Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBench2FreeAD: A Benchmark for Vision-based End-to-end Navigation in Unstructured Robotic Environments
Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
The GOOSE Dataset for Perception in Unstructured Environments
The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10 000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. The dataset, pre-trained models for offroad perception, and additional documentation can be found at https://goose-dataset.de/.
Sensor-based Multi-Robot Search and Coverage with Spatial Separation in Unstructured Environments
Multi-robot systems have increasingly become instrumental in tackling search and coverage problems. However, the challenge of optimizing task efficiency without compromising task success still persists, particularly in expansive, unstructured environments with dense obstacles. This paper presents an innovative, decentralized Voronoi-based approach for search and coverage to reactively navigate these complexities while maintaining safety. This approach leverages the active sensing capabilities of multi-robot systems to supplement GIS (Geographic Information System), offering a more comprehensive and real-time understanding of the environment. Based on point cloud data, which is inherently non-convex and unstructured, this method efficiently generates collision-free Voronoi regions using only local sensing information through spatial decomposition and spherical mirroring techniques. Then, deadlock-aware guided map integrated with a gradient-optimized, centroid Voronoi-based coverage control policy, is constructed to improve efficiency by avoiding exhaustive searches and local sensing pitfalls. The effectiveness of our algorithm has been validated through extensive numerical simulations in high-fidelity environments, demonstrating significant improvements in both task success rate, coverage ratio, and task execution time compared with others.
GANav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments
We propose GANav, a novel group-wise attention mechanism to identify safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel group-wise attention loss enables any backbone network to explicitly focus on the different groups' features with low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GANav achieves an improvement over the SOTA mIoU by 2.25-39.05% on RUGD and 5.17-19.06% on RELLIS-3D. We interface GANav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GANav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an increase of 10% in terms of success rate, 2-47% in terms of selecting the surface with the best navigability and a decrease of 4.6-13.9% in trajectory roughness. Further, GANav reduces the false positive rate of forbidden regions by 37.79%. Code, videos, and a full technical report are available at https://gamma.umd.edu/offroad/.
SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m^2. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.
Hyper-Drive: Visible-Short Wave Infrared Hyperspectral Imaging Datasets for Robots in Unstructured Environments
Hyperspectral sensors have enjoyed widespread use in the realm of remote sensing; however, they must be adapted to a format in which they can be operated onboard mobile robots. In this work, we introduce a first-of-its-kind system architecture with snapshot hyperspectral cameras and point spectrometers to efficiently generate composite datacubes from a robotic base. Our system collects and registers datacubes spanning the visible to shortwave infrared (660-1700 nm) spectrum while simultaneously capturing the ambient solar spectrum reflected off a white reference tile. We collect and disseminate a large dataset of more than 500 labeled datacubes from on-road and off-road terrain compliant with the ATLAS ontology to further the integration and demonstration of hyperspectral imaging (HSI) as beneficial in terrain class separability. Our analysis of this data demonstrates that HSI is a significant opportunity to increase understanding of scene composition from a robot-centric context. All code and data are open source online: https://river-lab.github.io/hyper_drive_data
RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments
Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full 360^{circ} view, forming 216K trajectories across 7.6K temporal sequences. It has 270times and 18times as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.
LoGoPlanner: Localization Grounded Navigation Policy with Metric-aware Visual Geometry
Trajectory planning in unstructured environments is a fundamental and challenging capability for mobile robots. Traditional modular pipelines suffer from latency and cascading errors across perception, localization, mapping, and planning modules. Recent end-to-end learning methods map raw visual observations directly to control signals or trajectories, promising greater performance and efficiency in open-world settings. However, most prior end-to-end approaches still rely on separate localization modules that depend on accurate sensor extrinsic calibration for self-state estimation, thereby limiting generalization across embodiments and environments. We introduce LoGoPlanner, a localization-grounded, end-to-end navigation framework that addresses these limitations by: (1) finetuning a long-horizon visual-geometry backbone to ground predictions with absolute metric scale, thereby providing implicit state estimation for accurate localization; (2) reconstructing surrounding scene geometry from historical observations to supply dense, fine-grained environmental awareness for reliable obstacle avoidance; and (3) conditioning the policy on implicit geometry bootstrapped by the aforementioned auxiliary tasks, thereby reducing error propagation.We evaluate LoGoPlanner in both simulation and real-world settings, where its fully end-to-end design reduces cumulative error while metric-aware geometry memory enhances planning consistency and obstacle avoidance, leading to more than a 27.3\% improvement over oracle-localization baselines and strong generalization across embodiments and environments. The code and models have been made publicly available on the https://steinate.github.io/logoplanner.github.io/{project page}.
VisualMimic: Visual Humanoid Loco-Manipulation via Motion Tracking and Generation
Humanoid loco-manipulation in unstructured environments demands tight integration of egocentric perception and whole-body control. However, existing approaches either depend on external motion capture systems or fail to generalize across diverse tasks. We introduce VisualMimic, a visual sim-to-real framework that unifies egocentric vision with hierarchical whole-body control for humanoid robots. VisualMimic combines a task-agnostic low-level keypoint tracker -- trained from human motion data via a teacher-student scheme -- with a task-specific high-level policy that generates keypoint commands from visual and proprioceptive input. To ensure stable training, we inject noise into the low-level policy and clip high-level actions using human motion statistics. VisualMimic enables zero-shot transfer of visuomotor policies trained in simulation to real humanoid robots, accomplishing a wide range of loco-manipulation tasks such as box lifting, pushing, football dribbling, and kicking. Beyond controlled laboratory settings, our policies also generalize robustly to outdoor environments. Videos are available at: https://visualmimic.github.io .
Programmable Locking Cells (PLC) for Modular Robots with High Stiffness Tunability and Morphological Adaptability
Robotic systems operating in unstructured environments require the ability to switch between compliant and rigid states to perform diverse tasks such as adaptive grasping, high-force manipulation, shape holding, and navigation in constrained spaces, among others. However, many existing variable stiffness solutions rely on complex actuation schemes, continuous input power, or monolithic designs, limiting their modularity and scalability. This paper presents the Programmable Locking Cell (PLC)-a modular, tendon-driven unit that achieves discrete stiffness modulation through mechanically interlocked joints actuated by cable tension. Each unit transitions between compliant and firm states via structural engagement, and the assembled system exhibits high stiffness variation-up to 950% per unit-without susceptibility to damage under high payload in the firm state. Multiple PLC units can be assembled into reconfigurable robotic structures with spatially programmable stiffness. We validate the design through two functional prototypes: (1) a variable-stiffness gripper capable of adaptive grasping, firm holding, and in-hand manipulation; and (2) a pipe-traversing robot composed of serial PLC units that achieves shape adaptability and stiffness control in confined environments. These results demonstrate the PLC as a scalable, structure-centric mechanism for programmable stiffness and motion, enabling robotic systems with reconfigurable morphology and task-adaptive interaction.
FINO-Net: A Deep Multimodal Sensor Fusion Framework for Manipulation Failure Detection
Safe manipulation in unstructured environments for service robots is a challenging problem. A failure detection system is needed to monitor and detect unintended outcomes. We propose FINO-Net, a novel multimodal sensor fusion based deep neural network to detect and identify manipulation failures. We also introduce a multimodal dataset, containing 229 real-world manipulation data recorded with a Baxter robot. Our network combines RGB, depth and audio readings to effectively detect and classify failures. Results indicate that fusing RGB with depth and audio modalities significantly improves the performance. FINO-Net achieves 98.60% detection and 87.31% classification accuracy on our novel dataset. Code and data are publicly available at https://github.com/ardai/fino-net.
Adaptive Mobile Manipulation for Articulated Objects In the Open World
Deploying robots in open-ended unstructured environments such as homes has been a long-standing research problem. However, robots are often studied only in closed-off lab settings, and prior mobile manipulation work is restricted to pick-move-place, which is arguably just the tip of the iceberg in this area. In this paper, we introduce Open-World Mobile Manipulation System, a full-stack approach to tackle realistic articulated object operation, e.g. real-world doors, cabinets, drawers, and refrigerators in open-ended unstructured environments. The robot utilizes an adaptive learning framework to initially learns from a small set of data through behavior cloning, followed by learning from online practice on novel objects that fall outside the training distribution. We also develop a low-cost mobile manipulation hardware platform capable of safe and autonomous online adaptation in unstructured environments with a cost of around 20,000 USD. In our experiments we utilize 20 articulate objects across 4 buildings in the CMU campus. With less than an hour of online learning for each object, the system is able to increase success rate from 50% of BC pre-training to 95% using online adaptation. Video results at https://open-world-mobilemanip.github.io/
Bench-NPIN: Benchmarking Non-prehensile Interactive Navigation
Mobile robots are increasingly deployed in unstructured environments where obstacles and objects are movable. Navigation in such environments is known as interactive navigation, where task completion requires not only avoiding obstacles but also strategic interactions with movable objects. Non-prehensile interactive navigation focuses on non-grasping interaction strategies, such as pushing, rather than relying on prehensile manipulation. Despite a growing body of research in this field, most solutions are evaluated using case-specific setups, limiting reproducibility and cross-comparison. In this paper, we present Bench-NPIN, the first comprehensive benchmark for non-prehensile interactive navigation. Bench-NPIN includes multiple components: 1) a comprehensive range of simulated environments for non-prehensile interactive navigation tasks, including navigating a maze with movable obstacles, autonomous ship navigation in icy waters, box delivery, and area clearing, each with varying levels of complexity; 2) a set of evaluation metrics that capture unique aspects of interactive navigation, such as efficiency, interaction effort, and partial task completion; and 3) demonstrations using Bench-NPIN to evaluate example implementations of established baselines across environments. Bench-NPIN is an open-source Python library with a modular design. The code, documentation, and trained models can be found at https://github.com/IvanIZ/BenchNPIN.
ManiGaussian: Dynamic Gaussian Splatting for Multi-task Robotic Manipulation
Performing language-conditioned robotic manipulation tasks in unstructured environments is highly demanded for general intelligent robots. Conventional robotic manipulation methods usually learn semantic representation of the observation for action prediction, which ignores the scene-level spatiotemporal dynamics for human goal completion. In this paper, we propose a dynamic Gaussian Splatting method named ManiGaussian for multi-task robotic manipulation, which mines scene dynamics via future scene reconstruction. Specifically, we first formulate the dynamic Gaussian Splatting framework that infers the semantics propagation in the Gaussian embedding space, where the semantic representation is leveraged to predict the optimal robot action. Then, we build a Gaussian world model to parameterize the distribution in our dynamic Gaussian Splatting framework, which provides informative supervision in the interactive environment via future scene reconstruction. We evaluate our ManiGaussian on 10 RLBench tasks with 166 variations, and the results demonstrate our framework can outperform the state-of-the-art methods by 13.1\% in average success rate. Project page: https://guanxinglu.github.io/ManiGaussian/.
GraspLDM: Generative 6-DoF Grasp Synthesis using Latent Diffusion Models
Vision-based grasping of unknown objects in unstructured environments is a key challenge for autonomous robotic manipulation. A practical grasp synthesis system is required to generate a diverse set of 6-DoF grasps from which a task-relevant grasp can be executed. Although generative models are suitable for learning such complex data distributions, existing models have limitations in grasp quality, long training times, and a lack of flexibility for task-specific generation. In this work, we present GraspLDM- a modular generative framework for 6-DoF grasp synthesis that uses diffusion models as priors in the latent space of a VAE. GraspLDM learns a generative model of object-centric SE(3) grasp poses conditioned on point clouds. GraspLDM's architecture enables us to train task-specific models efficiently by only re-training a small de-noising network in the low-dimensional latent space, as opposed to existing models that need expensive re-training. Our framework provides robust and scalable models on both full and single-view point clouds. GraspLDM models trained with simulation data transfer well to the real world and provide an 80\% success rate for 80 grasp attempts of diverse test objects, improving over existing generative models. We make our implementation available at https://github.com/kuldeepbrd1/graspldm .
E(2)-Equivariant Graph Planning for Navigation
Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.
SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo
Robot manipulation of unknown objects in unstructured environments is a challenging problem due to the variety of shapes, materials, arrangements and lighting conditions. Even with large-scale real-world data collection, robust perception and manipulation of transparent and reflective objects across various lighting conditions remain challenging. To address these challenges we propose an approach to performing sim-to-real transfer of robotic perception. The underlying model, SimNet, is trained as a single multi-headed neural network using simulated stereo data as input and simulated object segmentation masks, 3D oriented bounding boxes (OBBs), object keypoints, and disparity as output. A key component of SimNet is the incorporation of a learned stereo sub-network that predicts disparity. SimNet is evaluated on 2D car detection, unknown object detection, and deformable object keypoint detection and significantly outperforms a baseline that uses a structured light RGB-D sensor. By inferring grasp positions using the OBB and keypoint predictions, SimNet can be used to perform end-to-end manipulation of unknown objects in both easy and hard scenarios using our fleet of Toyota HSR robots in four home environments. In unknown object grasping experiments, the predictions from the baseline RGB-D network and SimNet enable successful grasps of most of the easy objects. However, the RGB-D baseline only grasps 35% of the hard (e.g., transparent) objects, while SimNet grasps 95%, suggesting that SimNet can enable robust manipulation of unknown objects, including transparent objects, in unknown environments.
Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks
Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. However, it is non-trivial to manually design a robot controller that combines modalities with very different characteristics. While deep reinforcement learning has shown success in learning control policies for high-dimensional inputs, these algorithms are generally intractable to deploy on real robots due to sample complexity. We use self-supervision to learn a compact and multimodal representation of our sensory inputs, which can then be used to improve the sample efficiency of our policy learning. We evaluate our method on a peg insertion task, generalizing over different geometry, configurations, and clearances, while being robust to external perturbations. Results for simulated and real robot experiments are presented.
OmniManip: Towards General Robotic Manipulation via Object-Centric Interaction Primitives as Spatial Constraints
The development of general robotic systems capable of manipulating in unstructured environments is a significant challenge. While Vision-Language Models(VLM) excel in high-level commonsense reasoning, they lack the fine-grained 3D spatial understanding required for precise manipulation tasks. Fine-tuning VLM on robotic datasets to create Vision-Language-Action Models(VLA) is a potential solution, but it is hindered by high data collection costs and generalization issues. To address these challenges, we propose a novel object-centric representation that bridges the gap between VLM's high-level reasoning and the low-level precision required for manipulation. Our key insight is that an object's canonical space, defined by its functional affordances, provides a structured and semantically meaningful way to describe interaction primitives, such as points and directions. These primitives act as a bridge, translating VLM's commonsense reasoning into actionable 3D spatial constraints. In this context, we introduce a dual closed-loop, open-vocabulary robotic manipulation system: one loop for high-level planning through primitive resampling, interaction rendering and VLM checking, and another for low-level execution via 6D pose tracking. This design ensures robust, real-time control without requiring VLM fine-tuning. Extensive experiments demonstrate strong zero-shot generalization across diverse robotic manipulation tasks, highlighting the potential of this approach for automating large-scale simulation data generation.
Zero-Shot Robotic Manipulation with Pretrained Image-Editing Diffusion Models
If generalist robots are to operate in truly unstructured environments, they need to be able to recognize and reason about novel objects and scenarios. Such objects and scenarios might not be present in the robot's own training data. We propose SuSIE, a method that leverages an image-editing diffusion model to act as a high-level planner by proposing intermediate subgoals that a low-level controller can accomplish. Specifically, we finetune InstructPix2Pix on video data, consisting of both human videos and robot rollouts, such that it outputs hypothetical future "subgoal" observations given the robot's current observation and a language command. We also use the robot data to train a low-level goal-conditioned policy to act as the aforementioned low-level controller. We find that the high-level subgoal predictions can utilize Internet-scale pretraining and visual understanding to guide the low-level goal-conditioned policy, achieving significantly better generalization and precision than conventional language-conditioned policies. We achieve state-of-the-art results on the CALVIN benchmark, and also demonstrate robust generalization on real-world manipulation tasks, beating strong baselines that have access to privileged information or that utilize orders of magnitude more compute and training data. The project website can be found at http://rail-berkeley.github.io/susie .
Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene
The unsupervised 3D object detection is to accurately detect objects in unstructured environments with no explicit supervisory signals. This task, given sparse LiDAR point clouds, often results in compromised performance for detecting distant or small objects due to the inherent sparsity and limited spatial resolution. In this paper, we are among the early attempts to integrate LiDAR data with 2D images for unsupervised 3D detection and introduce a new method, dubbed LiDAR-2D Self-paced Learning (LiSe). We argue that RGB images serve as a valuable complement to LiDAR data, offering precise 2D localization cues, particularly when scarce LiDAR points are available for certain objects. Considering the unique characteristics of both modalities, our framework devises a self-paced learning pipeline that incorporates adaptive sampling and weak model aggregation strategies. The adaptive sampling strategy dynamically tunes the distribution of pseudo labels during training, countering the tendency of models to overfit easily detected samples, such as nearby and large-sized objects. By doing so, it ensures a balanced learning trajectory across varying object scales and distances. The weak model aggregation component consolidates the strengths of models trained under different pseudo label distributions, culminating in a robust and powerful final model. Experimental evaluations validate the efficacy of our proposed LiSe method, manifesting significant improvements of +7.1% AP_{BEV} and +3.4% AP_{3D} on nuScenes, and +8.3% AP_{BEV} and +7.4% AP_{3D} on Lyft compared to existing techniques.
DIP-RL: Demonstration-Inferred Preference Learning in Minecraft
In machine learning for sequential decision-making, an algorithmic agent learns to interact with an environment while receiving feedback in the form of a reward signal. However, in many unstructured real-world settings, such a reward signal is unknown and humans cannot reliably craft a reward signal that correctly captures desired behavior. To solve tasks in such unstructured and open-ended environments, we present Demonstration-Inferred Preference Reinforcement Learning (DIP-RL), an algorithm that leverages human demonstrations in three distinct ways, including training an autoencoder, seeding reinforcement learning (RL) training batches with demonstration data, and inferring preferences over behaviors to learn a reward function to guide RL. We evaluate DIP-RL in a tree-chopping task in Minecraft. Results suggest that the method can guide an RL agent to learn a reward function that reflects human preferences and that DIP-RL performs competitively relative to baselines. DIP-RL is inspired by our previous work on combining demonstrations and pairwise preferences in Minecraft, which was awarded a research prize at the 2022 NeurIPS MineRL BASALT competition, Learning from Human Feedback in Minecraft. Example trajectory rollouts of DIP-RL and baselines are located at https://sites.google.com/view/dip-rl.
VLSA: Vision-Language-Action Models with Plug-and-Play Safety Constraint Layer
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in generalizing across diverse robotic manipulation tasks. However, deploying these models in unstructured environments remains challenging due to the critical need for simultaneous task compliance and safety assurance, particularly in preventing potential collisions during physical interactions. In this work, we introduce a Vision-Language-Safe Action (VLSA) architecture, named AEGIS, which contains a plug-and-play safety constraint (SC) layer formulated via control barrier functions. AEGIS integrates directly with existing VLA models to improve safety with theoretical guarantees, while maintaining their original instruction-following performance. To evaluate the efficacy of our architecture, we construct a comprehensive safety-critical benchmark SafeLIBERO, spanning distinct manipulation scenarios characterized by varying degrees of spatial complexity and obstacle intervention. Extensive experiments demonstrate the superiority of our method over state-of-the-art baselines. Notably, AEGIS achieves a 59.16% improvement in obstacle avoidance rate while substantially increasing the task execution success rate by 17.25%. To facilitate reproducibility and future research, we make our code, models, and the benchmark datasets publicly available at https://vlsa-aegis.github.io/.
CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking
Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.
HannesImitation: Grasping with the Hannes Prosthetic Hand via Imitation Learning
Recent advancements in control of prosthetic hands have focused on increasing autonomy through the use of cameras and other sensory inputs. These systems aim to reduce the cognitive load on the user by automatically controlling certain degrees of freedom. In robotics, imitation learning has emerged as a promising approach for learning grasping and complex manipulation tasks while simplifying data collection. Its application to the control of prosthetic hands remains, however, largely unexplored. Bridging this gap could enhance dexterity restoration and enable prosthetic devices to operate in more unconstrained scenarios, where tasks are learned from demonstrations rather than relying on manually annotated sequences. To this end, we present HannesImitationPolicy, an imitation learning-based method to control the Hannes prosthetic hand, enabling object grasping in unstructured environments. Moreover, we introduce the HannesImitationDataset comprising grasping demonstrations in table, shelf, and human-to-prosthesis handover scenarios. We leverage such data to train a single diffusion policy and deploy it on the prosthetic hand to predict the wrist orientation and hand closure for grasping. Experimental evaluation demonstrates successful grasps across diverse objects and conditions. Finally, we show that the policy outperforms a segmentation-based visual servo controller in unstructured scenarios. Additional material is provided on our project page: https://hsp-iit.github.io/HannesImitation
Online Recognition of Incomplete Gesture Data to Interface Collaborative Robots
Online recognition of gestures is critical for intuitive human-robot interaction (HRI) and further push collaborative robotics into the market, making robots accessible to more people. The problem is that it is difficult to achieve accurate gesture recognition in real unstructured environments, often using distorted and incomplete multisensory data. This paper introduces an HRI framework to classify large vocabularies of interwoven static gestures (SGs) and dynamic gestures (DGs) captured with wearable sensors. DG features are obtained by applying data dimensionality reduction to raw data from sensors (resampling with cubic interpolation and principal component analysis). Experimental tests were conducted using the UC2017 hand gesture dataset with samples from eight different subjects. The classification models show an accuracy of 95.6% for a library of 24 SGs with a random forest and 99.3% for 10 DGs using artificial neural networks. These results compare equally or favorably with different commonly used classifiers. Long short-term memory deep networks achieved similar performance in online frame-by-frame classification using raw incomplete data, performing better in terms of accuracy than static models with specially crafted features, but worse in training and inference time. The recognized gestures are used to teleoperate a robot in a collaborative process that consists in preparing a breakfast meal.
A Light-Weight Framework for Open-Set Object Detection with Decoupled Feature Alignment in Joint Space
Open-set object detection (OSOD) is highly desirable for robotic manipulation in unstructured environments. However, existing OSOD methods often fail to meet the requirements of robotic applications due to their high computational burden and complex deployment. To address this issue, this paper proposes a light-weight framework called Decoupled OSOD (DOSOD), which is a practical and highly efficient solution to support real-time OSOD tasks in robotic systems. Specifically, DOSOD builds upon the YOLO-World pipeline by integrating a vision-language model (VLM) with a detector. A Multilayer Perceptron (MLP) adaptor is developed to transform text embeddings extracted by the VLM into a joint space, within which the detector learns the region representations of class-agnostic proposals. Cross-modality features are directly aligned in the joint space, avoiding the complex feature interactions and thereby improving computational efficiency. DOSOD operates like a traditional closed-set detector during the testing phase, effectively bridging the gap between closed-set and open-set detection. Compared to the baseline YOLO-World, the proposed DOSOD significantly enhances real-time performance while maintaining comparable accuracy. The slight DOSOD-S model achieves a Fixed AP of 26.7%, compared to 26.2% for YOLO-World-v1-S and 22.7% for YOLO-World-v2-S, using similar backbones on the LVIS minival dataset. Meanwhile, the FPS of DOSOD-S is 57.1% higher than YOLO-World-v1-S and 29.6% higher than YOLO-World-v2-S. Meanwhile, we demonstrate that the DOSOD model facilitates the deployment of edge devices. The codes and models are publicly available at https://github.com/D-Robotics-AI-Lab/DOSOD.
Adapting Segment Anything Model for Unseen Object Instance Segmentation
Unseen Object Instance Segmentation (UOIS) is crucial for autonomous robots operating in unstructured environments. Previous approaches require full supervision on large-scale tabletop datasets for effective pretraining. In this paper, we propose UOIS-SAM, a data-efficient solution for the UOIS task that leverages SAM's high accuracy and strong generalization capabilities. UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder, mitigating issues introduced by the SAM baseline, such as background confusion and over-segmentation, especially in scenarios involving occlusion and texture-rich objects. Extensive experimental results on OCID, OSD, and additional photometrically challenging datasets including PhoCAL and HouseCat6D, demonstrate that, even using only 10% of the training samples compared to previous methods, UOIS-SAM achieves state-of-the-art performance in unseen object segmentation, highlighting its effectiveness and robustness in various tabletop scenes.
HERMES: Human-to-Robot Embodied Learning from Multi-Source Motion Data for Mobile Dexterous Manipulation
Leveraging human motion data to impart robots with versatile manipulation skills has emerged as a promising paradigm in robotic manipulation. Nevertheless, translating multi-source human hand motions into feasible robot behaviors remains challenging, particularly for robots equipped with multi-fingered dexterous hands characterized by complex, high-dimensional action spaces. Moreover, existing approaches often struggle to produce policies capable of adapting to diverse environmental conditions. In this paper, we introduce HERMES, a human-to-robot learning framework for mobile bimanual dexterous manipulation. First, HERMES formulates a unified reinforcement learning approach capable of seamlessly transforming heterogeneous human hand motions from multiple sources into physically plausible robotic behaviors. Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-based sim2real transfer method for improved generalization to real-world scenarios. Furthermore, to enable autonomous operation in varied and unstructured environments, we augment the navigation foundation model with a closed-loop Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of visual goals and effectively bridging autonomous navigation and dexterous manipulation. Extensive experimental results demonstrate that HERMES consistently exhibits generalizable behaviors across diverse, in-the-wild scenarios, successfully performing numerous complex mobile bimanual dexterous manipulation tasks. Project Page:https://gemcollector.github.io/HERMES/.
eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures
If human experience is any guide, operating effectively in unstructured environments -- like homes and offices -- requires robots to sense the forces during physical interaction. Yet, the lack of a versatile, accessible, and easily customizable tactile sensor has led to fragmented, sensor-specific solutions in robotic manipulation -- and in many cases, to force-unaware, sensorless approaches. With eFlesh, we bridge this gap by introducing a magnetic tactile sensor that is low-cost, easy to fabricate, and highly customizable. Building an eFlesh sensor requires only four components: a hobbyist 3D printer, off-the-shelf magnets (<$5), a CAD model of the desired shape, and a magnetometer circuit board. The sensor is constructed from tiled, parameterized microstructures, which allow for tuning the sensor's geometry and its mechanical response. We provide an open-source design tool that converts convex OBJ/STL files into 3D-printable STLs for fabrication. This modular design framework enables users to create application-specific sensors, and to adjust sensitivity depending on the task. Our sensor characterization experiments demonstrate the capabilities of eFlesh: contact localization RMSE of 0.5 mm, and force prediction RMSE of 0.27 N for normal force and 0.12 N for shear force. We also present a learned slip detection model that generalizes to unseen objects with 95% accuracy, and visuotactile control policies that improve manipulation performance by 40% over vision-only baselines -- achieving 91% average success rate for four precise tasks that require sub-mm accuracy for successful completion. All design files, code and the CAD-to-eFlesh STL conversion tool are open-sourced and available on https://e-flesh.com.
TNS: Terrain Traversability Mapping and Navigation System for Autonomous Excavators
We present a terrain traversability mapping and navigation system (TNS) for autonomous excavator applications in an unstructured environment. We use an efficient approach to extract terrain features from RGB images and 3D point clouds and incorporate them into a global map for planning and navigation. Our system can adapt to changing environments and update the terrain information in real-time. Moreover, we present a novel dataset, the Complex Worksite Terrain (CWT) dataset, which consists of RGB images from construction sites with seven categories based on navigability. Our novel algorithms improve the mapping accuracy over previous SOTA methods by 4.17-30.48% and reduce MSE on the traversability map by 13.8-71.4%. We have combined our mapping approach with planning and control modules in an autonomous excavator navigation system and observe 49.3% improvement in the overall success rate. Based on TNS, we demonstrate the first autonomous excavator that can navigate through unstructured environments consisting of deep pits, steep hills, rock piles, and other complex terrain features.
ByteWrist: A Parallel Robotic Wrist Enabling Flexible and Anthropomorphic Motion for Confined Spaces
This paper introduces ByteWrist, a novel highly-flexible and anthropomorphic parallel wrist for robotic manipulation. ByteWrist addresses the critical limitations of existing serial and parallel wrists in narrow-space operations through a compact three-stage parallel drive mechanism integrated with arc-shaped end linkages. The design achieves precise RPY (Roll-Pitch-Yaw) motion while maintaining exceptional compactness, making it particularly suitable for complex unstructured environments such as home services, medical assistance, and precision assembly. The key innovations include: (1) a nested three-stage motor-driven linkages that minimize volume while enabling independent multi-DOF control, (2) arc-shaped end linkages that optimize force transmission and expand motion range, and (3) a central supporting ball functioning as a spherical joint that enhances structural stiffness without compromising flexibility. Meanwhile, we present comprehensive kinematic modeling including forward / inverse kinematics and a numerical Jacobian solution for precise control. Empirically, we observe ByteWrist demonstrates strong performance in narrow-space maneuverability and dual-arm cooperative manipulation tasks, outperforming Kinova-based systems. Results indicate significant improvements in compactness, efficiency, and stiffness compared to traditional designs, establishing ByteWrist as a promising solution for next-generation robotic manipulation in constrained environments.
AnyLoc: Towards Universal Visual Place Recognition
Visual Place Recognition (VPR) is vital for robot localization. To date, the most performant VPR approaches are environment- and task-specific: while they exhibit strong performance in structured environments (predominantly urban driving), their performance degrades severely in unstructured environments, rendering most approaches brittle to robust real-world deployment. In this work, we develop a universal solution to VPR -- a technique that works across a broad range of structured and unstructured environments (urban, outdoors, indoors, aerial, underwater, and subterranean environments) without any re-training or fine-tuning. We demonstrate that general-purpose feature representations derived from off-the-shelf self-supervised models with no VPR-specific training are the right substrate upon which to build such a universal VPR solution. Combining these derived features with unsupervised feature aggregation enables our suite of methods, AnyLoc, to achieve up to 4X significantly higher performance than existing approaches. We further obtain a 6% improvement in performance by characterizing the semantic properties of these features, uncovering unique domains which encapsulate datasets from similar environments. Our detailed experiments and analysis lay a foundation for building VPR solutions that may be deployed anywhere, anytime, and across anyview. We encourage the readers to explore our project page and interactive demos: https://anyloc.github.io/.
Robobench: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models as Embodied Brain
Building robots that can perceive, reason, and act in dynamic, unstructured environments remains a core challenge. Recent embodied systems often adopt a dual-system paradigm, where System 2 handles high-level reasoning while System 1 executes low-level control. In this work, we refer to System 2 as the embodied brain, emphasizing its role as the cognitive core for reasoning and decision-making in manipulation tasks. Given this role, systematic evaluation of the embodied brain is essential. Yet existing benchmarks emphasize execution success, or when targeting high-level reasoning, suffer from incomplete dimensions and limited task realism, offering only a partial picture of cognitive capability. To bridge this gap, we introduce RoboBench, a benchmark that systematically evaluates multimodal large language models (MLLMs) as embodied brains. Motivated by the critical roles across the full manipulation pipeline, RoboBench defines five dimensions-instruction comprehension, perception reasoning, generalized planning, affordance prediction, and failure analysis-spanning 14 capabilities, 25 tasks, and 6092 QA pairs. To ensure realism, we curate datasets across diverse embodiments, attribute-rich objects, and multi-view scenes, drawing from large-scale real robotic data. For planning, RoboBench introduces an evaluation framework, MLLM-as-world-simulator. It evaluate embodied feasibility by simulating whether predicted plans can achieve critical object-state changes. Experiments on 14 MLLMs reveal fundamental limitations: difficulties with implicit instruction comprehension, spatiotemporal reasoning, cross-scenario planning, fine-grained affordance understanding, and execution failure diagnosis. RoboBench provides a comprehensive scaffold to quantify high-level cognition, and guide the development of next-generation embodied MLLMs. The project page is in https://robo-bench.github.io.
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
From Mystery to Mastery: Failure Diagnosis for Improving Manipulation Policies
Robot manipulation policies often fail for unknown reasons, posing significant challenges for real-world deployment. Researchers and engineers typically address these failures using heuristic approaches, which are not only labor-intensive and costly but also prone to overlooking critical failure modes (FMs). This paper introduces Robot Manipulation Diagnosis (RoboMD), a systematic framework designed to automatically identify FMs arising from unanticipated changes in the environment. Considering the vast space of potential FMs in a pre-trained manipulation policy, we leverage deep reinforcement learning (deep RL) to explore and uncover these FMs using a specially trained vision-language embedding that encodes a notion of failures. This approach enables users to probabilistically quantify and rank failures in previously unseen environmental conditions. Through extensive experiments across various manipulation tasks and algorithms, we demonstrate RoboMD's effectiveness in diagnosing unknown failures in unstructured environments, providing a systematic pathway to improve the robustness of manipulation policies.
ODYSSEY: Open-World Quadrupeds Exploration and Manipulation for Long-Horizon Tasks
Language-guided long-horizon mobile manipulation has long been a grand challenge in embodied semantic reasoning, generalizable manipulation, and adaptive locomotion. Three fundamental limitations hinder progress: First, although large language models have improved spatial reasoning and task planning through semantic priors, existing implementations remain confined to tabletop scenarios, failing to address the constrained perception and limited actuation ranges of mobile platforms. Second, current manipulation strategies exhibit insufficient generalization when confronted with the diverse object configurations encountered in open-world environments. Third, while crucial for practical deployment, the dual requirement of maintaining high platform maneuverability alongside precise end-effector control in unstructured settings remains understudied. In this work, we present ODYSSEY, a unified mobile manipulation framework for agile quadruped robots equipped with manipulators, which seamlessly integrates high-level task planning with low-level whole-body control. To address the challenge of egocentric perception in language-conditioned tasks, we introduce a hierarchical planner powered by a vision-language model, enabling long-horizon instruction decomposition and precise action execution. At the control level, our novel whole-body policy achieves robust coordination across challenging terrains. We further present the first benchmark for long-horizon mobile manipulation, evaluating diverse indoor and outdoor scenarios. Through successful sim-to-real transfer, we demonstrate the system's generalization and robustness in real-world deployments, underscoring the practicality of legged manipulators in unstructured environments. Our work advances the feasibility of generalized robotic assistants capable of complex, dynamic tasks. Our project page: https://kaijwang.github.io/odyssey.github.io/
Towards a Unified Understanding of Robot Manipulation: A Comprehensive Survey
Embodied intelligence has witnessed remarkable progress in recent years, driven by advances in computer vision, natural language processing, and the rise of large-scale multimodal models. Among its core challenges, robot manipulation stands out as a fundamental yet intricate problem, requiring the seamless integration of perception, planning, and control to enable interaction within diverse and unstructured environments. This survey presents a comprehensive overview of robotic manipulation, encompassing foundational background, task-organized benchmarks and datasets, and a unified taxonomy of existing methods. We extend the classical division between high-level planning and low-level control by broadening high-level planning to include language, code, motion, affordance, and 3D representations, while introducing a new taxonomy of low-level learning-based control grounded in training paradigms such as input modeling, latent learning, and policy learning. Furthermore, we provide the first dedicated taxonomy of key bottlenecks, focusing on data collection, utilization, and generalization, and conclude with an extensive review of real-world applications. Compared with prior surveys, our work offers both a broader scope and deeper insight, serving as an accessible roadmap for newcomers and a structured reference for experienced researchers. All related resources, including research papers, open-source datasets, and projects, are curated for the community at https://github.com/BaiShuanghao/Awesome-Robotics-Manipulation.
Vi-TacMan: Articulated Object Manipulation via Vision and Touch
Autonomous manipulation of articulated objects remains a fundamental challenge for robots in human environments. Vision-based methods can infer hidden kinematics but can yield imprecise estimates on unfamiliar objects. Tactile approaches achieve robust control through contact feedback but require accurate initialization. This suggests a natural synergy: vision for global guidance, touch for local precision. Yet no framework systematically exploits this complementarity for generalized articulated manipulation. Here we present Vi-TacMan, which uses vision to propose grasps and coarse directions that seed a tactile controller for precise execution. By incorporating surface normals as geometric priors and modeling directions via von Mises-Fisher distributions, our approach achieves significant gains over baselines (all p<0.0001). Critically, manipulation succeeds without explicit kinematic models -- the tactile controller refines coarse visual estimates through real-time contact regulation. Tests on more than 50,000 simulated and diverse real-world objects confirm robust cross-category generalization. This work establishes that coarse visual cues suffice for reliable manipulation when coupled with tactile feedback, offering a scalable paradigm for autonomous systems in unstructured environments.
Interpretable Robot Control via Structured Behavior Trees and Large Language Models
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.
GoViG: Goal-Conditioned Visual Navigation Instruction Generation
We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.
Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
Co-SemDepth: Fast Joint Semantic Segmentation and Depth Estimation on Aerial Images
Understanding the geometric and semantic properties of the scene is crucial in autonomous navigation and particularly challenging in the case of Unmanned Aerial Vehicle (UAV) navigation. Such information may be by obtained by estimating depth and semantic segmentation maps of the surrounding environment and for their practical use in autonomous navigation, the procedure must be performed as close to real-time as possible. In this paper, we leverage monocular cameras on aerial robots to predict depth and semantic maps in low-altitude unstructured environments. We propose a joint deep-learning architecture that can perform the two tasks accurately and rapidly, and validate its effectiveness on MidAir and Aeroscapes benchmark datasets. Our joint-architecture proves to be competitive or superior to the other single and joint architecture methods while performing its task fast predicting 20.2 FPS on a single NVIDIA quadro p5000 GPU and it has a low memory footprint. All codes for training and prediction can be found on this link: https://github.com/Malga-Vision/Co-SemDepth
In the Era of Prompt Learning with Vision-Language Models
Large-scale foundation models like CLIP have shown strong zero-shot generalization but struggle with domain shifts, limiting their adaptability. In our work, we introduce StyLIP, a novel domain-agnostic prompt learning strategy for Domain Generalization (DG). StyLIP disentangles visual style and content in CLIP`s vision encoder by using style projectors to learn domain-specific prompt tokens and combining them with content features. Trained contrastively, this approach enables seamless adaptation across domains, outperforming state-of-the-art methods on multiple DG benchmarks. Additionally, we propose AD-CLIP for unsupervised domain adaptation (DA), leveraging CLIP`s frozen vision backbone to learn domain-invariant prompts through image style and content features. By aligning domains in embedding space with entropy minimization, AD-CLIP effectively handles domain shifts, even when only target domain samples are available. Lastly, we outline future work on class discovery using prompt learning for semantic segmentation in remote sensing, focusing on identifying novel or rare classes in unstructured environments. This paves the way for more adaptive and generalizable models in complex, real-world scenarios.
Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning
Micro Aerial Vehicles (MAVs) that operate in unstructured, unexplored environments require fast and flexible local planning, which can replan when new parts of the map are explored. Trajectory optimization methods fulfill these needs, but require obstacle distance information, which can be given by Euclidean Signed Distance Fields (ESDFs). We propose a method to incrementally build ESDFs from Truncated Signed Distance Fields (TSDFs), a common implicit surface representation used in computer graphics and vision. TSDFs are fast to build and smooth out sensor noise over many observations, and are designed to produce surface meshes. Meshes allow human operators to get a better assessment of the robot's environment, and set high-level mission goals. We show that we can build TSDFs faster than Octomaps, and that it is more accurate to build ESDFs out of TSDFs than occupancy maps. Our complete system, called voxblox, will be available as open source and runs in real-time on a single CPU core. We validate our approach on-board an MAV, by using our system with a trajectory optimization local planner, entirely on-board and in real-time.
Wild-GS: Real-Time Novel View Synthesis from Unconstrained Photo Collections
Photographs captured in unstructured tourist environments frequently exhibit variable appearances and transient occlusions, challenging accurate scene reconstruction and inducing artifacts in novel view synthesis. Although prior approaches have integrated the Neural Radiance Field (NeRF) with additional learnable modules to handle the dynamic appearances and eliminate transient objects, their extensive training demands and slow rendering speeds limit practical deployments. Recently, 3D Gaussian Splatting (3DGS) has emerged as a promising alternative to NeRF, offering superior training and inference efficiency along with better rendering quality. This paper presents Wild-GS, an innovative adaptation of 3DGS optimized for unconstrained photo collections while preserving its efficiency benefits. Wild-GS determines the appearance of each 3D Gaussian by their inherent material attributes, global illumination and camera properties per image, and point-level local variance of reflectance. Unlike previous methods that model reference features in image space, Wild-GS explicitly aligns the pixel appearance features to the corresponding local Gaussians by sampling the triplane extracted from the reference image. This novel design effectively transfers the high-frequency detailed appearance of the reference view to 3D space and significantly expedites the training process. Furthermore, 2D visibility maps and depth regularization are leveraged to mitigate the transient effects and constrain the geometry, respectively. Extensive experiments demonstrate that Wild-GS achieves state-of-the-art rendering performance and the highest efficiency in both training and inference among all the existing techniques.
TOMD: A Trail-based Off-road Multimodal Dataset for Traversable Pathway Segmentation under Challenging Illumination Conditions
Detecting traversable pathways in unstructured outdoor environments remains a significant challenge for autonomous robots, especially in critical applications such as wide-area search and rescue, as well as incident management scenarios like forest fires. Existing datasets and models primarily target urban settings or wide, vehicle-traversable off-road tracks, leaving a substantial gap in addressing the complexity of narrow, trail-like off-road scenarios. To address this, we introduce the Trail-based Off-road Multimodal Dataset (TOMD), a comprehensive dataset specifically designed for such environments. TOMD features high-fidelity multimodal sensor data -- including 128-channel LiDAR, stereo imagery, GNSS, IMU, and illumination measurements -- collected through repeated traversals under diverse conditions. We also propose a dynamic multiscale data fusion model for accurate traversable pathway prediction. The study analyzes the performance of early, cross, and mixed fusion strategies under varying illumination levels. Results demonstrate the effectiveness of our approach and the relevance of illumination in segmentation performance. We publicly release TOMD at https://github.com/yyyxs1125/TMOD to support future research in trail-based off-road navigation.
VLA-R: Vision-Language Action Retrieval toward Open-World End-to-End Autonomous Driving
Exploring open-world situations in an end-to-end manner is a promising yet challenging task due to the need for strong generalization capabilities. In particular, end-to-end autonomous driving in unstructured outdoor environments often encounters conditions that were unfamiliar during training. In this work, we present Vision-Language Action Retrieval (VLA-R), an open-world end-to-end autonomous driving (OW-E2EAD) framework that integrates open-world perception with a novel vision-action retrieval paradigm. We leverage a frozen vision-language model for open-world detection and segmentation to obtain multi-scale, prompt-guided, and interpretable perception features without domain-specific tuning. A Q-Former bottleneck aggregates fine-grained visual representations with language-aligned visual features, bridging perception and action domains. To learn transferable driving behaviors, we introduce a vision-action contrastive learning scheme that aligns vision-language and action embeddings for effective open-world reasoning and action retrieval. Our experiments on a real-world robotic platform demonstrate strong generalization and exploratory performance in unstructured, unseen environments, even with limited data. Demo videos are provided in the supplementary material.
ROMAN: Open-Set Object Map Alignment for Robust View-Invariant Global Localization
Global localization is a fundamental capability required for long-term and drift-free robot navigation. However, current methods fail to relocalize when faced with significantly different viewpoints. We present ROMAN (Robust Object Map Alignment Anywhere), a global localization method capable of localizing in challenging and diverse environments by creating and aligning maps of open-set and view-invariant objects. ROMAN formulates and solves a registration problem between object submaps using a unified graph-theoretic global data association approach with a novel incorporation of a gravity direction prior and object shape and semantic similarity. This work's open-set object mapping and information-rich object association algorithm enables global localization, even in instances when maps are created from robots traveling in opposite directions. Through a set of challenging global localization experiments in indoor, urban, and unstructured/forested environments, we demonstrate that ROMAN achieves higher relative pose estimation accuracy than other image-based pose estimation methods or segment-based registration methods. Additionally, we evaluate ROMAN as a loop closure module in large-scale multi-robot SLAM and show a 35% improvement in trajectory estimation error compared to standard SLAM systems using visual features for loop closures. Code and videos can be found at https://acl.mit.edu/roman.
Fine-Tuning Florence2 for Enhanced Object Detection in Un-constructed Environments: Vision-Language Model Approach
Vision-Language Models (VLMs) have emerged as powerful tools in artificial intelli-gence, capable of integrating textual and visual data for a unified understanding of complex scenes. While models such as Florence2, built on transformer architectures, have shown promise across general tasks, their performance in object detection within unstructured or cluttered environments remains underexplored. In this study, we fi-ne-tuned the Florence2 model for object detection tasks in non-constructed, complex environments. A comprehensive experimental framework was established involving multiple hardware configurations (NVIDIA T4, L4, and A100 GPUs), optimizers (AdamW, SGD), and varied hyperparameters including learning rates and LoRA (Low-Rank Adaptation) setups. Model training and evaluation were conducted on challenging datasets representative of real-world, disordered settings. The optimized Florence2 models exhibited significant improvements in object detection accuracy, with Mean Average Precision (mAP) metrics approaching or matching those of estab-lished models such as YOLOv8, YOLOv9, and YOLOv10. The integration of LoRA and careful fine-tuning of transformer layers contributed notably to these gains. Our find-ings highlight the adaptability of transformer-based VLMs like Florence2 for do-main-specific tasks, particularly in visually complex environments. The study under-scores the potential of fine-tuned VLMs to rival traditional convolution-based detec-tors, offering a flexible and scalable approach for advanced vision applications in re-al-world, unstructured settings.
Active-Perceptive Motion Generation for Mobile Manipulation
Mobile Manipulation (MoMa) systems incorporate the benefits of mobility and dexterity, thanks to the enlarged space in which they can move and interact with their environment. MoMa robots can also continuously perceive their environment when equipped with onboard sensors, e.g., an embodied camera. However, extracting task-relevant visual information in unstructured and cluttered environments such as households remains a challenge. In this work, we introduce an active perception pipeline for mobile manipulators to generate motions that are informative toward manipulation tasks such as grasping, in initially unknown, cluttered scenes. Our proposed approach ActPerMoMa generates robot trajectories in a receding horizon fashion, sampling trajectories and computing path-wise utilities that trade-off reconstructing the unknown scene by maximizing the visual information gain and the taskoriented objective, e.g., grasp success by maximizing grasp reachability efficiently. We demonstrate the efficacy of our method in simulated experiments with a dual-arm TIAGo++ MoMa robot performing mobile grasping in cluttered scenes and when its path is obstructed by external obstacles. We empirically analyze the contribution of various utilities and hyperparameters, and compare against representative baselines both with and without active perception objectives. Finally, we demonstrate the transfer of our mobile grasping strategy to the real world, showing a promising direction for active-perceptive MoMa.
GNFactor: Multi-Task Real Robot Learning with Generalizable Neural Feature Fields
It is a long-standing problem in robotics to develop agents capable of executing diverse manipulation tasks from visual observations in unstructured real-world environments. To achieve this goal, the robot needs to have a comprehensive understanding of the 3D structure and semantics of the scene. In this work, we present GNFactor, a visual behavior cloning agent for multi-task robotic manipulation with Generalizable Neural feature Fields. GNFactor jointly optimizes a generalizable neural field (GNF) as a reconstruction module and a Perceiver Transformer as a decision-making module, leveraging a shared deep 3D voxel representation. To incorporate semantics in 3D, the reconstruction module utilizes a vision-language foundation model (e.g., Stable Diffusion) to distill rich semantic information into the deep 3D voxel. We evaluate GNFactor on 3 real robot tasks and perform detailed ablations on 10 RLBench tasks with a limited number of demonstrations. We observe a substantial improvement of GNFactor over current state-of-the-art methods in seen and unseen tasks, demonstrating the strong generalization ability of GNFactor. Our project website is https://yanjieze.com/GNFactor/ .
PKRD-CoT: A Unified Chain-of-thought Prompting for Multi-Modal Large Language Models in Autonomous Driving
There is growing interest in leveraging the capabilities of robust Multi-Modal Large Language Models (MLLMs) directly within autonomous driving contexts. However, the high costs and complexity of designing and training end-to-end autonomous driving models make them challenging for many enterprises and research entities. To address this, our study explores a seamless integration of MLLMs into autonomous driving systems by proposing a Zero-Shot Chain-of-Thought (Zero-Shot-CoT) prompt design named PKRD-CoT. PKRD-CoT is based on the four fundamental capabilities of autonomous driving: perception, knowledge, reasoning, and decision-making. This makes it particularly suitable for understanding and responding to dynamic driving environments by mimicking human thought processes step by step, thus enhancing decision-making in real-time scenarios. Our design enables MLLMs to tackle problems without prior experience, thereby increasing their utility within unstructured autonomous driving environments. In experiments, we demonstrate the exceptional performance of GPT-4.0 with PKRD-CoT across autonomous driving tasks, highlighting its effectiveness in autonomous driving scenarios. Additionally, our benchmark analysis reveals the promising viability of PKRD-CoT for other MLLMs, such as Claude, LLava1.6, and Qwen-VL-Plus. Overall, this study contributes a novel and unified prompt-design framework for GPT-4.0 and other MLLMs in autonomous driving, while also rigorously evaluating the efficacy of these widely recognized MLLMs in the autonomous driving domain through comprehensive comparisons.
RoboMonkey: Scaling Test-Time Sampling and Verification for Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in visuomotor control, yet ensuring their robustness in unstructured real-world environments remains a persistent challenge. In this paper, we investigate test-time scaling through the lens of sampling and verification as means to enhance the robustness and generalization of VLAs. We first demonstrate that the relationship between action error and the number of generated samples follows an exponentiated power law across a range of VLAs, indicating the existence of inference-time scaling laws. Building on these insights, we introduce RoboMonkey, a test-time scaling framework for VLAs. At deployment, RoboMonkey samples a small set of actions from a VLA, applies Gaussian perturbation and majority voting to construct an action proposal distribution, and then uses a Vision Language Model (VLM)-based verifier to select the optimal action. We propose a synthetic data generation pipeline for training such VLM-based action verifiers, and demonstrate that scaling the synthetic dataset consistently improves verification and downstream accuracy. Through extensive simulated and hardware experiments, we show that pairing existing VLAs with RoboMonkey yields significant performance gains, achieving a 25% absolute improvement on out-of-distribution tasks and 9% on in-distribution tasks. Additionally, when adapting to new robot setups, we show that fine-tuning both VLAs and action verifiers yields a 7% performance increase compared to fine-tuning VLAs alone.
FrankenBot: Brain-Morphic Modular Orchestration for Robotic Manipulation with Vision-Language Models
Developing a general robot manipulation system capable of performing a wide range of tasks in complex, dynamic, and unstructured real-world environments has long been a challenging task. It is widely recognized that achieving human-like efficiency and robustness manipulation requires the robotic brain to integrate a comprehensive set of functions, such as task planning, policy generation, anomaly monitoring and handling, and long-term memory, achieving high-efficiency operation across all functions. Vision-Language Models (VLMs), pretrained on massive multimodal data, have acquired rich world knowledge, exhibiting exceptional scene understanding and multimodal reasoning capabilities. However, existing methods typically focus on realizing only a single function or a subset of functions within the robotic brain, without integrating them into a unified cognitive architecture. Inspired by a divide-and-conquer strategy and the architecture of the human brain, we propose FrankenBot, a VLM-driven, brain-morphic robotic manipulation framework that achieves both comprehensive functionality and high operational efficiency. Our framework includes a suite of components, decoupling a part of key functions from frequent VLM calls, striking an optimal balance between functional completeness and system efficiency. Specifically, we map task planning, policy generation, memory management, and low-level interfacing to the cortex, cerebellum, temporal lobe-hippocampus complex, and brainstem, respectively, and design efficient coordination mechanisms for the modules. We conducted comprehensive experiments in both simulation and real-world robotic environments, demonstrating that our method offers significant advantages in anomaly detection and handling, long-term memory, operational efficiency, and stability -- all without requiring any fine-tuning or retraining.
GeNIE: A Generalizable Navigation System for In-the-Wild Environments
Reliable navigation in unstructured, real-world environments remains a significant challenge for embodied agents, especially when operating across diverse terrains, weather conditions, and sensor configurations. In this paper, we introduce GeNIE (Generalizable Navigation System for In-the-Wild Environments), a robust navigation framework designed for global deployment. GeNIE integrates a generalizable traversability prediction model built on SAM2 with a novel path fusion strategy that enhances planning stability in noisy and ambiguous settings. We deployed GeNIE in the Earth Rover Challenge (ERC) at ICRA 2025, where it was evaluated across six countries spanning three continents. GeNIE took first place and achieved 79% of the maximum possible score, outperforming the second-best team by 17%, and completed the entire competition without a single human intervention. These results set a new benchmark for robust, generalizable outdoor robot navigation. We will release the codebase, pretrained model weights, and newly curated datasets to support future research in real-world navigation.
DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
Whole-Body Coordination for Dynamic Object Grasping with Legged Manipulators
Quadrupedal robots with manipulators offer strong mobility and adaptability for grasping in unstructured, dynamic environments through coordinated whole-body control. However, existing research has predominantly focused on static-object grasping, neglecting the challenges posed by dynamic targets and thus limiting applicability in dynamic scenarios such as logistics sorting and human-robot collaboration. To address this, we introduce DQ-Bench, a new benchmark that systematically evaluates dynamic grasping across varying object motions, velocities, heights, object types, and terrain complexities, along with comprehensive evaluation metrics. Building upon this benchmark, we propose DQ-Net, a compact teacher-student framework designed to infer grasp configurations from limited perceptual cues. During training, the teacher network leverages privileged information to holistically model both the static geometric properties and dynamic motion characteristics of the target, and integrates a grasp fusion module to deliver robust guidance for motion planning. Concurrently, we design a lightweight student network that performs dual-viewpoint temporal modeling using only the target mask, depth map, and proprioceptive state, enabling closed-loop action outputs without reliance on privileged data. Extensive experiments on DQ-Bench demonstrate that DQ-Net achieves robust dynamic objects grasping across multiple task settings, substantially outperforming baseline methods in both success rate and responsiveness.
ASR Benchmarking: Need for a More Representative Conversational Dataset
Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks.
SwarmUpdate: Hierarchical Software Updates and Deep Learning Model Patching for Heterogeneous UAV Swarms
Heterogeneous unmanned aerial vehicle (UAV) swarms consist of dozens to hundreds of drones with different roles and varying hardware and software requirements collaborating towards a shared mission. While traditional approaches for synchronized software updates assume swarms to be unstructured and homogeneous, the heterogeneous nature of modern swarms and the emerging need of drones to update their deep learning (perception) models with new objectives or data as a mission unfolds, has made efficient software update methods crucial for swarms to adapt to dynamic environments. To address these challenges, we introduce the SwarmUpdate framework for software updates in heterogeneous UAV swarms, composed of two key components: SwarmSync and SwarmModelPatch. SwarmSync is a hierarchical software update synchronization strategy to distribute a software update to the right subset of drones within a swarm, while SwarmModelPatch is a deep learning model patching method that reduces the size of a (deep learning model) update by only allowing some layers of the model to be updated (freezing the other layers). In this paper, we systematically evaluate the performance of SwarmSync through large-scale simulations in the ARGoS swarm simulator, comparing SwarmSync to auction-based (SOUL) and gossip-based rebroadcasting (Gossip) baselines, and SwarmModelPatch to a non-incremental model patching strategy.
Large VLM-based Vision-Language-Action Models for Robotic Manipulation: A Survey
Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation
A Survey on Robotics with Foundation Models: toward Embodied AI
While the exploration for embodied AI has spanned multiple decades, it remains a persistent challenge to endow agents with human-level intelligence, including perception, learning, reasoning, decision-making, control, and generalization capabilities, so that they can perform general-purpose tasks in open, unstructured, and dynamic environments. Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks. They not only provide a solid cornerstone for integrating basic modules into embodied AI systems but also shed light on how to scale up robot learning from a methodological perspective. This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control. Moreover, we showcase their commonly used datasets, simulators, and benchmarks. Importantly, we emphasize the critical challenges intrinsic to this field and delineate potential avenues for future research, contributing to advancing the frontier of academic and industrial discourse.
Advanced Unstructured Data Processing for ESG Reports: A Methodology for Structured Transformation and Enhanced Analysis
In the evolving field of corporate sustainability, analyzing unstructured Environmental, Social, and Governance (ESG) reports is a complex challenge due to their varied formats and intricate content. This study introduces an innovative methodology utilizing the "Unstructured Core Library", specifically tailored to address these challenges by transforming ESG reports into structured, analyzable formats. Our approach significantly advances the existing research by offering high-precision text cleaning, adept identification and extraction of text from images, and standardization of tables within these reports. Emphasizing its capability to handle diverse data types, including text, images, and tables, the method adeptly manages the nuances of differing page layouts and report styles across industries. This research marks a substantial contribution to the fields of industrial ecology and corporate sustainability assessment, paving the way for the application of advanced NLP technologies and large language models in the analysis of corporate governance and sustainability. Our code is available at https://github.com/linancn/TianGong-AI-Unstructure.git.
OCTraN: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios
Modern approaches for vision-centric environment perception for autonomous navigation make extensive use of self-supervised monocular depth estimation algorithms that output disparity maps. However, when this disparity map is projected onto 3D space, the errors in disparity are magnified, resulting in a depth estimation error that increases quadratically as the distance from the camera increases. Though Light Detection and Ranging (LiDAR) can solve this issue, it is expensive and not feasible for many applications. To address the challenge of accurate ranging with low-cost sensors, we propose, OCTraN, a transformer architecture that uses iterative-attention to convert 2D image features into 3D occupancy features and makes use of convolution and transpose convolution to efficiently operate on spatial information. We also develop a self-supervised training pipeline to generalize the model to any scene by eliminating the need for LiDAR ground truth by substituting it with pseudo-ground truth labels obtained from boosted monocular depth estimation.
Grounding Language with Visual Affordances over Unstructured Data
Recent works have shown that Large Language Models (LLMs) can be applied to ground natural language to a wide variety of robot skills. However, in practice, learning multi-task, language-conditioned robotic skills typically requires large-scale data collection and frequent human intervention to reset the environment or help correcting the current policies. In this work, we propose a novel approach to efficiently learn general-purpose language-conditioned robot skills from unstructured, offline and reset-free data in the real world by exploiting a self-supervised visuo-lingual affordance model, which requires annotating as little as 1% of the total data with language. We evaluate our method in extensive experiments both in simulated and real-world robotic tasks, achieving state-of-the-art performance on the challenging CALVIN benchmark and learning over 25 distinct visuomotor manipulation tasks with a single policy in the real world. We find that when paired with LLMs to break down abstract natural language instructions into subgoals via few-shot prompting, our method is capable of completing long-horizon, multi-tier tasks in the real world, while requiring an order of magnitude less data than previous approaches. Code and videos are available at http://hulc2.cs.uni-freiburg.de
Unveiling Document Structures with YOLOv5 Layout Detection
The current digital environment is characterized by the widespread presence of data, particularly unstructured data, which poses many issues in sectors including finance, healthcare, and education. Conventional techniques for data extraction encounter difficulties in dealing with the inherent variety and complexity of unstructured data, hence requiring the adoption of more efficient methodologies. This research investigates the utilization of YOLOv5, a cutting-edge computer vision model, for the purpose of rapidly identifying document layouts and extracting unstructured data. The present study establishes a conceptual framework for delineating the notion of "objects" as they pertain to documents, incorporating various elements such as paragraphs, tables, photos, and other constituent parts. The main objective is to create an autonomous system that can effectively recognize document layouts and extract unstructured data, hence improving the effectiveness of data extraction. In the conducted examination, the YOLOv5 model exhibits notable effectiveness in the task of document layout identification, attaining a high accuracy rate along with a precision value of 0.91, a recall value of 0.971, an F1-score of 0.939, and an area under the receiver operating characteristic curve (AUC-ROC) of 0.975. The remarkable performance of this system optimizes the process of extracting textual and tabular data from document images. Its prospective applications are not limited to document analysis but can encompass unstructured data from diverse sources, such as audio data. This study lays the foundation for future investigations into the wider applicability of YOLOv5 in managing various types of unstructured data, offering potential for novel applications across multiple domains.
LTGS: Long-Term Gaussian Scene Chronology From Sparse View Updates
Recent advances in novel-view synthesis can create the photo-realistic visualization of real-world environments from conventional camera captures. However, acquiring everyday environments from casual captures faces challenges due to frequent scene changes, which require dense observations both spatially and temporally. We propose long-term Gaussian scene chronology from sparse-view updates, coined LTGS, an efficient scene representation that can embrace everyday changes from highly under-constrained casual captures. Given an incomplete and unstructured Gaussian splatting representation obtained from an initial set of input images, we robustly model the long-term chronology of the scene despite abrupt movements and subtle environmental variations. We construct objects as template Gaussians, which serve as structural, reusable priors for shared object tracks. Then, the object templates undergo a further refinement pipeline that modulates the priors to adapt to temporally varying environments based on few-shot observations. Once trained, our framework is generalizable across multiple time steps through simple transformations, significantly enhancing the scalability for a temporal evolution of 3D environments. As existing datasets do not explicitly represent the long-term real-world changes with a sparse capture setup, we collect real-world datasets to evaluate the practicality of our pipeline. Experiments demonstrate that our framework achieves superior reconstruction quality compared to other baselines while enabling fast and light-weight updates.
From Street Views to Urban Science: Discovering Road Safety Factors with Multimodal Large Language Models
Urban and transportation research has long sought to uncover statistically meaningful relationships between key variables and societal outcomes such as road safety, to generate actionable insights that guide the planning, development, and renewal of urban and transportation systems. However, traditional workflows face several key challenges: (1) reliance on human experts to propose hypotheses, which is time-consuming and prone to confirmation bias; (2) limited interpretability, particularly in deep learning approaches; and (3) underutilization of unstructured data that can encode critical urban context. Given these limitations, we propose a Multimodal Large Language Model (MLLM)-based approach for interpretable hypothesis inference, enabling the automated generation, evaluation, and refinement of hypotheses concerning urban context and road safety outcomes. Our method leverages MLLMs to craft safety-relevant questions for street view images (SVIs), extract interpretable embeddings from their responses, and apply them in regression-based statistical models. UrbanX supports iterative hypothesis testing and refinement, guided by statistical evidence such as coefficient significance, thereby enabling rigorous scientific discovery of previously overlooked correlations between urban design and safety. Experimental evaluations on Manhattan street segments demonstrate that our approach outperforms pretrained deep learning models while offering full interpretability. Beyond road safety, UrbanX can serve as a general-purpose framework for urban scientific discovery, extracting structured insights from unstructured urban data across diverse socioeconomic and environmental outcomes. This approach enhances model trustworthiness for policy applications and establishes a scalable, statistically grounded pathway for interpretable knowledge discovery in urban and transportation studies.
Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to 22times. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
