new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 5

Robix: A Unified Model for Robot Interaction, Reasoning and Planning

We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.

Do LLMs Know When to NOT Answer? Investigating Abstention Abilities of Large Language Models

Abstention Ability (AA) is a critical aspect of Large Language Model (LLM) reliability, referring to an LLM's capability to withhold responses when uncertain or lacking a definitive answer, without compromising performance. Although previous studies have attempted to improve AA, they lack a standardised evaluation method and remain unsuitable for black-box models where token prediction probabilities are inaccessible. This makes comparative analysis challenging, especially for state-of-the-art closed-source commercial LLMs. This paper bridges this gap by introducing a black-box evaluation approach and a new dataset, Abstain-QA, crafted to rigorously assess AA across varied question types (answerable and unanswerable), domains (well-represented and under-represented), and task types (fact centric and reasoning). We also propose a new confusion matrix, the ''Answerable-Unanswerable Confusion Matrix'' (AUCM) which serves as the basis for evaluating AA, by offering a structured and precise approach for assessment. Finally, we explore the impact of three prompting strategies-Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT)-on improving AA. Our results indicate that even powerful models like GPT-4, Mixtral 8x22b encounter difficulties with abstention; however, strategic approaches such as Strict prompting and CoT can enhance this capability.

VideoReasonBench: Can MLLMs Perform Vision-Centric Complex Video Reasoning?

Recent studies have shown that long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks. However, this benefit is yet to be demonstrated in the domain of video understanding, since most existing benchmarks lack the reasoning depth required to demonstrate the advantages of extended CoT chains. While recent efforts have proposed benchmarks aimed at video reasoning, the tasks are often knowledge-driven and do not rely heavily on visual content. To bridge this gap, we introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning. To ensure visual richness and high reasoning complexity, each video in VideoReasonBench depicts a sequence of fine-grained operations on a latent state that is only visible in part of the video. The questions evaluate three escalating levels of video reasoning skills: recalling observed visual information, inferring the content of latent states, and predicting information beyond the video. Under such task setting, models have to precisely recall multiple operations in the video, and perform step-by-step reasoning to get correct final answers for these questions. Using VideoReasonBench, we comprehensively evaluate 18 state-of-the-art multimodal LLMs (MLLMs), finding that most perform poorly on complex video reasoning, e.g., GPT-4o achieves only 6.9% accuracy, while the thinking-enhanced Gemini-2.5-Pro significantly outperforms others with 56.0% accuracy. Our investigations on "test-time scaling" further reveal that extended thinking budget, while offering none or minimal benefits on existing video benchmarks, is essential for improving the performance on VideoReasonBench.

VISA: Reasoning Video Object Segmentation via Large Language Models

Existing Video Object Segmentation (VOS) relies on explicit user instructions, such as categories, masks, or short phrases, restricting their ability to perform complex video segmentation requiring reasoning with world knowledge. In this paper, we introduce a new task, Reasoning Video Object Segmentation (ReasonVOS). This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities based on world knowledge and video contexts, which is crucial for structured environment understanding and object-centric interactions, pivotal in the development of embodied AI. To tackle ReasonVOS, we introduce VISA (Video-based large language Instructed Segmentation Assistant), to leverage the world knowledge reasoning capabilities of multi-modal LLMs while possessing the ability to segment and track objects in videos with a mask decoder. Moreover, we establish a comprehensive benchmark consisting of 35,074 instruction-mask sequence pairs from 1,042 diverse videos, which incorporates complex world knowledge reasoning into segmentation tasks for instruction-tuning and evaluation purposes of ReasonVOS models. Experiments conducted on 8 datasets demonstrate the effectiveness of VISA in tackling complex reasoning segmentation and vanilla referring segmentation in both video and image domains. The code and dataset are available at https://github.com/cilinyan/VISA.

Empowering LLM to use Smartphone for Intelligent Task Automation

Mobile task automation is an attractive technique that aims to enable voice-based hands-free user interaction with smartphones. However, existing approaches suffer from poor scalability due to the limited language understanding ability and the non-trivial manual efforts required from developers or end-users. The recent advance of large language models (LLMs) in language understanding and reasoning inspires us to rethink the problem from a model-centric perspective, where task preparation, comprehension, and execution are handled by a unified language model. In this work, we introduce AutoDroid, a mobile task automation system that can handle arbitrary tasks on any Android application without manual efforts. The key insight is to combine the commonsense knowledge of LLMs and domain-specific knowledge of apps through automated dynamic analysis. The main components include a functionality-aware UI representation method that bridges the UI with the LLM, exploration-based memory injection techniques that augment the app-specific domain knowledge of LLM, and a multi-granularity query optimization module that reduces the cost of model inference. We integrate AutoDroid with off-the-shelf LLMs including online GPT-4/GPT-3.5 and on-device Vicuna, and evaluate its performance on a new benchmark for memory-augmented Android task automation with 158 common tasks. The results demonstrated that AutoDroid is able to precisely generate actions with an accuracy of 90.9%, and complete tasks with a success rate of 71.3%, outperforming the GPT-4-powered baselines by 36.4% and 39.7%. The demo, benchmark suites, and source code of AutoDroid will be released at url{https://autodroid-sys.github.io/}.

BEVerse: Unified Perception and Prediction in Birds-Eye-View for Vision-Centric Autonomous Driving

In this paper, we present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems. Unlike existing studies focusing on the improvement of single-task approaches, BEVerse features in producing spatio-temporal Birds-Eye-View (BEV) representations from multi-camera videos and jointly reasoning about multiple tasks for vision-centric autonomous driving. Specifically, BEVerse first performs shared feature extraction and lifting to generate 4D BEV representations from multi-timestamp and multi-view images. After the ego-motion alignment, the spatio-temporal encoder is utilized for further feature extraction in BEV. Finally, multiple task decoders are attached for joint reasoning and prediction. Within the decoders, we propose the grid sampler to generate BEV features with different ranges and granularities for different tasks. Also, we design the method of iterative flow for memory-efficient future prediction. We show that the temporal information improves 3D object detection and semantic map construction, while the multi-task learning can implicitly benefit motion prediction. With extensive experiments on the nuScenes dataset, we show that the multi-task BEVerse outperforms existing single-task methods on 3D object detection, semantic map construction, and motion prediction. Compared with the sequential paradigm, BEVerse also favors in significantly improved efficiency. The code and trained models will be released at https://github.com/zhangyp15/BEVerse.

Aux-Think: Exploring Reasoning Strategies for Data-Efficient Vision-Language Navigation

Vision-Language Navigation (VLN) is a critical task for developing embodied agents that can follow natural language instructions to navigate in complex real-world environments. Recent advances in VLN by large pretrained models have significantly improved generalization and instruction grounding compared to traditional approaches. However, the role of reasoning strategies in navigation-an action-centric, long-horizon task-remains underexplored, despite Chain-of-Thought (CoT) reasoning's demonstrated success in static tasks like visual question answering. To address this gap, we conduct the first systematic evaluation of reasoning strategies for VLN, including No-Think (direct action prediction), Pre-Think (reason before action), and Post-Think (reason after action). Surprisingly, our findings reveal the Inference-time Reasoning Collapse issue, where inference-time reasoning degrades navigation accuracy, highlighting the challenges of integrating reasoning into VLN. Based on this insight, we propose Aux-Think, a framework that trains models to internalize structured reasoning patterns through CoT supervision, while inferring action directly without reasoning in online prediction. To support this framework, we release R2R-CoT-320k, the first Chain-of-Thought annotated dataset for VLN. Extensive experiments show that Aux-Think reduces training effort greatly and achieves the best performance under the same data scale.

Towards Multimodal Understanding via Stable Diffusion as a Task-Aware Feature Extractor

Recent advances in multimodal large language models (MLLMs) have enabled image-based question-answering capabilities. However, a key limitation is the use of CLIP as the visual encoder; while it can capture coarse global information, it often can miss fine-grained details that are relevant to the input query. To address these shortcomings, this work studies whether pre-trained text-to-image diffusion models can serve as instruction-aware visual encoders. Through an analysis of their internal representations, we find diffusion features are both rich in semantics and can encode strong image-text alignment. Moreover, we find that we can leverage text conditioning to focus the model on regions relevant to the input question. We then investigate how to align these features with large language models and uncover a leakage phenomenon, where the LLM can inadvertently recover information from the original diffusion prompt. We analyze the causes of this leakage and propose a mitigation strategy. Based on these insights, we explore a simple fusion strategy that utilizes both CLIP and conditional diffusion features. We evaluate our approach on both general VQA and specialized MLLM benchmarks, demonstrating the promise of diffusion models for visual understanding, particularly in vision-centric tasks that require spatial and compositional reasoning. Our project page can be found https://vatsalag99.github.io/mustafar/.

SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories

While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.

When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs

Reasoning-enhanced large language models (RLLMs), whether explicitly trained for reasoning or prompted via chain-of-thought (CoT), have achieved state-of-the-art performance on many complex reasoning tasks. However, we uncover a surprising and previously overlooked phenomenon: explicit CoT reasoning can significantly degrade instruction-following accuracy. Evaluating 15 models on two benchmarks: IFEval (with simple, rule-verifiable constraints) and ComplexBench (with complex, compositional constraints), we consistently observe performance drops when CoT prompting is applied. Through large-scale case studies and an attention-based analysis, we identify common patterns where reasoning either helps (e.g., with formatting or lexical precision) or hurts (e.g., by neglecting simple constraints or introducing unnecessary content). We propose a metric, constraint attention, to quantify model focus during generation and show that CoT reasoning often diverts attention away from instruction-relevant tokens. To mitigate these effects, we introduce and evaluate four strategies: in-context learning, self-reflection, self-selective reasoning, and classifier-selective reasoning. Our results demonstrate that selective reasoning strategies, particularly classifier-selective reasoning, can substantially recover lost performance. To our knowledge, this is the first work to systematically expose reasoning-induced failures in instruction-following and offer practical mitigation strategies.

Demystifying Scientific Problem-Solving in LLMs by Probing Knowledge and Reasoning

Scientific problem solving poses unique challenges for LLMs, requiring both deep domain knowledge and the ability to apply such knowledge through complex reasoning. While automated scientific reasoners hold great promise for assisting human scientists, there is currently no widely adopted holistic benchmark for evaluating scientific reasoning, and few approaches systematically disentangle the distinct roles of knowledge and reasoning in these tasks. To address these gaps, we introduce SciReas, a diverse suite of existing benchmarks for scientific reasoning tasks, and SciReas-Pro, a selective subset that requires more complex reasoning. Our holistic evaluation surfaces insights about scientific reasoning performance that remain hidden when relying on individual benchmarks alone. We then propose KRUX, a probing framework for studying the distinct roles of reasoning and knowledge in scientific tasks. Combining the two, we conduct an in-depth analysis that yields several key findings: (1) Retrieving task-relevant knowledge from model parameters is a critical bottleneck for LLMs in scientific reasoning; (2) Reasoning models consistently benefit from external knowledge added in-context on top of the reasoning enhancement; (3) Enhancing verbalized reasoning improves LLMs' ability to surface task-relevant knowledge. Finally, we conduct a lightweight analysis, comparing our science-focused data composition with concurrent efforts on long CoT SFT, and release SciLit01, a strong 8B baseline for scientific reasoning.

Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems

Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.

ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure

Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.

Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning

Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.

Reasoning with Large Language Models, a Survey

Scaling up language models to billions of parameters has opened up possibilities for in-context learning, allowing instruction tuning and few-shot learning on tasks that the model was not specifically trained for. This has achieved breakthrough performance on language tasks such as translation, summarization, and question-answering. Furthermore, in addition to these associative "System 1" tasks, recent advances in Chain-of-thought prompt learning have demonstrated strong "System 2" reasoning abilities, answering a question in the field of artificial general intelligence whether LLMs can reason. The field started with the question whether LLMs can solve grade school math word problems. This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs. Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. Finally, we highlight the relation between reasoning and prompt-based learning, and we discuss the relation between reasoning, sequential decision processes, and reinforcement learning. We find that self-improvement, self-reflection, and some metacognitive abilities of the reasoning processes are possible through the judicious use of prompts. True self-improvement and self-reasoning, to go from reasoning with LLMs to reasoning by LLMs, remains future work.

Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement

Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficiency, revealing that LRMs inherently possess the capacity for more concise reasoning. Empirical analyses show that correct reasoning paths vary significantly in length, and the shortest correct responses often suffice, indicating untapped efficiency potential. Exploiting these findings, we propose two lightweight methods to enhance LRM efficiency. First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction in the model's representation space. Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity by rewarding concise correct solutions. Extensive experiments on seven LRM backbones across multiple mathematical reasoning benchmarks demonstrate that our methods significantly reduce reasoning length while preserving or improving task performance. Our results highlight that reasoning efficiency can be improved by leveraging and guiding the intrinsic capabilities of existing models in a self-guided manner.

Thought Anchors: Which LLM Reasoning Steps Matter?

Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.

Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning

To break the context limits of large language models (LLMs) that bottleneck reasoning accuracy and efficiency, we propose the Thread Inference Model (TIM), a family of LLMs trained for recursive and decompositional problem solving, and TIMRUN, an inference runtime enabling long-horizon structured reasoning beyond context limits. Together, TIM hosted on TIMRUN supports virtually unlimited working memory and multi-hop tool calls within a single language model inference, overcoming output limits, positional-embedding constraints, and GPU-memory bottlenecks. Performance is achieved by modeling natural language as reasoning trees measured by both length and depth instead of linear sequences. The reasoning trees consist of tasks with thoughts, recursive subtasks, and conclusions based on the concept we proposed in Schroeder et al, 2025. During generation, we maintain a working memory that retains only the key-value states of the most relevant context tokens, selected by a rule-based subtask-pruning mechanism, enabling reuse of positional embeddings and GPU memory pages throughout reasoning. Experimental results show that our system sustains high inference throughput, even when manipulating up to 90% of the KV cache in GPU memory. It also delivers accurate reasoning on mathematical tasks and handles information retrieval challenges that require long-horizon reasoning and multi-hop tool use.

Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs' Non-linear Thinking

Chain-of-Thought(CoT) prompting and its variants explore equipping large language models (LLMs) with high-level reasoning abilities by emulating human-like linear cognition and logic. However, the human mind is complicated and mixed with both linear and nonlinear thinking. In this work, we propose Inferential Exclusion Prompting (IEP), a novel prompting that combines the principles of elimination and inference in order to guide LLMs to think non-linearly. IEP guides LLMs to plan and then utilize Natural Language Inference (NLI) to deduce each possible solution's entailment relation with context, commonsense, or facts, therefore yielding a broader perspective by thinking back for inferring. This forward planning and backward eliminating process allows IEP to better simulate the complex human thinking processes compared to other CoT-based methods, which only reflect linear cognitive processes. We conducted a series of empirical studies and have corroborated that IEP consistently outperforms CoT across various tasks. Additionally, we observe that integrating IEP and CoT further improves the LLMs' performance on certain tasks, highlighting the necessity of equipping LLMs with mixed logic processes. Moreover, to better evaluate comprehensive features inherent in human logic, we introduce Mental-Ability Reasoning Benchmark (MARB). The benchmark comprises six novel subtasks with a total of 9,115 questions, among which 1,685 are developed with hand-crafted rationale references. We believe both IEP and MARB can serve as a promising direction for unveiling LLMs' logic and verbal reasoning abilities and drive further advancements. MARB will be available at ~anonymity link soon.

DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search

Enhancing the capability of large language models (LLMs) in reasoning has gained significant attention in recent years. Previous studies have demonstrated the effectiveness of various prompting strategies in aiding LLMs in reasoning (called "reasoning actions"), such as step-by-step thinking, reflecting before answering, solving with programs, and their combinations. However, these approaches often applied static, predefined reasoning actions uniformly to all questions, without considering the specific characteristics of each question or the capability of the task-solving LLM. In this paper, we propose DOTS, an approach enabling LLMs to reason dynamically via optimal reasoning trajectory search, tailored to the specific characteristics of each question and the inherent capability of the task-solving LLM. Our approach involves three key steps: i) defining atomic reasoning action modules that can be composed into various reasoning action trajectories; ii) searching for the optimal action trajectory for each training question through iterative exploration and evaluation for the specific task-solving LLM; and iii) using the collected optimal trajectories to train an LLM to plan for the reasoning trajectories of unseen questions. In particular, we propose two learning paradigms, i.e., fine-tuning an external LLM as a planner to guide the task-solving LLM, or directly fine-tuning the task-solving LLM with an internalized capability for reasoning actions planning. Our experiments across eight reasoning tasks show that our method consistently outperforms static reasoning techniques and the vanilla instruction tuning approach. Further analysis reveals that our method enables LLMs to adjust their computation based on problem complexity, allocating deeper thinking and reasoning to harder problems.

Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models

Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.

Chain of Thoughtlessness: An Analysis of CoT in Planning

Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution. Previous work has claimed that this can be mitigated by modifying prompts to include examples with chains of thought--demonstrations of solution procedures--with the intuition that it is possible to in-context teach an LLM an algorithm for solving the problem. This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain, and examine the performance of two state-of-the-art LLMs across two axes: generality of examples given in prompt, and complexity of problems queried with each prompt. While our problems are very simple, we only find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class, and that those improvements quickly deteriorate as the size n of the query-specified stack grows past the size of stacks shown in the examples. Our results hint that, contrary to previous claims in the literature, CoT's performance improvements do not stem from the model learning general algorithmic procedures via demonstrations and depend on carefully engineering highly problem specific prompts. This spotlights drawbacks of chain of thought, especially because of the sharp tradeoff between possible performance gains and the amount of human labor necessary to generate examples with correct reasoning traces.

Training Large Language Models to Reason in a Continuous Latent Space

Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.

Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension

Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.

OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities

In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: https://github.com/oladata-team/OlaGPT.

Re-Reading Improves Reasoning in Language Models

Reasoning presents a significant and challenging issue for Large Language Models (LLMs). The predominant focus of research has revolved around developing diverse prompting strategies to guide and structure the reasoning processes of LLMs. However, these approaches based on decoder-only causal language models often operate the input question in a single forward pass, potentially missing the rich, back-and-forth interactions inherent in human reasoning. Scant attention has been paid to a critical dimension, i.e., the input question itself embedded within the prompts. In response, we introduce a deceptively simple yet highly effective prompting strategy, termed question "re-reading". Drawing inspiration from human learning and problem-solving, re-reading entails revisiting the question information embedded within input prompts. This approach aligns seamlessly with the cognitive principle of reinforcement, enabling LLMs to extract deeper insights, identify intricate patterns, establish more nuanced connections, and ultimately enhance their reasoning capabilities across various tasks. Experiments conducted on a series of reasoning benchmarks serve to underscore the effectiveness and generality of our method. Moreover, our findings demonstrate that our approach seamlessly integrates with various language models, though-eliciting prompting methods, and ensemble techniques, further underscoring its versatility and compatibility in the realm of LLMs.

VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge

Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.

The Impact of Reasoning Step Length on Large Language Models

Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.

LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models

Generating accurate step-by-step reasoning is essential for Large Language Models (LLMs) to address complex problems and enhance robustness and interpretability. Despite the flux of research on developing advanced reasoning approaches, systematically analyzing the diverse LLMs and reasoning strategies in generating reasoning chains remains a significant challenge. The difficulties stem from the lack of two key elements: (1) an automatic method for evaluating the generated reasoning chains on different tasks, and (2) a unified formalism and implementation of the diverse reasoning approaches for systematic comparison. This paper aims to close the gap: (1) We introduce AutoRace for fully automated reasoning chain evaluation. Existing metrics rely on expensive human annotations or pre-defined LLM prompts not adaptable to different tasks. In contrast, AutoRace automatically creates detailed evaluation criteria tailored for each task, and uses GPT-4 for accurate evaluation following the criteria. (2) We develop LLM Reasoners, a library for standardized modular implementation of existing and new reasoning algorithms, under a unified formulation of the search, reward, and world model components. With the new evaluation and library, (3) we conduct extensive study of different reasoning approaches (e.g., CoT, ToT, RAP). The analysis reveals interesting findings about different factors contributing to reasoning, including the reward-guidance, breadth-vs-depth in search, world model, and prompt formats, etc.

Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.

Calibrating Reasoning in Language Models with Internal Consistency

Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks, aided by techniques like chain-of-thought (CoT) prompting that elicits verbalized reasoning. However, LLMs often generate text with obvious mistakes and contradictions, raising doubts about their ability to robustly process and utilize generated rationales. In this work, we investigate CoT reasoning in LLMs through the lens of internal representations, focusing on how these representations are influenced by generated rationales. Our preliminary analysis reveals that while generated rationales improve answer accuracy, inconsistencies emerge between the model's internal representations in middle layers and those in final layers, potentially undermining the reliability of their reasoning processes. To address this, we propose internal consistency as a measure of the model's confidence by examining the agreement of latent predictions decoded from intermediate layers. Extensive empirical studies across different models and datasets demonstrate that internal consistency effectively distinguishes between correct and incorrect reasoning paths. Motivated by this, we propose a new approach to calibrate CoT reasoning by up-weighting reasoning paths with high internal consistency, resulting in a significant boost in reasoning performance. Further analysis uncovers distinct patterns in attention and feed-forward modules across layers, providing insights into the emergence of internal inconsistency. In summary, our results demonstrate the potential of using internal representations for self-evaluation of LLMs.

Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models

Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data are available at https://github.com/yuleiqin/RAIF.

Towards a Deeper Understanding of Reasoning Capabilities in Large Language Models

While large language models demonstrate impressive performance on static benchmarks, the true potential of large language models as self-learning and reasoning agents in dynamic environments remains unclear. This study systematically evaluates the efficacy of self-reflection, heuristic mutation, and planning as prompting techniques to test the adaptive capabilities of agents. We conduct experiments with various open-source language models in dynamic environments and find that larger models generally outperform smaller ones, but that strategic prompting can close this performance gap. Second, a too-long prompt can negatively impact smaller models on basic reactive tasks, while larger models show more robust behaviour. Third, advanced prompting techniques primarily benefit smaller models on complex games, but offer less improvement for already high-performing large language models. Yet, we find that advanced reasoning methods yield highly variable outcomes: while capable of significantly improving performance when reasoning and decision-making align, they also introduce instability and can lead to big performance drops. Compared to human performance, our findings reveal little evidence of true emergent reasoning. Instead, large language model performance exhibits persistent limitations in crucial areas such as planning, reasoning, and spatial coordination, suggesting that current-generation large language models still suffer fundamental shortcomings that may not be fully overcome through self-reflective prompting alone. Reasoning is a multi-faceted task, and while reasoning methods like Chain of thought improves multi-step reasoning on math word problems, our findings using dynamic benchmarks highlight important shortcomings in general reasoning capabilities, indicating a need to move beyond static benchmarks to capture the complexity of reasoning.

Supervised Chain of Thought

Large Language Models (LLMs) have revolutionized natural language processing and hold immense potential for advancing Artificial Intelligence. However, the core architecture of most mainstream LLMs -- the Transformer -- has inherent limitations in computational depth, rendering them theoretically incapable of solving many reasoning tasks that demand increasingly deep computations. Chain of Thought (CoT) prompting has emerged as a technique to address these architectural limitations, as evidenced by several theoretical studies. It offers a promising approach to solving complex reasoning tasks that were previously beyond the capabilities of these models. Despite its successes, CoT and its variants (such as Tree of Thought, Graph of Thought, etc.) rely on a "one-prompt-for-all" approach, using a single prompt structure (e.g., "think step by step") for a wide range of tasks -- from counting and sorting to solving mathematical and algorithmic problems. This approach poses significant challenges for models to generate the correct reasoning steps, as the model must navigate through a vast prompt template space to find the appropriate template for each task. In this work, we build upon previous theoretical analyses of CoT to demonstrate how the one-prompt-for-all approach can negatively affect the computability of LLMs. We partition the solution search space into two: the prompt space and the answer space. Our findings show that task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance. Through experiments with state-of-the-art LLMs, we reveal a gap in reasoning performance when supervision is applied versus when it is not.

Hierarchical Reasoning Model

Reasoning, the process of devising and executing complex goal-oriented action sequences, remains a critical challenge in AI. Current large language models (LLMs) primarily employ Chain-of-Thought (CoT) techniques, which suffer from brittle task decomposition, extensive data requirements, and high latency. Inspired by the hierarchical and multi-timescale processing in the human brain, we propose the Hierarchical Reasoning Model (HRM), a novel recurrent architecture that attains significant computational depth while maintaining both training stability and efficiency. HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process, through two interdependent recurrent modules: a high-level module responsible for slow, abstract planning, and a low-level module handling rapid, detailed computations. With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples. The model operates without pre-training or CoT data, yet achieves nearly perfect performance on challenging tasks including complex Sudoku puzzles and optimal path finding in large mazes. Furthermore, HRM outperforms much larger models with significantly longer context windows on the Abstraction and Reasoning Corpus (ARC), a key benchmark for measuring artificial general intelligence capabilities. These results underscore HRM's potential as a transformative advancement toward universal computation and general-purpose reasoning systems.

RAR-b: Reasoning as Retrieval Benchmark

Semantic textual similartiy (STS) and information retrieval tasks (IR) tasks have been the two major avenues to record the progress of embedding models in the past few years. Under the emerging Retrieval-augmented Generation (RAG) paradigm, we envision the need to evaluate next-level language understanding abilities of embedding models, and take a conscious look at the reasoning abilities stored in them. Addressing this, we pose the question: Can retrievers solve reasoning problems? By transforming reasoning tasks into retrieval tasks, we find that without specifically trained for reasoning-level language understanding, current state-of-the-art retriever models may still be far from being competent for playing the role of assisting LLMs, especially in reasoning-intensive tasks. Moreover, albeit trained to be aware of instructions, instruction-aware IR models are often better off without instructions in inference time for reasoning tasks, posing an overlooked retriever-LLM behavioral gap for the research community to align. However, recent decoder-based embedding models show great promise in narrowing the gap, highlighting the pathway for embedding models to achieve reasoning-level language understanding. We also show that, although current off-the-shelf re-ranker models fail on these tasks, injecting reasoning abilities into them through fine-tuning still appears easier than doing so to bi-encoders, and we are able to achieve state-of-the-art performance across all tasks by fine-tuning a reranking model. We release Reasoning as Retrieval Benchmark (RAR-b), a holistic suite of tasks and settings to evaluate the reasoning abilities stored in retriever models. RAR-b is available at https://github.com/gowitheflow-1998/RAR-b.

REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once

Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly and perpetual creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that concurrently exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST specifically evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key mechanistic insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation.

System-1.5 Reasoning: Traversal in Language and Latent Spaces with Dynamic Shortcuts

Chain-of-thought (CoT) reasoning enables large language models (LLMs) to move beyond fast System-1 responses and engage in deliberative System-2 reasoning. However, this comes at the cost of significant inefficiency due to verbose intermediate output. Recent latent-space reasoning methods improve efficiency by operating on hidden states without decoding into language, yet they treat all steps uniformly, failing to distinguish critical deductions from auxiliary steps and resulting in suboptimal use of computational resources. In this paper, we propose System-1.5 Reasoning, an adaptive reasoning framework that dynamically allocates computation across reasoning steps through shortcut paths in latent space. Specifically, System-1.5 Reasoning introduces two types of dynamic shortcuts. The model depth shortcut (DS) adaptively reasons along the vertical depth by early exiting non-critical tokens through lightweight adapter branches, while allowing critical tokens to continue through deeper Transformer layers. The step shortcut (SS) reuses hidden states across the decoding steps to skip trivial steps and reason horizontally in latent space. Training System-1.5 Reasoning involves a two-stage self-distillation process: first distilling natural language CoT into latent-space continuous thought, and then distilling full-path System-2 latent reasoning into adaptive shortcut paths (System-1.5 Reasoning). Experiments on reasoning tasks demonstrate the superior performance of our method. For example, on GSM8K, System-1.5 Reasoning achieves reasoning performance comparable to traditional CoT fine-tuning methods while accelerating inference by over 20x and reducing token generation by 92.31% on average.

RL of Thoughts: Navigating LLM Reasoning with Inference-time Reinforcement Learning

Despite rapid advancements in large language models (LLMs), the token-level autoregressive nature constrains their complex reasoning capabilities. To enhance LLM reasoning, inference-time techniques, including Chain/Tree/Graph-of-Thought(s), successfully improve the performance, as they are fairly cost-effective by guiding reasoning through sophisticated logical structures without modifying LLMs' parameters. However, these manually predefined, task-agnostic frameworks are applied uniformly across diverse tasks, lacking adaptability. To improve this, we propose RL-of-Thoughts (RLoT), where we train a lightweight navigator model with reinforcement learning (RL) to adaptively enhance LLM reasoning at inference time. Specifically, we design five basic logic blocks from the perspective of human cognition. During the reasoning process, the trained RL navigator dynamically selects the suitable logic blocks and combines them into task-specific logical structures according to problem characteristics. Experiments across multiple reasoning benchmarks (AIME, MATH, GPQA, etc.) with multiple LLMs (GPT, Llama, Qwen, and DeepSeek) illustrate that RLoT outperforms established inference-time techniques by up to 13.4%. Remarkably, with less than 3K parameters, our RL navigator is able to make sub-10B LLMs comparable to 100B-scale counterparts. Moreover, the RL navigator demonstrates strong transferability: a model trained on one specific LLM-task pair can effectively generalize to unseen LLMs and tasks. Our code is open-source at https://anonymous.4open.science/r/RL-LLM-Reasoning-1A30 for reproducibility.

ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models

Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit

Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training

Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''<think>''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.

MMMR: Benchmarking Massive Multi-Modal Reasoning Tasks

Recent advances in Multi-Modal Large Language Models (MLLMs) have enabled unified processing of language, vision, and structured inputs, opening the door to complex tasks such as logical deduction, spatial reasoning, and scientific analysis. Despite their promise, the reasoning capabilities of MLLMs, particularly those augmented with intermediate thinking traces (MLLMs-T), remain poorly understood and lack standardized evaluation benchmarks. Existing work focuses primarily on perception or final answer correctness, offering limited insight into how models reason or fail across modalities. To address this gap, we introduce the MMMR, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking. The MMMR comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands and 2) a modular Reasoning Trace Evaluation Pipeline (RTEP) for assessing reasoning quality beyond accuracy through metrics like relevance, consistency, and structured error annotations. Empirical results show that MLLMs-T overall outperform non-thinking counterparts, but even top models like Claude-3.7-Sonnet and Gemini-2.5 Pro suffer from reasoning pathologies such as inconsistency and overthinking. This benchmark reveals persistent gaps between accuracy and reasoning quality and provides an actionable evaluation pipeline for future model development. Overall, the MMMR offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.

Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens

Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.

Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models

Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason from scratch. To address these issues, we propose \textit{Thought Propagation (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.

mSCoRe: a Multilingual and Scalable Benchmark for Skill-based Commonsense Reasoning

Recent advancements in reasoning-reinforced Large Language Models (LLMs) have shown remarkable capabilities in complex reasoning tasks. However, the mechanism underlying their utilization of different human reasoning skills remains poorly investigated, especially for multilingual commonsense reasoning that involves everyday knowledge across different languages and cultures. To address this gap, we propose a Multilingual and Scalable Benchmark for Skill-based Commonsense Reasoning (mSCoRe). Our benchmark incorporates three key components that are designed to systematically evaluate LLM's reasoning capabilities, including: (1) a novel taxonomy of reasoning skills that enables fine-grained analysis of models' reasoning processes, (2) a robust data synthesis pipeline tailored specifically for commonsense reasoning evaluation, and (3) a complexity scaling framework allowing task difficulty to scale dynamically alongside future improvements in LLM abilities. Extensive experiments on eights state-of-the-art LLMs of varying sizes and training approaches demonstrate that mSCoRe remains significantly challenging for current models, particularly at higher complexity levels. Our results reveal the limitations of such reasoning-reinforced models when confronted with nuanced multilingual general and cultural commonsense. We further provide detailed analysis on the models' reasoning processes, suggesting future directions for improving multilingual commonsense reasoning capabilities.

Divide and Conquer for Large Language Models Reasoning

Large language models (LLMs) have shown impressive performance in various reasoning benchmarks with the emergence of Chain-of-Thought (CoT) and its derivative methods, particularly in tasks involving multi-choice questions (MCQs). However, current works all process data uniformly without considering the problem-solving difficulty, which means an excessive focus on simple questions while insufficient to intricate ones. To address this challenge, we inspired by humans using heuristic strategies to categorize tasks and handle them individually, propose to apply the Divide and Conquer to LLMs reasoning. First, we divide questions into different subsets based on the statistical confidence score (CS), then fix nearly resolved sets and conquer demanding nuanced process ones with elaborately designed methods, including Prior Knowledge based Reasoning (PKR) and Filter Choices based Reasoning (FCR), as well as their integration variants. Our experiments demonstrate that this proposed strategy significantly boosts the models' reasoning abilities across nine datasets involving arithmetic, commonsense, and logic tasks. For instance, compared to baseline, we make a striking improvement on low confidence subsets of 8.72\% for AQuA, 15.07\% for ARC Challenge and 7.71\% for RiddleSense. In addition, through extensive analysis on length of rationale and number of options, we verify that longer reasoning paths in PKR could prevent models from referring infer-harmful shortcuts, and also find that removing irrelevant choices in FCR would substantially avoid models' confusion. The code is at https://github.com/AiMijie/Divide-and-Conquer

A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems

Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making. With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems from conventional models that empower chatbots. In this survey, we categorize existing methods along two orthogonal dimensions: (1) Regimes, which define the stage at which reasoning is achieved (either at inference time or through dedicated training); and (2) Architectures, which determine the components involved in the reasoning process, distinguishing between standalone LLMs and agentic compound systems that incorporate external tools, and multi-agent collaborations. Within each dimension, we analyze two key perspectives: (1) Input level, which focuses on techniques that construct high-quality prompts that the LLM condition on; and (2) Output level, which methods that refine multiple sampled candidates to enhance reasoning quality. This categorization provides a systematic understanding of the evolving landscape of LLM reasoning, highlighting emerging trends such as the shift from inference-scaling to learning-to-reason (e.g., DeepSeek-R1), and the transition to agentic workflows (e.g., OpenAI Deep Research, Manus Agent). Additionally, we cover a broad spectrum of learning algorithms, from supervised fine-tuning to reinforcement learning such as PPO and GRPO, and the training of reasoners and verifiers. We also examine key designs of agentic workflows, from established patterns like generator-evaluator and LLM debate to recent innovations. ...

From System 1 to System 2: A Survey of Reasoning Large Language Models

Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time https://github.com/zzli2022/Awesome-Slow-Reason-System{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.

Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models

Recent advancements in reasoning with large language models (RLLMs), such as OpenAI-O1 and DeepSeek-R1, have demonstrated their impressive capabilities in complex domains like mathematics and coding. A central factor in their success lies in the application of long chain-of-thought (Long CoT) characteristics, which enhance reasoning abilities and enable the solution of intricate problems. However, despite these developments, a comprehensive survey on Long CoT is still lacking, limiting our understanding of its distinctions from traditional short chain-of-thought (Short CoT) and complicating ongoing debates on issues like "overthinking" and "test-time scaling." This survey seeks to fill this gap by offering a unified perspective on Long CoT. (1) We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms. (2) Next, we explore the key characteristics of Long CoT: deep reasoning, extensive exploration, and feasible reflection, which enable models to handle more complex tasks and produce more efficient, coherent outcomes compared to the shallower Short CoT. (3) We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and test-time scaling, offering insights into how these processes manifest in practice. (4) Finally, we identify significant research gaps and highlight promising future directions, including the integration of multi-modal reasoning, efficiency improvements, and enhanced knowledge frameworks. By providing a structured overview, this survey aims to inspire future research and further the development of logical reasoning in artificial intelligence.

System-2 Mathematical Reasoning via Enriched Instruction Tuning

Solving complex mathematical problems via system-2 reasoning is a natural human skill, yet it remains a significant challenge for current large language models (LLMs). We identify the scarcity of deliberate multi-step reasoning data as a primary limiting factor. To this end, we introduce Enriched Instruction Tuning (EIT), a method that enriches existing human-annotated mathematical datasets by synergizing human and AI feedback to create fine-grained reasoning trajectories. These datasets are then used to fine-tune open-source LLMs, enhancing their mathematical reasoning abilities without reliance on any symbolic verification program. Concretely, EIT is composed of two critical steps: Enriching with Reasoning Plan (ERP) and Enriching with Reasoning Step (ERS). The former generates a high-level plan that breaks down complex instructions into a sequence of simpler objectives, while ERS fills in reasoning contexts often overlooked by human annotators, creating a smoother reasoning trajectory for LLM fine-tuning. Unlike existing CoT prompting methods that generate reasoning chains only depending on LLM's internal knowledge, our method leverages human-annotated initial answers as ``meta-knowledge'' to help LLMs generate more detailed and precise reasoning processes, leading to a more trustworthy LLM expert for complex mathematical problems. In experiments, EIT achieves an accuracy of 84.1% on GSM8K and 32.5% on MATH, surpassing state-of-the-art fine-tuning and prompting methods, and even matching the performance of tool-augmented methods.

SATQuest: A Verifier for Logical Reasoning Evaluation and Reinforcement Fine-Tuning of LLMs

Recent advances in Large Language Models (LLMs) have demonstrated remarkable general reasoning capabilities. However, systematically evaluating and enhancing these reasoning capabilities is challenging due to the lack of controllable and scalable tools for fine-grained analysis. Existing benchmarks and datasets often lack the necessary variable control for multi-dimensional, systematic analysis and training, or have narrow problem types and formats. To address these limitations, we introduce SATQuest, a systematic verifier designed to evaluate and enhance logical reasoning in LLMs by generating diverse, Satisfiability-based logical reasoning problems directly from Conjunctive Normal Form (CNF) instances. SATQuest structures these problems along three orthogonal dimensions: instance scale, problem type, and question format, employing randomized, SAT-based problem generation and objective answer verification via PySAT. This design mitigates memorization issues, allows for nuanced insights into reasoning performance, and enables effective reinforcement fine-tuning. Our extensive evaluation of various LLMs using SATQuest identified significant limitations in their logical reasoning, particularly in generalizing beyond familiar mathematical formats. Furthermore, we show that reinforcement fine-tuning with SATQuest rewards substantially improves targeted task performance and generalizes to more complex instances, while highlighting remaining challenges in cross-format adaptation. Through these demonstrations, we showcase SATQuest's potential as a foundational tool and a valuable starting point for advancing LLM logical reasoning.

Thinking with Nothinking Calibration: A New In-Context Learning Paradigm in Reasoning Large Language Models

Reasoning large language models (RLLMs) have recently demonstrated remarkable capabilities through structured and multi-step reasoning. While prior research has primarily focused on improving their training and inference strategies, their potential for in-context learning (ICL) remains largely underexplored. To fill this gap, we propose Thinking with Nothinking Calibration (JointThinking), a new ICL paradigm that leverages the structured difference between two reasoning modes, i.e., Thinking and Nothinking, to improve reasoning accuracy. Specifically, our method prompts the model to generate two answers in parallel: one in Thinking mode and the other in Nothinking mode. A second round of Thinking is triggered only when the two initial responses are inconsistent, using a single prompt that incorporates the original question and both candidate answers. Since such disagreement occurs infrequently (e.g., only 6\% in GSM8K), our method performs just one round of reasoning in most cases, resulting in minimal latency overhead. Extensive experiments across multiple reasoning benchmarks demonstrate that JointThinking significantly outperforms few-shot chain-of-thought (CoT) and majority voting with improved answer robustness. Moreover, It achieves comparable in-distribution performance to training-based SOTA method, while substantially outperforming on out-of-distribution tasks. We further conduct a systematic analysis of the calibration mechanism, showing that leveraging different reasoning modes consistently lowers the error rate and highlights the value of structural thinking diversity. Additionally, we observe that the performance gap between actual and ideal reasoning narrows as model size increases in the second round of thinking, indicating the strong scalability of our approach. Finally, we discuss current limitations and outline promising directions for future ICL research in RLLMs.

Can Atomic Step Decomposition Enhance the Self-structured Reasoning of Multimodal Large Models?

In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of "slow thinking" into multimodal large language models (MLLMs). Our core idea is that different levels of reasoning abilities can be combined dynamically to tackle questions with different complexity. To this end, we propose a paradigm of Self-structured Chain of Thought (SCoT), which is composed of minimal semantic atomic steps. Different from existing methods that rely on structured templates or free-form paradigms, our method can not only generate cognitive CoT structures for various complex tasks but also mitigates the phenomenon of overthinking. To introduce structured reasoning capabilities into visual understanding models, we further design a novel AtomThink framework with four key modules, including (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single step utilization rate. We conduct extensive experiments to show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 times and boosts inference efficiency by 85.3\%. Our code is now public available in https://github.com/Quinn777/AtomThink.

Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models

Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.

Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking

When writing and talking, people sometimes pause to think. Although reasoning-focused works have often framed reasoning as a method of answering questions or completing agentic tasks, reasoning is implicit in almost all written text. For example, this applies to the steps not stated between the lines of a proof or to the theory of mind underlying a conversation. In the Self-Taught Reasoner (STaR, Zelikman et al. 2022), useful thinking is learned by inferring rationales from few-shot examples in question-answering and learning from those that lead to a correct answer. This is a highly constrained setting -- ideally, a language model could instead learn to infer unstated rationales in arbitrary text. We present Quiet-STaR, a generalization of STaR in which LMs learn to generate rationales at each token to explain future text, improving their predictions. We address key challenges, including 1) the computational cost of generating continuations, 2) the fact that the LM does not initially know how to generate or use internal thoughts, and 3) the need to predict beyond individual next tokens. To resolve these, we propose a tokenwise parallel sampling algorithm, using learnable tokens indicating a thought's start and end, and an extended teacher-forcing technique. Encouragingly, generated rationales disproportionately help model difficult-to-predict tokens and improve the LM's ability to directly answer difficult questions. In particular, after continued pretraining of an LM on a corpus of internet text with Quiet-STaR, we find zero-shot improvements on GSM8K (5.9%rightarrow10.9%) and CommonsenseQA (36.3%rightarrow47.2%) and observe a perplexity improvement of difficult tokens in natural text. Crucially, these improvements require no fine-tuning on these tasks. Quiet-STaR marks a step towards LMs that can learn to reason in a more general and scalable way.

Reasoning with Language Model is Planning with World Model

Large language models (LLMs) have shown remarkable reasoning capabilities, especially when prompted to generate intermediate reasoning steps (e.g., Chain-of-Thought, CoT). However, LLMs can still struggle with problems that are easy for humans, such as generating action plans for executing tasks in a given environment, or performing complex math, logical, and commonsense reasoning. The deficiency stems from the key fact that LLMs lack an internal world model to predict the world state (e.g., environment status, intermediate variable values) and simulate long-term outcomes of actions. This prevents LLMs from performing deliberate planning akin to human brains, which involves exploring alternative reasoning paths, anticipating future states and rewards, and iteratively refining existing reasoning steps. To overcome the limitations, we propose a new LLM reasoning framework, Reasoning via Planning (RAP). RAP repurposes the LLM as both a world model and a reasoning agent, and incorporates a principled planning algorithm (based on Monto Carlo Tree Search) for strategic exploration in the vast reasoning space. During reasoning, the LLM (as agent) incrementally builds a reasoning tree under the guidance of the LLM (as world model) and task-specific rewards, and obtains a high-reward reasoning path efficiently with a proper balance between exploration vs. exploitation. We apply RAP to a variety of challenging reasoning problems including plan generation, math reasoning, and logical inference. Empirical results on these tasks demonstrate the superiority of RAP over various strong baselines, including CoT and least-to-most prompting with self-consistency. RAP on LLAMA-33B surpasses CoT on GPT-4 with 33% relative improvement in a plan generation setting.

QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?

Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.

RECKONING: Reasoning through Dynamic Knowledge Encoding

Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., in-context reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the knowledge that is necessary to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question. Our method, RECKONING, is a bi-level learning algorithm that teaches language models to reason by updating their parametric knowledge through back-propagation, allowing them to then answer questions using the updated parameters. During training, the inner loop rapidly adapts a copy of the model weights to encode contextual knowledge into its parameters. In the outer loop, the model learns to use the updated weights to reproduce and answer reasoning questions about the memorized knowledge. Our experiments on two multi-hop reasoning datasets show that RECKONING's performance improves over the in-context reasoning baseline (by up to 4.5%). We also find that compared to in-context reasoning, RECKONING generalizes better to longer reasoning chains unseen during training, is more robust to distractors in the context, and is more computationally efficient when multiple questions are asked about the same knowledge.

Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for Knowledge-intensive Question Answering

Equipped with Chain-of-Thought (CoT), Large language models (LLMs) have shown impressive reasoning ability in various downstream tasks. Even so, suffering from hallucinations and the inability to access external knowledge, LLMs often come with incorrect or unfaithful intermediate reasoning steps, especially in the context of answering knowledge-intensive tasks such as KBQA. To alleviate this issue, we propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge, and thus overcome the hallucinations and error propagation. Concretely, we formulate the CoT rationale process of LLMs into a structured multi-round QA format. In each round, LLMs interact with a QA system that retrieves external knowledge and produce faithful reasoning traces based on retrieved precise answers. The structured CoT reasoning of LLMs is facilitated by our developed KBQA CoT collection, which serves as in-context learning demonstrations and can also be utilized as feedback augmentation to train a robust retriever. Extensive experiments on WebQSP and ComplexWebQuestion datasets demonstrate the effectiveness of proposed KD-CoT in task-solving reasoning generation, which outperforms the vanilla CoT ICL with an absolute success rate of 8.0% and 5.1%. Furthermore, our proposed feedback-augmented retriever outperforms the state-of-the-art baselines for retrieving knowledge, achieving significant improvement in Hit performance.

LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems

Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.

Reasoning with OmniThought: A Large CoT Dataset with Verbosity and Cognitive Difficulty Annotations

The emergence of large reasoning models (LRMs) has transformed Natural Language Processing by excelling in complex tasks such as mathematical problem-solving and code generation. These models leverage chain-of-thought (CoT) processes, enabling them to emulate human-like reasoning strategies. However, the advancement of LRMs is hindered by the lack of comprehensive CoT datasets. Current resources often fail to provide extensive reasoning problems with coherent CoT processes distilled from multiple teacher models and do not account for multifaceted properties describing the internal characteristics of CoTs. To address these challenges, we introduce OmniThought, a large-scale dataset featuring 2 million CoT processes generated and validated by two powerful LRMs as teacher models. Each CoT process in OmniThought is annotated with novel Reasoning Verbosity (RV) and Cognitive Difficulty (CD) scores, which describe the appropriateness of CoT verbosity and cognitive difficulty level for models to comprehend these reasoning processes. We further establish a self-reliant pipeline to curate this dataset. Extensive experiments using Qwen2.5 models of various sizes demonstrate the positive impact of our proposed scores on LRM training effectiveness. Based on the proposed OmniThought dataset, we further train and release a series of high-performing LRMs, specifically equipped with stronger reasoning abilities and optimal CoT output length and difficulty level. Our contributions significantly enhance the development and training of LRMs for solving complex tasks.

From Thinking to Output: Chain-of-Thought and Text Generation Characteristics in Reasoning Language Models

Recently, there have been notable advancements in large language models (LLMs), demonstrating their growing abilities in complex reasoning. However, existing research largely overlooks a thorough and systematic comparison of these models' reasoning processes and outputs, particularly regarding their self-reflection pattern (also termed "Aha moment") and the interconnections across diverse domains. This paper proposes a novel framework for analyzing the reasoning characteristics of four cutting-edge large reasoning models (GPT-o1, DeepSeek-R1, Kimi-k1.5, and Grok-3) using keywords statistic and LLM-as-a-judge paradigm. Our approach connects their internal thinking processes with their final outputs. A diverse dataset consists of real-world scenario-based questions covering logical deduction, causal inference, and multi-step problem-solving. Additionally, a set of metrics is put forward to assess both the coherence of reasoning and the accuracy of the outputs. The research results uncover various patterns of how these models balance exploration and exploitation, deal with problems, and reach conclusions during the reasoning process. Through quantitative and qualitative comparisons, disparities among these models are identified in aspects such as the depth of reasoning, the reliance on intermediate steps, and the degree of similarity between their thinking processes and output patterns and those of GPT-o1. This work offers valuable insights into the trade-off between computational efficiency and reasoning robustness and provides practical recommendations for enhancing model design and evaluation in practical applications. We publicly release our project at: https://github.com/ChangWenhan/FromThinking2Output

Is Human-Written Data Enough? The Challenge of Teaching Reasoning to LLMs Without RL or Distillation

Reasoning-capable language models achieve state-of-the-art performance in diverse complex tasks by generating long, explicit Chain-of-Thought (CoT) traces. While recent works show that base models can acquire such reasoning traces via reinforcement learning or distillation from stronger models like DeepSeek-R1, previous works demonstrate that even short CoT prompting without fine-tuning is able to improve reasoning. We ask whether long CoT can be induced in a base model using only prompting or minimal tuning. Using just 20 long CoT examples from the reasoning model QwQ-32B-Preview, we lightly fine-tune the base model Qwen2.5-32B. The resulting model outperforms the much larger Qwen2.5-Math-72B-Instruct, showing that a handful of high-quality examples can unlock strong reasoning capabilities. We further explore using CoT data from non-reasoning models and human annotators, enhanced with prompt engineering, multi-pass editing, and structural guidance. However, neither matches the performance of reasoning model traces, suggesting that certain latent qualities of expert CoT are difficult to replicate. We analyze key properties of reasoning data, such as problem difficulty, diversity, and answer length, that influence reasoning distillation. While challenges remain, we are optimistic that carefully curated human-written CoT, even in small quantities, can activate reasoning behaviors in base models. We release our human-authored dataset across refinement stages and invite further investigation into what makes small-scale reasoning supervision so effective.

ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models

Recent advances in reasoning-centric language models have highlighted reinforcement learning (RL) as a promising method for aligning models with verifiable rewards. However, it remains contentious whether RL truly expands a model's reasoning capabilities or merely amplifies high-reward outputs already latent in the base model's distribution, and whether continually scaling up RL compute reliably leads to improved reasoning performance. In this work, we challenge prevailing assumptions by demonstrating that prolonged RL (ProRL) training can uncover novel reasoning strategies that are inaccessible to base models, even under extensive sampling. We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy resetting, and a diverse suite of tasks. Our empirical analysis reveals that RL-trained models consistently outperform base models across a wide range of pass@k evaluations, including scenarios where base models fail entirely regardless of the number of attempts. We further show that reasoning boundary improvements correlates strongly with task competence of base model and training duration, suggesting that RL can explore and populate new regions of solution space over time. These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models and establish a foundation for future work on long-horizon RL for reasoning. We release model weights to support further research: https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B

Physical Reasoning and Object Planning for Household Embodied Agents

In this study, we explore the sophisticated domain of task planning for robust household embodied agents, with a particular emphasis on the intricate task of selecting substitute objects. We introduce the CommonSense Object Affordance Task (COAT), a novel framework designed to analyze reasoning capabilities in commonsense scenarios. This approach is centered on understanding how these agents can effectively identify and utilize alternative objects when executing household tasks, thereby offering insights into the complexities of practical decision-making in real-world environments.Drawing inspiration from human decision-making, we explore how large language models tackle this challenge through three meticulously crafted commonsense question-and-answer datasets, featuring refined rules and human annotations. Our evaluation of state-of-the-art language models on these datasets sheds light on three pivotal considerations: 1) aligning an object's inherent utility with the task at hand, 2) navigating contextual dependencies (societal norms, safety, appropriateness, and efficiency), and 3) accounting for the current physical state of the object. To maintain accessibility, we introduce five abstract variables reflecting an object's physical condition, modulated by human insights to simulate diverse household scenarios. Our contributions include insightful Object-Utility mappings addressing the first consideration and two extensive QA datasets (15k and 130k questions) probing the intricacies of contextual dependencies and object states. The datasets, along with our findings, are accessible at: https://github.com/com-phy-affordance/COAT. This research not only advances our understanding of physical commonsense reasoning in language models but also paves the way for future improvements in household agent intelligence.

Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning

Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). Inspired by our results, we finetune an LLM using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.

Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents

Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner

Reasoning Vectors: Transferring Chain-of-Thought Capabilities via Task Arithmetic

Large language models often require costly optimization, such as reinforcement learning, to master complex reasoning tasks. This work demonstrates that reasoning ability, once learned, can be extracted and transferred between models as a compact task vector. We source two publicly available, identically initialized Qwen2.5 models, one fine-tuned with supervised fine-tuning (SFT) and the other with group relative policy optimization (GRPO) on the same dataset. From these, we extract a reasoning vector: v_{reason} = theta_{GRPO} - theta_{SFT}. We hypothesize that this vector captures the reasoning capability instilled by reinforcement learning while factoring out shared knowledge from the SFT process. When added to compatible instruction-tuned models through simple arithmetic, this vector consistently improves performance across diverse reasoning benchmarks: GSM8K (+4.9%), HumanEval (+4.3%), SciQ (+1.7%), and BigBenchHard (+12.3% for the 1.5B model). The performance improvements persist under adversarial conditions. Conversely, subtracting the vector causes significant performance degradation (-11.8% on GSM8K), demonstrating the vector's strong contribution to the model's reasoning abilities. This work shows how reasoning capabilities, typically developed through expensive training, can be extracted from existing open-source models and reused through simple tensor arithmetic, offering a practical way to enhance models by recycling prior computational investments.

How Much Backtracking is Enough? Exploring the Interplay of SFT and RL in Enhancing LLM Reasoning

Recent breakthroughs in large language models (LLMs) have effectively improved their reasoning abilities, particularly on mathematical and logical problems that have verifiable answers, through techniques such as supervised finetuning (SFT) and reinforcement learning (RL). Prior research indicates that RL effectively internalizes search strategies, enabling long chain-of-thought (CoT) reasoning, with backtracking emerging naturally as a learned capability. However, the precise benefits of backtracking, specifically, how significantly it contributes to reasoning improvements and the optimal extent of its use, remain poorly understood. In this work, we systematically investigate the dynamics between SFT and RL on eight reasoning tasks: Countdown, Sudoku, Arc 1D, Geometry, Color Cube Rotation, List Functions, Zebra Puzzles, and Self Reference. Our findings highlight that short CoT sequences used in SFT as a warm-up do have moderate contribution to RL training, compared with cold-start RL; however such contribution diminishes when tasks become increasingly difficult. Motivated by this observation, we construct synthetic datasets varying systematically in the number of backtracking steps and conduct controlled experiments to isolate the influence of either the correctness (content) or the structure (i.e., backtrack frequency). We find that (1) longer CoT with backtracks generally induce better and more stable RL training, (2) more challenging problems with larger search space tend to need higher numbers of backtracks during the SFT stage. Additionally, we demonstrate through experiments on distilled data that RL training is largely unaffected by the correctness of long CoT sequences, suggesting that RL prioritizes structural patterns over content correctness. Collectively, our results offer practical insights into designing optimal training strategies to effectively scale reasoning in LLMs.

Creativity or Brute Force? Using Brainteasers as a Window into the Problem-Solving Abilities of Large Language Models

Accuracy remains a standard metric for evaluating AI systems, but it offers limited insight into how models arrive at their solutions. In this work, we introduce a benchmark based on brainteasers written in long narrative form to probe more deeply into the types of reasoning strategies that models use. Brainteasers are well-suited for this goal because they can be solved with multiple approaches, such as a few-step solution that uses a creative insight or a longer solution that uses more brute force. We investigate large language models (LLMs) across multiple layers of reasoning, focusing not only on correctness but also on the quality and creativity of their solutions. We investigate many aspects of the reasoning process: (1) semantic parsing of the brainteasers into precise mathematical competition style formats; (2) generating solutions from these mathematical forms; (3) self-correcting solutions based on gold solutions; (4) producing step-by-step sketches of solutions; and (5) making use of hints. We find that LLMs are in many cases able to find creative, insightful solutions to brainteasers, suggesting that they capture some of the capacities needed to solve novel problems in creative ways. Nonetheless, there also remain situations where they rely on brute force despite the availability of more efficient, creative solutions, highlighting a potential direction for improvement in the reasoning abilities of LLMs.

Efficient Inference for Large Reasoning Models: A Survey

Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason, exhibiting promising performance in complex task-solving. However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time. Thus, this survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality. First, we introduce a taxonomy to group the recent methods into two main categories: (a) explicit compact Chain-of-Thought (CoT), which reduces tokens while keeping the explicit reasoning structure, and (b) implicit latent CoT, which encodes reasoning steps within hidden representations instead of explicit tokens. Meanwhile, we discuss their strengths and weaknesses. Then, we conduct empirical analyses on existing methods from performance and efficiency aspects. Besides, we present open challenges in this field, including human-centric controllable reasoning, trade-off between interpretability and efficiency of reasoning, ensuring safety of efficient reasoning, and broader applications of efficient reasoning. In addition, we highlight key insights for enhancing LRMs' inference efficiency via techniques such as model merging, new architectures, and agent routers. We hope this work serves as a valuable guide, helping researchers overcome challenges in this vibrant fieldhttps://github.com/yueliu1999/Awesome-Efficient-Inference-for-LRMs.

Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning

Reinforcement learning (RL) has become the dominant paradigm for endowing language models with advanced reasoning capabilities. Despite the substantial empirical gains demonstrated by RL-based training methods like GRPO, a granular understanding of their advantages is still lacking. To address this gap, we introduce a fine-grained analytic framework to dissect the impact of RL on reasoning. Our framework specifically investigates key elements that have been hypothesized to benefit from RL training: (1) plan-following and execution, (2) problem decomposition, and (3) improved reasoning and knowledge utilization. Using this framework, we gain insights beyond mere accuracy. For instance, providing models with explicit step-by-step plans surprisingly degrades performance on the most challenging benchmarks, yet RL-tuned models exhibit greater robustness, experiencing markedly smaller performance drops than their base counterparts. This suggests that RL may not primarily enhance the execution of external plans but rather empower models to formulate and follow internal strategies better suited to their reasoning processes. Conversely, we observe that RL enhances the model's capacity to integrate provided knowledge into its reasoning process, leading to performance improvements across diverse tasks. We also study difficulty, showing improved training by developing new ways to exploit hard problems. Our findings lay a foundation for more principled training and evaluation of reasoning models.

Meta Reasoning for Large Language Models

We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs) inspired by human meta-reasoning. Traditional in-context learning-based reasoning techniques, such as Tree-of-Thoughts, show promise but lack consistent state-of-the-art performance across diverse tasks due to their specialized nature. MRP addresses this limitation by guiding LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task, optimizing both performance and computational efficiency. With MRP, LLM reasoning operates in two phases. Initially, the LLM identifies the most appropriate reasoning method using task input cues and objective descriptions of available methods. Subsequently, it applies the chosen method to complete the task. This dynamic strategy mirrors human meta-reasoning, allowing the model to excel in a wide range of problem domains. We evaluate the effectiveness of MRP through comprehensive benchmarks. The results demonstrate that MRP achieves or approaches state-of-the-art performance across diverse tasks. MRP represents a significant advancement in enabling LLMs to identify cognitive challenges across problems and leverage benefits across different reasoning approaches, enhancing their ability to handle diverse and complex problem domains efficiently. Every LLM deserves a Meta-Reasoning Prompting to unlock its full potential and ensure adaptability in an ever-evolving landscape of challenges and applications.

Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models

Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.

Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models

While recent success of large reasoning models (LRMs) significantly advanced LLMs' reasoning capability by optimizing the final answer accuracy using reinforcement learning, they may also drastically increase the output length due to overthinking, characterized by unnecessarily complex reasoning paths that waste computation and potentially degrade the performance. We hypothesize that such inefficiencies stem from LRMs' limited capability to dynamically select the proper modular reasoning strategies, termed thinking patterns at the right position. To investigate this hypothesis, we propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns, systematically identifying and promoting beneficial patterns that improve the answer while removing detrimental ones. Empirical analysis confirms that our optimized thinking paths yield more concise yet sufficiently informative trajectories, enhancing reasoning efficiency by reducing attention FLOPs by up to 47% while maintaining accuracy for originally correct responses. Moreover, a non-trivial portion of originally incorrect responses are transformed into correct ones, achieving a 15.6% accuracy improvement with reduced length. Motivated by the improvement brought by the optimized thinking paths, we apply a preference optimization technique supported by a pairwise dataset contrasting suboptimal and optimal reasoning paths. Experimental evaluations across multiple mathematical reasoning benchmarks reveal that our method notably reduces computational overhead while simultaneously improving reasoning accuracy, achieving up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.

LIMO: Less is More for Reasoning

We present a fundamental discovery that challenges our understanding of how complex reasoning emerges in large language models. While conventional wisdom suggests that sophisticated reasoning tasks demand extensive training data (>100,000 examples), we demonstrate that complex mathematical reasoning abilities can be effectively elicited with surprisingly few examples. Through comprehensive experiments, our proposed model LIMO demonstrates unprecedented performance in mathematical reasoning. With merely 817 curated training samples, LIMO achieves 57.1% accuracy on AIME and 94.8% on MATH, improving from previous SFT-based models' 6.5% and 59.2% respectively, while only using 1% of the training data required by previous approaches. LIMO demonstrates exceptional out-of-distribution generalization, achieving 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data, challenging the notion that SFT leads to memorization rather than generalization. Based on these results, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning capabilities can emerge through minimal but precisely orchestrated demonstrations of cognitive processes. This hypothesis posits that the elicitation threshold for complex reasoning is determined by two key factors: (1) the completeness of the model's encoded knowledge foundation during pre-training, and (2) the effectiveness of post-training examples as "cognitive templates" that show the model how to utilize its knowledge base to solve complex reasoning tasks. To facilitate reproducibility and future research in data-efficient reasoning, we release LIMO as a comprehensive open-source suite at https://github.com/GAIR-NLP/LIMO.

GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning

We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. Reinforcement Learning with Curriculum Sampling (RLCS) then unlocks the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding, among others. To facilitate research in this field, we open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.

Understanding Tool-Integrated Reasoning

We study why Tool-Integrated Reasoning (TIR) makes Large Language Models (LLMs) more capable. While LLMs integrated with tools like Python code interpreters show great promise, a principled theory explaining why this paradigm is effective has been missing. This work provides the first formal proof that TIR fundamentally expands an LLM's capabilities. We demonstrate that tools enable a strict expansion of the model's empirical and feasible support, breaking the capability ceiling of pure-text models by unlocking problem-solving strategies that are otherwise impossible or intractably verbose. To guide model behavior without compromising training stability and performance, we also introduce Advantage Shaping Policy Optimization (ASPO), a novel algorithm that directly modifies the advantage function to guide the policy behavior. We conduct comprehensive experiments on challenging mathematical benchmarks, leveraging a Python interpreter as the external tool. Our results show that the TIR model decisively outperforms its pure-text counterpart on the pass@k metric. Crucially, this advantage is not confined to computationally-intensive problems but extends to those requiring significant abstract insight. We further identify the emergent cognitive patterns that illustrate how models learn to think with tools. Finally, we report improved tool usage behavior with early code invocation and much more interactive turns with ASPO. Overall, our work provides the first principled explanation for TIR's success, shifting the focus from the mere fact that tools work to why and how they enable more powerful reasoning.

TTT-Bench: A Benchmark for Evaluating Reasoning Ability with Simple and Novel Tic-Tac-Toe-style Games

Large reasoning models (LRMs) have demonstrated impressive reasoning capabilities across a broad range of tasks including Olympiad-level mathematical problems, indicating evidence of their complex reasoning abilities. While many reasoning benchmarks focus on the STEM domain, the ability of LRMs to reason correctly in broader task domains remains underexplored. In this work, we introduce TTT-Bench, a new benchmark that is designed to evaluate basic strategic, spatial, and logical reasoning abilities in LRMs through a suite of four two-player Tic-Tac-Toe-style games that humans can effortlessly solve from a young age. We propose a simple yet scalable programmatic approach for generating verifiable two-player game problems for TTT-Bench. Although these games are trivial for humans, they require reasoning about the intentions of the opponent, as well as the game board's spatial configurations, to ensure a win. We evaluate a diverse set of state-of-the-art LRMs, and discover that the models that excel at hard math problems frequently fail at these simple reasoning games. Further testing reveals that our evaluated reasoning models score on average downarrow 41\% \& downarrow 5\% lower on TTT-Bench compared to MATH 500 \& AIME 2024 respectively, with larger models achieving higher performance using shorter reasoning traces, where most of the models struggle on long-term strategic reasoning situations on simple and new TTT-Bench tasks.

Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models

Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.

Group Think: Multiple Concurrent Reasoning Agents Collaborating at Token Level Granularity

Recent advances in large language models (LLMs) have demonstrated the power of reasoning through self-generated chains of thought. Multiple reasoning agents can collaborate to raise joint reasoning quality above individual outcomes. However, such agents typically interact in a turn-based manner, trading increased latency for improved quality. In this paper, we propose Group Think--a single LLM that acts as multiple concurrent reasoning agents, or thinkers. With shared visibility into each other's partial generation progress, Group Think introduces a new concurrent-reasoning paradigm in which multiple reasoning trajectories adapt dynamically to one another at the token level. For example, a reasoning thread may shift its generation mid-sentence upon detecting that another thread is better positioned to continue. This fine-grained, token-level collaboration enables Group Think to reduce redundant reasoning and improve quality while achieving significantly lower latency. Moreover, its concurrent nature allows for efficient utilization of idle computational resources, making it especially suitable for edge inference, where very small batch size often underutilizes local~GPUs. We give a simple and generalizable modification that enables any existing LLM to perform Group Think on a local GPU. We also present an evaluation strategy to benchmark reasoning latency and empirically demonstrate latency improvements using open-source LLMs that were not explicitly trained for Group Think. We hope this work paves the way for future LLMs to exhibit more sophisticated and more efficient collaborative behavior for higher quality generation.

Phi-4-reasoning Technical Report

We introduce Phi-4-reasoning, a 14-billion parameter reasoning model that achieves strong performance on complex reasoning tasks. Trained via supervised fine-tuning of Phi-4 on carefully curated set of "teachable" prompts-selected for the right level of complexity and diversity-and reasoning demonstrations generated using o3-mini, Phi-4-reasoning generates detailed reasoning chains that effectively leverage inference-time compute. We further develop Phi-4-reasoning-plus, a variant enhanced through a short phase of outcome-based reinforcement learning that offers higher performance by generating longer reasoning traces. Across a wide range of reasoning tasks, both models outperform significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B model and approach the performance levels of full DeepSeek-R1 model. Our comprehensive evaluations span benchmarks in math and scientific reasoning, coding, algorithmic problem solving, planning, and spatial understanding. Interestingly, we observe a non-trivial transfer of improvements to general-purpose benchmarks as well. In this report, we provide insights into our training data, our training methodologies, and our evaluations. We show that the benefit of careful data curation for supervised fine-tuning (SFT) extends to reasoning language models, and can be further amplified by reinforcement learning (RL). Finally, our evaluation points to opportunities for improving how we assess the performance and robustness of reasoning models.

MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer

Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks, leveraging Chain-of-Thought (CoT) data as a vital component in guiding answer generation. Current paradigms typically generate CoT and answers directly for a given problem, diverging from human problem-solving strategies to some extent. Humans often solve problems by recalling analogous cases and leveraging their solutions to reason about the current task. Inspired by this cognitive process, we propose MetaLadder, a novel framework that explicitly prompts LLMs to recall and reflect on meta-problems, those structurally or semantically analogous problems, alongside their CoT solutions before addressing the target problem. Additionally, we introduce a problem-restating mechanism to enhance the model's comprehension of the target problem by regenerating the original question, which further improves reasoning accuracy. Therefore, the model can achieve reasoning transfer from analogical problems, mimicking human-like "learning from examples" and generalization abilities. Extensive experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy, largely outperforming standard CoT-based methods (10.3\% accuracy gain) and other methods. Our code and data has been released at https://github.com/LHL3341/MetaLadder.

Innate Reasoning is Not Enough: In-Context Learning Enhances Reasoning Large Language Models with Less Overthinking

Recent advances in Large Language Models (LLMs) have introduced Reasoning Large Language Models (RLLMs), which employ extended thinking processes with reflection and self-correction capabilities, demonstrating the effectiveness of test-time scaling. RLLMs exhibit innate Chain-of-Thought (CoT) reasoning capability obtained from training, leading to a natural question: "Is CoT prompting, a popular In-Context Learning (ICL) method for chat LLMs, necessary to enhance the reasoning capability of RLLMs?" In this work, we present the first comprehensive analysis of the impacts of Zero-shot CoT and Few-shot CoT on RLLMs across mathematical reasoning tasks. We examine models ranging from 1.5B to 32B parameters, finding that contrary to concerns, CoT prompting significantly enhances RLLMs' performance in most scenarios. Our results reveal distinct patterns: large-capacity models show minimal improvement on simple tasks but substantial gains on complex problems, while smaller models exhibit the opposite behavior. Further analysis demonstrates that CoT prompting effectively controls the distribution of the numbers of thinking tokens and reasoning steps, reducing excessive reflections by approximately 90% in some cases. Moreover, attention logits analysis reveals the RLLMs' overfitting to reflection-related words, which is mitigated by external CoT guidance. Notably, our experiments indicate that for RLLMs, one-shot CoT consistently yields superior performance compared to Few-shot CoT approaches. Our findings provide important insights for optimizing RLLMs' performance through appropriate prompting strategies.