create a multi-view dataset that captures loose-dressed performers with diverse motions. Experiments show that our method is able to render natural garment dynamics that deviate highly from the body and generalize well to both unseen views and poses, surpassing the performance of existing methods. The code and data will be publicly available.

  • 6 authors
·
Jan 27, 2024

Is There a Better Source Distribution than Gaussian? Exploring Source Distributions for Image Flow Matching

Flow matching has emerged as a powerful generative modeling approach with flexible choices of source distribution. While Gaussian distributions are commonly used, the potential for better alternatives in high-dimensional data generation remains largely unexplored. In this paper, we propose a novel 2D simulation that captures high-dimensional geometric properties in an interpretable 2D setting, enabling us to analyze the learning dynamics of flow matching during training. Based on this analysis, we derive several key insights about flow matching behavior: (1) density approximation can paradoxically degrade performance due to mode discrepancy, (2) directional alignment suffers from path entanglement when overly concentrated, (3) Gaussian's omnidirectional coverage ensures robust learning, and (4) norm misalignment incurs substantial learning costs. Building on these insights, we propose a practical framework that combines norm-aligned training with directionally-pruned sampling. This approach maintains the robust omnidirectional supervision essential for stable flow learning, while eliminating initializations in data-sparse regions during inference. Importantly, our pruning strategy can be applied to any flow matching model trained with a Gaussian source, providing immediate performance gains without the need for retraining. Empirical evaluations demonstrate consistent improvements in both generation quality and sampling efficiency. Our findings provide practical insights and guidelines for source distribution design and introduce a readily applicable technique for improving existing flow matching models. Our code is available at https://github.com/kwanseokk/SourceFM.

  • 3 authors
·
Dec 19, 2025 1

From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation

Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.

  • 7 authors
·
Aug 13, 2025

MM-HELIX: Boosting Multimodal Long-Chain Reflective Reasoning with Holistic Platform and Adaptive Hybrid Policy Optimization

While current Multimodal Large Language Models (MLLMs) have demonstrated proficiency in reasoning tasks such as mathematics and logic, their capacity for long-chain reflective reasoning, a prerequisite for solving complex real-world problems, remains largely underexplored. In this work, we first conduct an extensive empirical investigation to evaluate this capability. Leveraging a carefully designed data synthesis engine, we construct MM-HELIX, a multimodal benchmark consisting 1,260 samples of 42 challenging synthetic tasks that require iterative thinking and backtracking. Empirical results on this benchmark reveal that existing MLLMs exhibit significant performance deficits in long-chain reflective reasoning. To address this limitation, we generate post-training data and further explore learning paradigms for exploiting such data. We first develop the Step-Elicited Response Generation pipeline to create MM-HELIX-100K, a large-scale dataset of 100k high-quality, reflective reasoning traces for instruction-tuning stage. Given that standard Reinforcement Learning fails on complex tasks due to sparse reward signals and catastrophic forgetting after Supervised Fine-Tuning, we propose Adaptive Hybrid Policy Optimization (AHPO), a novel training strategy that dynamically unifies offline supervision and online optimization into a single stage. This strategy enables the model to learn from expert data when rewards are sparse and conduct independent exploration once proficient. When applied to the Qwen2.5-VL-7B baseline, our method achieves a +18.6\% accuracy improvement on MM-HELIX benchmark and demonstrates strong generalization with a +5.7\% average performance gain on general mathematic and logic tasks. Our work demonstrate that reflective reasoning in MLLMs can be effectively learned and generalized, paving the way for developing more capable MLLMs.

  • 14 authors
·
Oct 9, 2025 4

DET-GS: Depth- and Edge-Aware Regularization for High-Fidelity 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) represents a significant advancement in the field of efficient and high-fidelity novel view synthesis. Despite recent progress, achieving accurate geometric reconstruction under sparse-view conditions remains a fundamental challenge. Existing methods often rely on non-local depth regularization, which fails to capture fine-grained structures and is highly sensitive to depth estimation noise. Furthermore, traditional smoothing methods neglect semantic boundaries and indiscriminately degrade essential edges and textures, consequently limiting the overall quality of reconstruction. In this work, we propose DET-GS, a unified depth and edge-aware regularization framework for 3D Gaussian Splatting. DET-GS introduces a hierarchical geometric depth supervision framework that adaptively enforces multi-level geometric consistency, significantly enhancing structural fidelity and robustness against depth estimation noise. To preserve scene boundaries, we design an edge-aware depth regularization guided by semantic masks derived from Canny edge detection. Furthermore, we introduce an RGB-guided edge-preserving Total Variation loss that selectively smooths homogeneous regions while rigorously retaining high-frequency details and textures. Extensive experiments demonstrate that DET-GS achieves substantial improvements in both geometric accuracy and visual fidelity, outperforming state-of-the-art (SOTA) methods on sparse-view novel view synthesis benchmarks.

  • 3 authors
·
Aug 6, 2025

Spatial-Aware Token for Weakly Supervised Object Localization

Weakly supervised object localization (WSOL) is a challenging task aiming to localize objects with only image-level supervision. Recent works apply visual transformer to WSOL and achieve significant success by exploiting the long-range feature dependency in self-attention mechanism. However, existing transformer-based methods synthesize the classification feature maps as the localization map, which leads to optimization conflicts between classification and localization tasks. To address this problem, we propose to learn a task-specific spatial-aware token (SAT) to condition localization in a weakly supervised manner. Specifically, a spatial token is first introduced in the input space to aggregate representations for localization task. Then a spatial aware attention module is constructed, which allows spatial token to generate foreground probabilities of different patches by querying and to extract localization knowledge from the classification task. Besides, for the problem of sparse and unbalanced pixel-level supervision obtained from the image-level label, two spatial constraints, including batch area loss and normalization loss, are designed to compensate and enhance this supervision. Experiments show that the proposed SAT achieves state-of-the-art performance on both CUB-200 and ImageNet, with 98.45% and 73.13% GT-known Loc, respectively. Even under the extreme setting of using only 1 image per class from ImageNet for training, SAT already exceeds the SOTA method by 2.1% GT-known Loc. Code and models are available at https://github.com/wpy1999/SAT.

  • 5 authors
·
Mar 18, 2023

VoxelSplat: Dynamic Gaussian Splatting as an Effective Loss for Occupancy and Flow Prediction

Recent advancements in camera-based occupancy prediction have focused on the simultaneous prediction of 3D semantics and scene flow, a task that presents significant challenges due to specific difficulties, e.g., occlusions and unbalanced dynamic environments. In this paper, we analyze these challenges and their underlying causes. To address them, we propose a novel regularization framework called VoxelSplat. This framework leverages recent developments in 3D Gaussian Splatting to enhance model performance in two key ways: (i) Enhanced Semantics Supervision through 2D Projection: During training, our method decodes sparse semantic 3D Gaussians from 3D representations and projects them onto the 2D camera view. This provides additional supervision signals in the camera-visible space, allowing 2D labels to improve the learning of 3D semantics. (ii) Scene Flow Learning: Our framework uses the predicted scene flow to model the motion of Gaussians, and is thus able to learn the scene flow of moving objects in a self-supervised manner using the labels of adjacent frames. Our method can be seamlessly integrated into various existing occupancy models, enhancing performance without increasing inference time. Extensive experiments on benchmark datasets demonstrate the effectiveness of VoxelSplat in improving the accuracy of both semantic occupancy and scene flow estimation. The project page and codes are available at https://zzy816.github.io/VoxelSplat-Demo/.

  • 6 authors
·
Jun 5, 2025

Q-Adapter: Visual Query Adapter for Extracting Textually-related Features in Video Captioning

Recent advances in video captioning are driven by large-scale pretrained models, which follow the standard "pre-training followed by fine-tuning" paradigm, where the full model is fine-tuned for downstream tasks. Although effective, this approach becomes computationally prohibitive as the model size increases. The Parameter-Efficient Fine-Tuning (PEFT) approach offers a promising alternative, but primarily focuses on the language components of Multimodal Large Language Models (MLLMs). Despite recent progress, PEFT remains underexplored in multimodal tasks and lacks sufficient understanding of visual information during fine-tuning the model. To bridge this gap, we propose Query-Adapter (Q-Adapter), a lightweight visual adapter module designed to enhance MLLMs by enabling efficient fine-tuning for the video captioning task. Q-Adapter introduces learnable query tokens and a gating layer into Vision Encoder, enabling effective extraction of sparse, caption-relevant features without relying on external textual supervision. We evaluate Q-Adapter on two well-known video captioning datasets, MSR-VTT and MSVD, where it achieves state-of-the-art performance among the methods that take the PEFT approach across BLEU@4, METEOR, ROUGE-L, and CIDEr metrics. Q-Adapter also achieves competitive performance compared to methods that take the full fine-tuning approach while requiring only 1.4% of the parameters. We further analyze the impact of key hyperparameters and design choices on fine-tuning effectiveness, providing insights into optimization strategies for adapter-based learning. These results highlight the strong potential of Q-Adapter in balancing caption quality and parameter efficiency, demonstrating its scalability for video-language modeling.

  • 4 authors
·
Oct 11, 2025

Generative Reasoning Recommendation via LLMs

Despite their remarkable reasoning capabilities across diverse domains, large language models (LLMs) face fundamental challenges in natively functioning as generative reasoning recommendation models (GRRMs), where the intrinsic modeling gap between textual semantics and collaborative filtering signals, combined with the sparsity and stochasticity of user feedback, presents significant obstacles. This work explores how to build GRRMs by adapting pre-trained LLMs, which achieves a unified understanding-reasoning-prediction manner for recommendation tasks. We propose GREAM, an end-to-end framework that integrates three components: (i) Collaborative-Semantic Alignment, which fuses heterogeneous textual evidence to construct semantically consistent, discrete item indices and auxiliary alignment tasks that ground linguistic representations in interaction semantics; (ii) Reasoning Curriculum Activation, which builds a synthetic dataset with explicit Chain-of-Thought supervision and a curriculum that progresses through behavioral evidence extraction, latent preference modeling, intent inference, recommendation formulation, and denoised sequence rewriting; and (iii) Sparse-Regularized Group Policy Optimization (SRPO), which stabilizes post-training via Residual-Sensitive Verifiable Reward and Bonus-Calibrated Group Advantage Estimation, enabling end-to-end optimization under verifiable signals despite sparse successes. GREAM natively supports two complementary inference modes: Direct Sequence Recommendation for high-throughput, low-latency deployment, and Sequential Reasoning Recommendation that first emits an interpretable reasoning chain for causal transparency. Experiments on three datasets demonstrate consistent gains over strong baselines, providing a practical path toward verifiable-RL-driven LLM recommenders.

  • 8 authors
·
Oct 23, 2025 1