Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUser-Aware Prefix-Tuning is a Good Learner for Personalized Image Captioning
Image captioning bridges the gap between vision and language by automatically generating natural language descriptions for images. Traditional image captioning methods often overlook the preferences and characteristics of users. Personalized image captioning solves this problem by incorporating user prior knowledge into the model, such as writing styles and preferred vocabularies. Most existing methods emphasize the user context fusion process by memory networks or transformers. However, these methods ignore the distinct domains of each dataset. Therefore, they need to update the entire caption model parameters when meeting new samples, which is time-consuming and calculation-intensive. To address this challenge, we propose a novel personalized image captioning framework that leverages user context to consider personality factors. Additionally, our framework utilizes the prefix-tuning paradigm to extract knowledge from a frozen large language model, reducing the gap between different language domains. Specifically, we employ CLIP to extract the visual features of an image and align the semantic space using a query-guided mapping network. By incorporating the transformer layer, we merge the visual features with the user's contextual prior knowledge to generate informative prefixes. Moreover, we employ GPT-2 as the frozen large language model. With a small number of parameters to be trained, our model performs efficiently and effectively. Our model outperforms existing baseline models on Instagram and YFCC100M datasets across five evaluation metrics, demonstrating its superiority, including twofold improvements in metrics such as BLEU-4 and CIDEr.
Enhancing the Medical Context-Awareness Ability of LLMs via Multifaceted Self-Refinement Learning
Large language models (LLMs) have shown great promise in the medical domain, achieving strong performance on several benchmarks. However, they continue to underperform in real-world medical scenarios, which often demand stronger context-awareness, i.e., the ability to recognize missing or critical details (e.g., user identity, medical history, risk factors) and provide safe, helpful, and contextually appropriate responses. To address this issue, we propose Multifaceted Self-Refinement (MuSeR), a data-driven approach that enhances LLMs' context-awareness along three key facets (decision-making, communication, and safety) through self-evaluation and refinement. Specifically, we first design a attribute-conditioned query generator that simulates diverse real-world user contexts by varying attributes such as role, geographic region, intent, and degree of information ambiguity. An LLM then responds to these queries, self-evaluates its answers along three key facets, and refines its responses to better align with the requirements of each facet. Finally, the queries and refined responses are used for supervised fine-tuning to reinforce the model's context-awareness ability. Evaluation results on the latest HealthBench dataset demonstrate that our method significantly improves LLM performance across multiple aspects, with particularly notable gains in the context-awareness axis. Furthermore, by incorporating knowledge distillation with the proposed method, the performance of a smaller backbone LLM (e.g., Qwen3-32B) surpasses its teacher model, achieving a new SOTA across all open-source LLMs on HealthBench (63.8%) and its hard subset (43.1%). Code and dataset will be released at https://muser-llm.github.io.
CoGenesis: A Framework Collaborating Large and Small Language Models for Secure Context-Aware Instruction Following
With the advancement of language models (LMs), their exposure to private data is increasingly inevitable, and their deployment (especially for smaller ones) on personal devices, such as PCs and smartphones, has become a prevailing trend. In contexts laden with user information, enabling models to both safeguard user privacy and execute commands efficiently emerges as an essential research imperative. In this paper, we propose CoGenesis, a collaborative generation framework integrating large (hosted on cloud infrastructure) and small models (deployed on local devices) to address privacy concerns logically. Initially, we design a pipeline to create personalized writing instruction datasets enriched with extensive context details as the testbed of this research issue. Subsequently, we introduce two variants of CoGenesis based on sketch and logits respectively. Our experimental findings, based on our synthesized dataset and two additional open-source datasets, indicate that: 1) Large-scale models perform well when provided with user context but struggle in the absence of such context. 2) While specialized smaller models fine-tuned on the synthetic dataset show promise, they still lag behind their larger counterparts. 3) Our CoGenesis framework, utilizing mixed-scale models, showcases competitive performance, providing a feasible solution to privacy issues.
IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation
Recent sequential recommendation models rely increasingly on consecutive short-term user-item interaction sequences to model user interests. These approaches have, however, raised concerns about both short- and long-term interests. (1) {\it short-term}: interaction sequences may not result from a monolithic interest, but rather from several intertwined interests, even within a short period of time, resulting in their failures to model skip behaviors; (2) {\it long-term}: interaction sequences are primarily observed sparsely at discrete intervals, other than consecutively over the long run. This renders difficulty in inferring long-term interests, since only discrete interest representations can be derived, without taking into account interest dynamics across sequences. In this study, we address these concerns by learning (1) multi-scale representations of short-term interests; and (2) dynamics-aware representations of long-term interests. To this end, we present an Interest Dynamics modeling framework using generative Neural Processes, coined IDNP, to model user interests from a functional perspective. IDNP learns a global interest function family to define each user's long-term interest as a function instantiation, manifesting interest dynamics through function continuity. Specifically, IDNP first encodes each user's short-term interactions into multi-scale representations, which are then summarized as user context. By combining latent global interest with user context, IDNP then reconstructs long-term user interest functions and predicts interactions at upcoming query timestep. Moreover, IDNP can model such interest functions even when interaction sequences are limited and non-consecutive. Extensive experiments on four real-world datasets demonstrate that our model outperforms state-of-the-arts on various evaluation metrics.
Autonomous Deep Agent
This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.
Personalized Reasoning: Just-In-Time Personalization and Why LLMs Fail At It
Current large language model (LLM) development treats task-solving and preference alignment as separate challenges, optimizing first for objective correctness, then for alignment to aggregated human preferences. This paradigm fails in human-facing applications where solving a problem correctly is insufficient if the response mismatches the user's needs. This challenge intensifies in just-in-time scenarios where no prior user interaction history exists due to cold-start conditions or privacy constraints. LLMs need to identify what they don't know about user preferences, strategically elicit preference values through questioning, then adapt their reasoning processes and responses accordingly -- a complicated chain of cognitive processes which we term personalized reasoning. We introduce PREFDISCO, an evaluation methodology that transforms static benchmarks into interactive personalization tasks using psychologically-grounded personas with sparse preferences. Our framework creates scenarios where identical questions require different reasoning chains depending on user context, as optimal explanation approaches vary by individual expertise and preferences while maintaining factual accuracy. Evaluation of 21 frontier models across 10 tasks reveals 29.0% of naive personalization attempts produce worse preference alignment than generic responses, yet generic responses also fail to serve individual user needs effectively. These findings suggest personalized reasoning requires dedicated development rather than emerging naturally. PREFDISCO establishes personalized reasoning as a measurable research frontier and reveals fundamental limitations in current LLMs' interactive capabilities, providing a foundation for developing systems that can adapt to individual users in education, healthcare, and technical domains where personalization is critical.
TREC iKAT 2023: The Interactive Knowledge Assistance Track Overview
Conversational Information Seeking has evolved rapidly in the last few years with the development of Large Language Models providing the basis for interpreting and responding in a naturalistic manner to user requests. iKAT emphasizes the creation and research of conversational search agents that adapt responses based on the user's prior interactions and present context. This means that the same question might yield varied answers, contingent on the user's profile and preferences. The challenge lies in enabling Conversational Search Agents (CSA) to incorporate personalized context to effectively guide users through the relevant information to them. iKAT's first year attracted seven teams and a total of 24 runs. Most of the runs leveraged Large Language Models (LLMs) in their pipelines, with a few focusing on a generate-then-retrieve approach.
Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach
Large language models (LLMs) typically generate identical or similar responses for all users given the same prompt, posing serious safety risks in high-stakes applications where user vulnerabilities differ widely. Existing safety evaluations primarily rely on context-independent metrics - such as factuality, bias, or toxicity - overlooking the fact that the same response may carry divergent risks depending on the user's background or condition. We introduce personalized safety to fill this gap and present PENGUIN - a benchmark comprising 14,000 scenarios across seven sensitive domains with both context-rich and context-free variants. Evaluating six leading LLMs, we demonstrate that personalized user information significantly improves safety scores by 43.2%, confirming the effectiveness of personalization in safety alignment. However, not all context attributes contribute equally to safety enhancement. To address this, we develop RAISE - a training-free, two-stage agent framework that strategically acquires user-specific background. RAISE improves safety scores by up to 31.6% over six vanilla LLMs, while maintaining a low interaction cost of just 2.7 user queries on average. Our findings highlight the importance of selective information gathering in safety-critical domains and offer a practical solution for personalizing LLM responses without model retraining. This work establishes a foundation for safety research that adapts to individual user contexts rather than assuming a universal harm standard.
The Shared Task on Gender Rewriting
In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.
Implicit Session Contexts for Next-Item Recommendations
Session-based recommender systems capture the short-term interest of a user within a session. Session contexts (i.e., a user's high-level interests or intents within a session) are not explicitly given in most datasets, and implicitly inferring session context as an aggregation of item-level attributes is crude. In this paper, we propose ISCON, which implicitly contextualizes sessions. ISCON first generates implicit contexts for sessions by creating a session-item graph, learning graph embeddings, and clustering to assign sessions to contexts. ISCON then trains a session context predictor and uses the predicted contexts' embeddings to enhance the next-item prediction accuracy. Experiments on four datasets show that ISCON has superior next-item prediction accuracy than state-of-the-art models. A case study of ISCON on the Reddit dataset confirms that assigned session contexts are unique and meaningful.
Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion
Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.
CUPID: Evaluating Personalized and Contextualized Alignment of LLMs from Interactions
Personalization of Large Language Models (LLMs) often assumes users hold static preferences that reflect globally in all tasks. In reality, humans hold dynamic preferences that change depending on the context. As users interact with an LLM in various contexts, they naturally reveal their contextual preferences, which a model must infer and apply in future contexts to ensure alignment. To assess this, we introduce CUPID, a benchmark of 756 human-curated interaction session histories between users and LLM-based chat assistants. In each interaction session, the user provides a request in a specific context and expresses their preference through multi-turn feedback. Given a new user request and prior interaction sessions, our benchmark assesses whether LLMs can infer the preference relevant to this request and generate a response that satisfies this preference. With CUPID, we evaluated 10 open and proprietary LLMs, revealing that state-of-the-art LLMs struggle to infer preferences from multi-turn interactions and fail to discern what previous context is relevant to a new request -- under 50% precision and 65% recall. Our work highlights the need to advance LLM capabilities for more contextually personalized interactions and proposes CUPID as a resource to drive these improvements.
On the Loss of Context-awareness in General Instruction Fine-tuning
Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.
RecGPT-V2 Technical Report
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
Personalized Graph-Based Retrieval for Large Language Models
As large language models (LLMs) evolve, their ability to deliver personalized and context-aware responses offers transformative potential for improving user experiences. Existing personalization approaches, however, often rely solely on user history to augment the prompt, limiting their effectiveness in generating tailored outputs, especially in cold-start scenarios with sparse data. To address these limitations, we propose Personalized Graph-based Retrieval-Augmented Generation (PGraphRAG), a framework that leverages user-centric knowledge graphs to enrich personalization. By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraphRAG enhances contextual understanding and output quality. We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable. Experimental results show that PGraphRAG significantly outperforms state-of-the-art personalization methods across diverse tasks, demonstrating the unique advantages of graph-based retrieval for personalization.
LLMs Think, But Not In Your Flow: Reasoning-Level Personalization for Black-Box Large Language Models
Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
Building Your Own Product Copilot: Challenges, Opportunities, and Needs
A race is underway to embed advanced AI capabilities into products. These product copilots enable users to ask questions in natural language and receive relevant responses that are specific to the user's context. In fact, virtually every large technology company is looking to add these capabilities to their software products. However, for most software engineers, this is often their first encounter with integrating AI-powered technology. Furthermore, software engineering processes and tools have not caught up with the challenges and scale involved with building AI-powered applications. In this work, we present the findings of an interview study with 26 professional software engineers responsible for building product copilots at various companies. From our interviews, we found pain points at every step of the engineering process and the challenges that strained existing development practices. We then conducted group brainstorming sessions to collaborative on opportunities and tool designs for the broader software engineering community.
LLAMAPIE: Proactive In-Ear Conversation Assistants
We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices. Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations. We address several challenges, including determining when to respond, crafting concise responses that enhance conversations, leveraging knowledge of the user for context-aware assistance, and real-time, on-device processing. To achieve this, we construct a semi-synthetic dialogue dataset and propose a two-model pipeline: a small model that decides when to respond and a larger model that generates the response. We evaluate our approach on real-world datasets, demonstrating its effectiveness in providing helpful, unobtrusive assistance. User studies with our assistant, implemented on Apple Silicon M2 hardware, show a strong preference for the proactive assistant over both a baseline with no assistance and a reactive model, highlighting the potential of LlamaPie to enhance live conversations.
KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction
This study explores the use of Large Language Models (LLMs) for automatic evaluation of knowledge graph (KG) completion models. Historically, validating information in KGs has been a challenging task, requiring large-scale human annotation at prohibitive cost. With the emergence of general-purpose generative AI and LLMs, it is now plausible that human-in-the-loop validation could be replaced by a generative agent. We introduce a framework for consistency and validation when using generative models to validate knowledge graphs. Our framework is based upon recent open-source developments for structural and semantic validation of LLM outputs, and upon flexible approaches to fact checking and verification, supported by the capacity to reference external knowledge sources of any kind. The design is easy to adapt and extend, and can be used to verify any kind of graph-structured data through a combination of model-intrinsic knowledge, user-supplied context, and agents capable of external knowledge retrieval.
LongSafety: Evaluating Long-Context Safety of Large Language Models
As Large Language Models (LLMs) continue to advance in understanding and generating long sequences, new safety concerns have been introduced through the long context. However, the safety of LLMs in long-context tasks remains under-explored, leaving a significant gap in both evaluation and improvement of their safety. To address this, we introduce LongSafety, the first comprehensive benchmark specifically designed to evaluate LLM safety in open-ended long-context tasks. LongSafety encompasses 7 categories of safety issues and 6 user-oriented long-context tasks, with a total of 1,543 test cases, averaging 5,424 words per context. Our evaluation towards 16 representative LLMs reveals significant safety vulnerabilities, with most models achieving safety rates below 55%. Our findings also indicate that strong safety performance in short-context scenarios does not necessarily correlate with safety in long-context tasks, emphasizing the unique challenges and urgency of improving long-context safety. Moreover, through extensive analysis, we identify challenging safety issues and task types for long-context models. Furthermore, we find that relevant context and extended input sequences can exacerbate safety risks in long-context scenarios, highlighting the critical need for ongoing attention to long-context safety challenges. Our code and data are available at https://github.com/thu-coai/LongSafety.
SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending
There is increased interest in using generative AI to create 3D spaces for Virtual Reality (VR) applications. However, today's models produce artificial environments, falling short of supporting collaborative tasks that benefit from incorporating the user's physical context. To generate environments that support VR telepresence, we introduce SpaceBlender, a novel pipeline that utilizes generative AI techniques to blend users' physical surroundings into unified virtual spaces. This pipeline transforms user-provided 2D images into context-rich 3D environments through an iterative process consisting of depth estimation, mesh alignment, and diffusion-based space completion guided by geometric priors and adaptive text prompts. In a preliminary within-subjects study, where 20 participants performed a collaborative VR affinity diagramming task in pairs, we compared SpaceBlender with a generic virtual environment and a state-of-the-art scene generation framework, evaluating its ability to create virtual spaces suitable for collaboration. Participants appreciated the enhanced familiarity and context provided by SpaceBlender but also noted complexities in the generative environments that could detract from task focus. Drawing on participant feedback, we propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios.
KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems
Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.
Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search
In this paper, we present a prompting framework called LLMCS that leverages large language models, such as code-davinci-002 of GPT-3, to perform few-shot conversational query rewriting for conversational search. We explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose aggregating them into an integrated representation that can robustly represent the user's real contextual search intent. Experimental results on two conversational search datasets, including CAst-19 and CAsT-20, show that our approach achieves significant improvements in search effectiveness over existing baselines and manual rewrites. Notably, LLMCS can significantly outperform the state-of-the-art baselines by up to +5.9\% and +32.9\% w.r.t. NDCG@3 on CAsT-19 and CAsT-20, highlighting the vast potential of large language models for conversational search. Our code will be released at https://github.com/kyriemao/LLMCS.
SituationalLLM: Proactive language models with scene awareness for dynamic, contextual task guidance
Large language models (LLMs) have achieved remarkable success in text-based tasks but often struggle to provide actionable guidance in real-world physical environments. This is because of their inability to recognize their limited understanding of the user's physical context. We present SituationalLLM, a novel approach that integrates structured scene information into an LLM to deliver proactive, context-aware assistance. By encoding objects, attributes, and relationships in a custom Scene Graph Language, SituationalLLM actively identifies gaps in environmental context and seeks clarifications during user interactions. This behavior emerges from training on the Situational Awareness Database for Instruct-Tuning (SAD-Instruct), which combines diverse, scenario-specific scene graphs with iterative, dialogue-based refinements. Experimental results indicate that SituationalLLM outperforms generic LLM baselines in task specificity, reliability, and adaptability, paving the way for environment-aware AI assistants capable of delivering robust, user-centric guidance under real-world constraints.
MARRS: Multimodal Reference Resolution System
Successfully handling context is essential for any dialog understanding task. This context maybe be conversational (relying on previous user queries or system responses), visual (relying on what the user sees, for example, on their screen), or background (based on signals such as a ringing alarm or playing music). In this work, we present an overview of MARRS, or Multimodal Reference Resolution System, an on-device framework within a Natural Language Understanding system, responsible for handling conversational, visual and background context. In particular, we present different machine learning models to enable handing contextual queries; specifically, one to enable reference resolution, and one to handle context via query rewriting. We also describe how these models complement each other to form a unified, coherent, lightweight system that can understand context while preserving user privacy.
Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning
Conventional recommender systems (RSs) face challenges in precisely capturing users' fine-grained preferences. Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools that may help address these challenges. However, existing LLM-based RSs suffer from hallucinations, misalignment between the semantic space of items and the behavior space of users, or overly simplistic control strategies (e.g., whether to rank or directly present existing results). To bridge these gap, we introduce ToolRec, a framework for LLM-empowered recommendations via tool learning that uses LLMs as surrogate users, thereby guiding the recommendation process and invoking external tools to generate a recommendation list that aligns closely with users' nuanced preferences. We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity. The process factors in the nuances of the context and user preferences. The LLM then invokes external tools based on a user's attribute instructions and probes different segments of the item pool. We consider two types of attribute-oriented tools: rank tools and retrieval tools. Through the integration of LLMs, ToolRec enables conventional recommender systems to become external tools with a natural language interface. Extensive experiments verify the effectiveness of ToolRec, particularly in scenarios that are rich in semantic content.
Frappe: Understanding the Usage and Perception of Mobile App Recommendations In-The-Wild
This paper describes a real world deployment of a context-aware mobile app recommender system (RS) called Frappe. Utilizing a hybrid-approach, we conducted a large-scale app market deployment with 1000 Android users combined with a small-scale local user study involving 33 users. The resulting usage logs and subjective feedback enabled us to gather key insights into (1) context-dependent app usage and (2) the perceptions and experiences of end-users while interacting with context-aware mobile app recommendations. While Frappe performs very well based on usage-centric evaluation metrics insights from the small-scale study reveal some negative user experiences. Our results point to a number of actionable lessons learned specifically related to designing, deploying and evaluating mobile context-aware RS in-the-wild with real users.
In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information from long-term interactions limits their effectiveness in applications requiring sustained personalization. External memory mechanisms have been proposed to address this limitation, enabling LLMs to maintain conversational continuity. However, existing approaches struggle with two key challenges. First, rigid memory granularity fails to capture the natural semantic structure of conversations, leading to fragmented and incomplete representations. Second, fixed retrieval mechanisms cannot adapt to diverse dialogue contexts and user interaction patterns. In this work, we propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections: (1) Prospective Reflection, which dynamically summarizes interactions across granularities-utterances, turns, and sessions-into a personalized memory bank for effective future retrieval, and (2) Retrospective Reflection, which iteratively refines the retrieval in an online reinforcement learning (RL) manner based on LLMs' cited evidence. Experiments show that RMM demonstrates consistent improvement across various metrics and benchmarks. For example, RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
The Pursuit of Empathy: Evaluating Small Language Models for PTSD Dialogue Support
Can small language models with 0.5B to 5B parameters meaningfully engage in trauma-informed, empathetic dialogue for individuals with PTSD? We address this question by introducing TIDE, a dataset of 10,000 two-turn dialogues spanning 500 diverse PTSD client personas and grounded in a three-factor empathy model: emotion recognition, distress normalization, and supportive reflection. All scenarios and reference responses were reviewed for realism and trauma sensitivity by a clinical psychologist specializing in PTSD. We evaluate eight small language models before and after fine-tuning, comparing their outputs to a frontier model (Claude Sonnet 3.5). Our IRB-approved human evaluation and automatic metrics show that fine-tuning generally improves perceived empathy, but gains are highly scenario- and user-dependent, with smaller models facing an empathy ceiling. Demographic analysis shows older adults value distress validation and graduate-educated users prefer nuanced replies, while gender effects are minimal. We highlight the limitations of automatic metrics and the need for context- and user-aware system design. Our findings, along with the planned release of TIDE, provide a foundation for building safe, resource-efficient, and ethically sound empathetic AI to supplement, not replace, clinical mental health care.
Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting
Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a "rewrite-then-edit" process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers.
Chain-Talker: Chain Understanding and Rendering for Empathetic Conversational Speech Synthesis
Conversational Speech Synthesis (CSS) aims to align synthesized speech with the emotional and stylistic context of user-agent interactions to achieve empathy. Current generative CSS models face interpretability limitations due to insufficient emotional perception and redundant discrete speech coding. To address the above issues, we present Chain-Talker, a three-stage framework mimicking human cognition: Emotion Understanding derives context-aware emotion descriptors from dialogue history; Semantic Understanding generates compact semantic codes via serialized prediction; and Empathetic Rendering synthesizes expressive speech by integrating both components. To support emotion modeling, we develop CSS-EmCap, an LLM-driven automated pipeline for generating precise conversational speech emotion captions. Experiments on three benchmark datasets demonstrate that Chain-Talker produces more expressive and empathetic speech than existing methods, with CSS-EmCap contributing to reliable emotion modeling. The code and demos are available at: https://github.com/AI-S2-Lab/Chain-Talker.
SIGMA: Selective Gated Mamba for Sequential Recommendation
In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named Selective Gated Mamba (SIGMA) for Sequential Recommendation. This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at https://github.com/ziwliu-cityu/SIMGA to ease reproducibility.
Multi-Objective Task-Aware Predictor for Image-Text Alignment
Evaluating image-text alignment while reflecting human preferences across multiple aspects is a significant issue for the development of reliable vision-language applications. It becomes especially crucial in real-world scenarios where multiple valid descriptions exist depending on contexts or user needs. However, research progress is hindered by the lack of comprehensive benchmarks and existing evaluation predictors lacking at least one of these key properties: (1) Alignment with human judgments, (2) Long-sequence processing, (3) Inference efficiency, and (4) Applicability to multi-objective scoring. To address these challenges, we propose a plug-and-play architecture to build a robust predictor, MULTI-TAP (Multi-Objective Task-Aware Predictor), capable of both multi and single-objective scoring. MULTI-TAP can produce a single overall score, utilizing a reward head built on top of a large vision-language model (LVLMs). We show that MULTI-TAP is robust in terms of application to different LVLM architectures, achieving significantly higher performance than existing metrics and even on par with the GPT-4o-based predictor, G-VEval, with a smaller size (7-8B). By training a lightweight ridge regression layer on the frozen hidden states of a pre-trained LVLM, MULTI-TAP can produce fine-grained scores for multiple human-interpretable objectives. MULTI-TAP performs better than VisionREWARD, a high-performing multi-objective reward model, in both performance and efficiency on multi-objective benchmarks and our newly released text-image-to-text dataset, EYE4ALL. Our new dataset, consisting of chosen/rejected human preferences (EYE4ALLPref) and human-annotated fine-grained scores across seven dimensions (EYE4ALLMulti), can serve as a foundation for developing more accessible AI systems by capturing the underlying preferences of users, including blind and low-vision (BLV) individuals.
Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems that extend beyond the capabilities of standalone models. By empowering LLMs to perceive external environments, integrate multimodal information, and interact with various tools, these agentic systems exhibit greater autonomy and adaptability across complex tasks. This evolution brings new opportunities to recommender systems (RS): LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations, potentially reshaping the user experience and broadening the application scope of RS. Despite promising early results, fundamental challenges remain, including how to effectively incorporate external knowledge, balance autonomy with controllability, and evaluate performance in dynamic, multimodal settings. In this perspective paper, we first present a systematic analysis of LLM-ARS: (1) clarifying core concepts and architectures; (2) highlighting how agentic capabilities -- such as planning, memory, and multimodal reasoning -- can enhance recommendation quality; and (3) outlining key research questions in areas such as safety, efficiency, and lifelong personalization. We also discuss open problems and future directions, arguing that LLM-ARS will drive the next wave of RS innovation. Ultimately, we foresee a paradigm shift toward intelligent, autonomous, and collaborative recommendation experiences that more closely align with users' evolving needs and complex decision-making processes.
KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures
Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.
Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation
Sequential recommendation (SR) systems have evolved significantly over the past decade, transitioning from traditional collaborative filtering to deep learning approaches and, more recently, to large language models (LLMs). While the adoption of LLMs has driven substantial advancements, these models inherently lack collaborative filtering information, relying primarily on textual content data neglecting other modalities and thus failing to achieve optimal recommendation performance. To address this limitation, we propose Molar, a Multimodal large language sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively. Molar employs an MLLM to generate unified item representations from both textual and non-textual data, facilitating comprehensive multimodal modeling and enriching item embeddings. Additionally, it incorporates collaborative filtering signals through a post-alignment mechanism, which aligns user representations from content-based and ID-based models, ensuring precise personalization and robust performance. By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy. Extensive experiments validate that Molar significantly outperforms traditional and LLM-based baselines, highlighting its strength in utilizing multimodal data and collaborative signals for sequential recommendation tasks. The source code is available at https://anonymous.4open.science/r/Molar-8B06/.
Click2Mask: Local Editing with Dynamic Mask Generation
Recent advancements in generative models have revolutionized image generation and editing, making these tasks accessible to non-experts. This paper focuses on local image editing, particularly the task of adding new content to a loosely specified area. Existing methods often require a precise mask or a detailed description of the location, which can be cumbersome and prone to errors. We propose Click2Mask, a novel approach that simplifies the local editing process by requiring only a single point of reference (in addition to the content description). A mask is dynamically grown around this point during a Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based semantic loss. Click2Mask surpasses the limitations of segmentation-based and fine-tuning dependent methods, offering a more user-friendly and contextually accurate solution. Our experiments demonstrate that Click2Mask not only minimizes user effort but also delivers competitive or superior local image manipulation results compared to SoTA methods, according to both human judgement and automatic metrics. Key contributions include the simplification of user input, the ability to freely add objects unconstrained by existing segments, and the integration potential of our dynamic mask approach within other editing methods.
Preference-Aware Memory Update for Long-Term LLM Agents
One of the key factors influencing the reasoning capabilities of LLM-based agents is their ability to leverage long-term memory. Integrating long-term memory mechanisms allows agents to make informed decisions grounded in historical interactions. While recent advances have significantly improved the storage and retrieval components, by encoding memory into dense vectors for similarity search or organizing memory as structured knowledge graphs most existing approaches fall short in memory updating. In particular, they lack mechanisms for dynamically refining preference memory representations in response to evolving user behaviors and contexts. To address this gap, we propose a Preference-Aware Memory Update Mechanism (PAMU) that enables dynamic and personalized memory refinement. By integrating sliding window averages (SW) with exponential moving averages (EMA), PAMU constructs a fused preference-aware representation that captures both short-term fluctuations and long-term user tendencies. We conduct experiments on five task scenarios of the LoCoMo dataset, and the results show that our mechanism can significantly improve the output quality of LLM in five baselines, validating its effectiveness in long-term conversations.
RemoteReasoner: Towards Unifying Geospatial Reasoning Workflow
Remote sensing imagery presents vast, inherently unstructured spatial data, necessitating sophisticated reasoning to interpret complex user intents and contextual relationships beyond simple recognition tasks. In this paper, we aim to construct an Earth observation workflow to handle complex queries by reasoning about spatial context and user intent. As a reasoning workflow, it should autonomously explore and construct its own inference paths, rather than being confined to predefined ground-truth sequences. Ideally, its architecture ought to be unified yet generalized, possessing capabilities to perform diverse reasoning tasks through one model without requiring additional fine-tuning. Existing remote sensing approaches rely on supervised fine-tuning paradigms and task-specific heads, limiting both autonomous reasoning and unified generalization. To this end, we propose RemoteReasoner, a unified workflow for geospatial reasoning. The design of RemoteReasoner integrates a multi-modal large language model (MLLM) for interpreting user instructions and localizing targets, together with task transformation strategies that enable multi-granularity tasks, including object-, region-, and pixel-level. In contrast to existing methods, our framework is trained with reinforcement learning (RL) to endow the MLLM sufficient reasoning autonomy. At the inference stage, our transformation strategies enable diverse task output formats without requiring task-specific decoders or further fine-tuning. Experiments demonstrated that RemoteReasoner achieves state-of-the-art (SOTA) performance across multi-granularity reasoning tasks. Furthermore, it retains the MLLM's inherent generalization capability, demonstrating robust performance on unseen tasks and out-of-distribution categories.
Question rewriting? Assessing its importance for conversational question answering
In conversational question answering, systems must correctly interpret the interconnected interactions and generate knowledgeable answers, which may require the retrieval of relevant information from a background repository. Recent approaches to this problem leverage neural language models, although different alternatives can be considered in terms of modules for (a) representing user questions in context, (b) retrieving the relevant background information, and (c) generating the answer. This work presents a conversational question answering system designed specifically for the Search-Oriented Conversational AI (SCAI) shared task, and reports on a detailed analysis of its question rewriting module. In particular, we considered different variations of the question rewriting module to evaluate the influence on the subsequent components, and performed a careful analysis of the results obtained with the best system configuration. Our system achieved the best performance in the shared task and our analysis emphasizes the importance of the conversation context representation for the overall system performance.
Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.
Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning
While enabling large language models to implement function calling (known as APIs) can greatly enhance the performance of LLMs, function calling is still a challenging task due to the complicated relations between different APIs, especially in a context-learning setting without fine-tuning. This paper proposes a simple yet controllable target-driven approach called Reverse Chain to empower LLMs with capabilities to use external APIs with only prompts. Given that most open-source LLMs have limited tool-use or tool-plan capabilities, LLMs in Reverse Chain are only employed to implement simple tasks, e.g., API selection and argument completion, and a generic rule is employed to implement a controllable multiple functions calling. In this generic rule, after selecting a final API to handle a given task via LLMs, we first ask LLMs to fill the required arguments from user query and context. Some missing arguments could be further completed by letting LLMs select another API based on API description before asking user. This process continues until a given task is completed. Extensive numerical experiments indicate an impressive capability of Reverse Chain on implementing multiple function calling. Interestingly enough, the experiments also reveal that tool-use capabilities of the existing LLMs, e.g., ChatGPT, can be greatly improved via Reverse Chain.
Building Living Software Systems with Generative & Agentic AI
This paper is an opinion paper that looks at the future of computing in the age of Generative \& Agentic AI. Current software systems are static and inflexible, leading to significant challenges in translating human goals into computational actions. "Living software systems" powered by generative AI offer a solution to this fundamental problem in computing. Traditional software development involves multiple layers of imperfect translation, from business requirements to code, resulting in rigid systems that struggle to adapt to changing user needs and contexts. Generative AI, particularly large language models, can serve as a universal translator between human intent and computer operations. This approach enables the creation of more flexible, context-aware systems that can dynamically evolve to meet user goals. Two pathways for implementing living software systems are explored: using generative AI to accelerate traditional software development, and leveraging agentic AI to create truly adaptive systems. New skills like Prompt Engineering are necessary. By reimagining software as a living, adaptable entity, we can create computing interfaces that are more intuitive, powerful, and responsive to human needs.
Generative Expressive Conversational Speech Synthesis
Conversational Speech Synthesis (CSS) aims to express a target utterance with the proper speaking style in a user-agent conversation setting. Existing CSS methods employ effective multi-modal context modeling techniques to achieve empathy understanding and expression. However, they often need to design complex network architectures and meticulously optimize the modules within them. In addition, due to the limitations of small-scale datasets containing scripted recording styles, they often fail to simulate real natural conversational styles. To address the above issues, we propose a novel generative expressive CSS system, termed GPT-Talker.We transform the multimodal information of the multi-turn dialogue history into discrete token sequences and seamlessly integrate them to form a comprehensive user-agent dialogue context. Leveraging the power of GPT, we predict the token sequence, that includes both semantic and style knowledge, of response for the agent. After that, the expressive conversational speech is synthesized by the conversation-enriched VITS to deliver feedback to the user.Furthermore, we propose a large-scale Natural CSS Dataset called NCSSD, that includes both naturally recorded conversational speech in improvised styles and dialogues extracted from TV shows. It encompasses both Chinese and English languages, with a total duration of 236 hours.We conducted comprehensive experiments on the reliability of the NCSSD and the effectiveness of our GPT-Talker. Both subjective and objective evaluations demonstrate that our model outperforms other state-of-the-art CSS systems significantly in terms of naturalness and expressiveness. The Code, Dataset, and Pre-trained Model are available at: https://github.com/AI-S2-Lab/GPT-Talker.
Ad-load Balancing via Off-policy Learning in a Content Marketplace
Ad-load balancing is a critical challenge in online advertising systems, particularly in the context of social media platforms, where the goal is to maximize user engagement and revenue while maintaining a satisfactory user experience. This requires the optimization of conflicting objectives, such as user satisfaction and ads revenue. Traditional approaches to ad-load balancing rely on static allocation policies, which fail to adapt to changing user preferences and contextual factors. In this paper, we present an approach that leverages off-policy learning and evaluation from logged bandit feedback. We start by presenting a motivating analysis of the ad-load balancing problem, highlighting the conflicting objectives between user satisfaction and ads revenue. We emphasize the nuances that arise due to user heterogeneity and the dependence on the user's position within a session. Based on this analysis, we define the problem as determining the optimal ad-load for a particular feed fetch. To tackle this problem, we propose an off-policy learning framework that leverages unbiased estimators such as Inverse Propensity Scoring (IPS) and Doubly Robust (DR) to learn and estimate the policy values using offline collected stochastic data. We present insights from online A/B experiments deployed at scale across over 80 million users generating over 200 million sessions, where we find statistically significant improvements in both user satisfaction metrics and ads revenue for the platform.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Contrastive Learning of User Behavior Sequence for Context-Aware Document Ranking
Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a user's behavior. In reality, it is highly variable: user's queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in user's behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.
Interpreting User Requests in the Context of Natural Language Standing Instructions
Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.
Contextual Multilingual Spellchecker for User Queries
Spellchecking is one of the most fundamental and widely used search features. Correcting incorrectly spelled user queries not only enhances the user experience but is expected by the user. However, most widely available spellchecking solutions are either lower accuracy than state-of-the-art solutions or too slow to be used for search use cases where latency is a key requirement. Furthermore, most innovative recent architectures focus on English and are not trained in a multilingual fashion and are trained for spell correction in longer text, which is a different paradigm from spell correction for user queries, where context is sparse (most queries are 1-2 words long). Finally, since most enterprises have unique vocabularies such as product names, off-the-shelf spelling solutions fall short of users' needs. In this work, we build a multilingual spellchecker that is extremely fast and scalable and that adapts its vocabulary and hence speller output based on a specific product's needs. Furthermore, our speller out-performs general purpose spellers by a wide margin on in-domain datasets. Our multilingual speller is used in search in Adobe products, powering autocomplete in various applications.
Contextual Font Recommendations based on User Intent
Adobe Fonts has a rich library of over 20,000 unique fonts that Adobe users utilize for creating graphics, posters, composites etc. Due to the nature of the large library, knowing what font to select can be a daunting task that requires a lot of experience. For most users in Adobe products, especially casual users of Adobe Express, this often means choosing the default font instead of utilizing the rich and diverse fonts available. In this work, we create an intent-driven system to provide contextual font recommendations to users to aid in their creative journey. Our system takes in multilingual text input and recommends suitable fonts based on the user's intent. Based on user entitlements, the mix of free and paid fonts is adjusted. The feature is currently used by millions of Adobe Express users with a CTR of >25%.
Federated Linear Contextual Bandits with User-level Differential Privacy
This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as ROBIN and show that it is near-optimal in terms of the number of clients M and the privacy budget varepsilon by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level (varepsilon,delta)-LDP must suffer a regret blow-up factor at least min{1/varepsilon,M} or min{1/varepsilon,M} under different conditions.
Controllable Contextualized Image Captioning: Directing the Visual Narrative through User-Defined Highlights
Contextualized Image Captioning (CIC) evolves traditional image captioning into a more complex domain, necessitating the ability for multimodal reasoning. It aims to generate image captions given specific contextual information. This paper further introduces a novel domain of Controllable Contextualized Image Captioning (Ctrl-CIC). Unlike CIC, which solely relies on broad context, Ctrl-CIC accentuates a user-defined highlight, compelling the model to tailor captions that resonate with the highlighted aspects of the context. We present two approaches, Prompting-based Controller (P-Ctrl) and Recalibration-based Controller (R-Ctrl), to generate focused captions. P-Ctrl conditions the model generation on highlight by prepending captions with highlight-driven prefixes, whereas R-Ctrl tunes the model to selectively recalibrate the encoder embeddings for highlighted tokens. Additionally, we design a GPT-4V empowered evaluator to assess the quality of the controlled captions alongside standard assessment methods. Extensive experimental results demonstrate the efficient and effective controllability of our method, charting a new direction in achieving user-adaptive image captioning. Code is available at https://github.com/ShunqiM/Ctrl-CIC .
GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems
Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.
Fin-ExBERT: User Intent based Text Extraction in Financial Context using Graph-Augmented BERT and trainable Plugin
Financial dialogue transcripts pose a unique challenge for sentence-level information extraction due to their informal structure, domain-specific vocabulary, and variable intent density. We introduce Fin-ExBERT, a lightweight and modular framework for extracting user intent-relevant sentences from annotated financial service calls. Our approach builds on a domain-adapted BERT (Bidirectional Encoder Representations from Transformers) backbone enhanced with LoRA (Low-Rank Adaptation) adapters, enabling efficient fine-tuning using limited labeled data. We propose a two-stage training strategy with progressive unfreezing: initially training a classifier head while freezing the backbone, followed by gradual fine-tuning of the entire model with differential learning rates. To ensure robust extraction under uncertainty, we adopt a dynamic thresholding strategy based on probability curvature (elbow detection), avoiding fixed cutoff heuristics. Empirical results show strong precision and F1 performance on real-world transcripts, with interpretable output suitable for downstream auditing and question-answering workflows. The full framework supports batched evaluation, visualization, and calibrated export, offering a deployable solution for financial dialogue mining.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
Participation and Division of Labor in User-Driven Algorithm Audits: How Do Everyday Users Work together to Surface Algorithmic Harms?
Recent years have witnessed an interesting phenomenon in which users come together to interrogate potentially harmful algorithmic behaviors they encounter in their everyday lives. Researchers have started to develop theoretical and empirical understandings of these user driven audits, with a hope to harness the power of users in detecting harmful machine behaviors. However, little is known about user participation and their division of labor in these audits, which are essential to support these collective efforts in the future. Through collecting and analyzing 17,984 tweets from four recent cases of user driven audits, we shed light on patterns of user participation and engagement, especially with the top contributors in each case. We also identified the various roles user generated content played in these audits, including hypothesizing, data collection, amplification, contextualization, and escalation. We discuss implications for designing tools to support user driven audits and users who labor to raise awareness of algorithm bias.
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion
Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.
Building astroBERT, a language model for Astronomy & Astrophysics
The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned.
Guided Profile Generation Improves Personalization with LLMs
In modern commercial systems, including Recommendation, Ranking, and E-Commerce platforms, there is a trend towards improving customer experiences by incorporating Personalization context as input into Large Language Models (LLMs). However, LLMs often struggle to effectively parse and utilize sparse and complex personal context without additional processing or contextual enrichment, underscoring the need for more sophisticated context understanding mechanisms. In this work, we propose Guided Profile Generation (GPG), a general method designed to generate personal profiles in natural language. As is observed, intermediate guided profile generation enables LLMs to summarize, and extract the important, distinctive features from the personal context into concise, descriptive sentences, precisely tailoring their generation more closely to an individual's unique habits and preferences. Our experimental results show that GPG improves LLM's personalization ability across different tasks, for example, it increases 37% accuracy in predicting personal preference compared to directly feeding the LLMs with raw personal context.
Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track
Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.
InsTALL: Context-aware Instructional Task Assistance with Multi-modal Large Language Models
The improved competence of generative models can help building multi-modal virtual assistants that leverage modalities beyond language. By observing humans performing multi-step tasks, one can build assistants that have situational awareness of actions and tasks being performed, enabling them to cater assistance based on this understanding. In this paper, we develop a Context-aware Instructional Task Assistant with Multi-modal Large Language Models (InsTALL) that leverages an online visual stream (e.g. a user's screen share or video recording) and responds in real-time to user queries related to the task at hand. To enable useful assistance, InsTALL 1) trains a multi-modal model on task videos and paired textual data, and 2) automatically extracts task graph from video data and leverages it at training and inference time. We show InsTALL achieves state-of-the-art performance across proposed sub-tasks considered for multimodal activity understanding -- task recognition (TR), action recognition (AR), next action prediction (AP), and plan prediction (PP) -- and outperforms existing baselines on two novel sub-tasks related to automatic error identification.
Aggregated Contextual Transformations for High-Resolution Image Inpainting
State-of-the-art image inpainting approaches can suffer from generating distorted structures and blurry textures in high-resolution images (e.g., 512x512). The challenges mainly drive from (1) image content reasoning from distant contexts, and (2) fine-grained texture synthesis for a large missing region. To overcome these two challenges, we propose an enhanced GAN-based model, named Aggregated COntextual-Transformation GAN (AOT-GAN), for high-resolution image inpainting. Specifically, to enhance context reasoning, we construct the generator of AOT-GAN by stacking multiple layers of a proposed AOT block. The AOT blocks aggregate contextual transformations from various receptive fields, allowing to capture both informative distant image contexts and rich patterns of interest for context reasoning. For improving texture synthesis, we enhance the discriminator of AOT-GAN by training it with a tailored mask-prediction task. Such a training objective forces the discriminator to distinguish the detailed appearances of real and synthesized patches, and in turn, facilitates the generator to synthesize clear textures. Extensive comparisons on Places2, the most challenging benchmark with 1.8 million high-resolution images of 365 complex scenes, show that our model outperforms the state-of-the-art by a significant margin in terms of FID with 38.60% relative improvement. A user study including more than 30 subjects further validates the superiority of AOT-GAN. We further evaluate the proposed AOT-GAN in practical applications, e.g., logo removal, face editing, and object removal. Results show that our model achieves promising completions in the real world. We release code and models in https://github.com/researchmm/AOT-GAN-for-Inpainting.
HiconAgent: History Context-aware Policy Optimization for GUI Agents
Graphical User Interface (GUI) agents require effective use of historical context to perform sequential navigation tasks. While incorporating past actions and observations can improve decision making, naive use of full history leads to excessive computational overhead and distraction from irrelevant information. To address this, we introduce HiconAgent, a GUI agent trained with History Context-aware Policy Optimization (HCPO) for efficient and effective utilization of historical information. HCPO optimizes history usage in both sampling and policy updates through two complementary components: (1) Dynamic Context Sampling (DCS) presents the agent with variable length histories during sampling, enabling adaptive use of the most relevant context; (2) Anchor-guided History Compression (AHC) refines the policy update phase with a dual branch strategy where the compressed branch removes history observations while keeping history actions as information flow anchors. The compressed and uncompressed branches are coupled through a history-enhanced alignment loss to enforce consistent history usage while maintaining efficiency. Experiments on mainstream GUI navigation benchmarks demonstrate strong performance. Despite being smaller, HiconAgent-3B outperforms GUI-R1-7B by +8.46 percent grounding accuracy and +11.32 percent step success rate on GUI-Odyssey, while achieving comparable results on AndroidControl and AITW with up to 2.47x computational speedup and 60 percent FLOPs reduction.
CalliReader: Contextualizing Chinese Calligraphy via an Embedding-Aligned Vision-Language Model
Chinese calligraphy, a UNESCO Heritage, remains computationally challenging due to visual ambiguity and cultural complexity. Existing AI systems fail to contextualize their intricate scripts, because of limited annotated data and poor visual-semantic alignment. We propose CalliReader, a vision-language model (VLM) that solves the Chinese Calligraphy Contextualization (CC^2) problem through three innovations: (1) character-wise slicing for precise character extraction and sorting, (2) CalliAlign for visual-text token compression and alignment, (3) embedding instruction tuning (e-IT) for improving alignment and addressing data scarcity. We also build CalliBench, the first benchmark for full-page calligraphic contextualization, addressing three critical issues in previous OCR and VQA approaches: fragmented context, shallow reasoning, and hallucination. Extensive experiments including user studies have been conducted to verify our CalliReader's superiority to other state-of-the-art methods and even human professionals in page-level calligraphy recognition and interpretation, achieving higher accuracy while reducing hallucination. Comparisons with reasoning models highlight the importance of accurate recognition as a prerequisite for reliable comprehension. Quantitative analyses validate CalliReader's efficiency; evaluations on document and real-world benchmarks confirm its robust generalization ability.
Context Diffusion: In-Context Aware Image Generation
We propose Context Diffusion, a diffusion-based framework that enables image generation models to learn from visual examples presented in context. Recent work tackles such in-context learning for image generation, where a query image is provided alongside context examples and text prompts. However, the quality and fidelity of the generated images deteriorate when the prompt is not present, demonstrating that these models are unable to truly learn from the visual context. To address this, we propose a novel framework that separates the encoding of the visual context and preserving the structure of the query images. This results in the ability to learn from the visual context and text prompts, but also from either one of them. Furthermore, we enable our model to handle few-shot settings, to effectively address diverse in-context learning scenarios. Our experiments and user study demonstrate that Context Diffusion excels in both in-domain and out-of-domain tasks, resulting in an overall enhancement in image quality and fidelity compared to counterpart models.
Accumulating Context Changes the Beliefs of Language Models
Language model (LM) assistants are increasingly used in applications such as brainstorming and research. Improvements in memory and context size have allowed these models to become more autonomous, which has also resulted in more text accumulation in their context windows without explicit user intervention. This comes with a latent risk: the belief profiles of models -- their understanding of the world as manifested in their responses or actions -- may silently change as context accumulates. This can lead to subtly inconsistent user experiences, or shifts in behavior that deviate from the original alignment of the models. In this paper, we explore how accumulating context by engaging in interactions and processing text -- talking and reading -- can change the beliefs of language models, as manifested in their responses and behaviors. Our results reveal that models' belief profiles are highly malleable: GPT-5 exhibits a 54.7% shift in its stated beliefs after 10 rounds of discussion about moral dilemmas and queries about safety, while Grok 4 shows a 27.2% shift on political issues after reading texts from the opposing position. We also examine models' behavioral changes by designing tasks that require tool use, where each tool selection corresponds to an implicit belief. We find that these changes align with stated belief shifts, suggesting that belief shifts will be reflected in actual behavior in agentic systems. Our analysis exposes the hidden risk of belief shift as models undergo extended sessions of talking or reading, rendering their opinions and actions unreliable.
Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases. Leveraging LCLMs' ability to natively ingest and process entire corpora of information offers numerous advantages. It enhances user-friendliness by eliminating the need for specialized knowledge of tools, provides robust end-to-end modeling that minimizes cascading errors in complex pipelines, and allows for the application of sophisticated prompting techniques across the entire system. To assess this paradigm shift, we introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning. Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks. However, LCLMs still face challenges in areas like compositional reasoning that are required in SQL-like tasks. Notably, prompting strategies significantly influence performance, emphasizing the need for continued research as context lengths grow. Overall, LOFT provides a rigorous testing ground for LCLMs, showcasing their potential to supplant existing paradigms and tackle novel tasks as model capabilities scale.
In-Context Learning for Seismic Data Processing
Seismic processing transforms raw data into subsurface images essential for geophysical applications. Traditional methods face challenges, such as noisy data, and manual parameter tuning, among others. Recently deep learning approaches have proposed alternative solutions to some of these problems. However, important challenges of existing deep learning approaches are spatially inconsistent results across neighboring seismic gathers and lack of user-control. We address these limitations by introducing ContextSeisNet, an in-context learning model, to seismic demultiple processing. Our approach conditions predictions on a support set of spatially related example pairs: neighboring common-depth point gathers from the same seismic line and their corresponding labels. This allows the model to learn task-specific processing behavior at inference time by observing how similar gathers should be processed, without any retraining. This method provides both flexibility through user-defined examples and improved lateral consistency across seismic lines. On synthetic data, ContextSeisNet outperforms a U-Net baseline quantitatively and demonstrates enhanced spatial coherence between neighboring gathers. On field data, our model achieves superior lateral consistency compared to both traditional Radon demultiple and the U-Net baseline. Relative to the U-Net, ContextSeisNet also delivers improved near-offset performance and more complete multiple removal. Notably, ContextSeisNet achieves comparable field data performance despite being trained on 90% less data, demonstrating substantial data efficiency. These results establish ContextSeisNet as a practical approach for spatially consistent seismic demultiple with potential applicability to other seismic processing tasks.
DailyLLM: Context-Aware Activity Log Generation Using Multi-Modal Sensors and LLMs
Rich and context-aware activity logs facilitate user behavior analysis and health monitoring, making them a key research focus in ubiquitous computing. The remarkable semantic understanding and generation capabilities of Large Language Models (LLMs) have recently created new opportunities for activity log generation. However, existing methods continue to exhibit notable limitations in terms of accuracy, efficiency, and semantic richness. To address these challenges, we propose DailyLLM. To the best of our knowledge, this is the first log generation and summarization system that comprehensively integrates contextual activity information across four dimensions: location, motion, environment, and physiology, using only sensors commonly available on smartphones and smartwatches. To achieve this, DailyLLM introduces a lightweight LLM-based framework that integrates structured prompting with efficient feature extraction to enable high-level activity understanding. Extensive experiments demonstrate that DailyLLM outperforms state-of-the-art (SOTA) log generation methods and can be efficiently deployed on personal computers and Raspberry Pi. Utilizing only a 1.5B-parameter LLM model, DailyLLM achieves a 17% improvement in log generation BERTScore precision compared to the 70B-parameter SOTA baseline, while delivering nearly 10x faster inference speed.
LLM Content Moderation and User Satisfaction: Evidence from Response Refusals in Chatbot Arena
LLM safety and ethical alignment are widely discussed, but the impact of content moderation on user satisfaction remains underexplored. To address this, we analyze nearly 50,000 Chatbot Arena response-pairs using a novel fine-tuned RoBERTa model, that we trained on hand-labeled data to disentangle refusals due to ethical concerns from other refusals due to technical disabilities or lack of information. Our findings reveal a significant refusal penalty on content moderation, with users choosing ethical-based refusals roughly one-fourth as often as their preferred LLM response compared to standard responses. However, the context and phrasing play critical roles: refusals on highly sensitive prompts, such as illegal content, achieve higher win rates than less sensitive ethical concerns, and longer responses closely aligned with the prompt perform better. These results emphasize the need for nuanced moderation strategies that balance ethical safeguards with user satisfaction. Moreover, we find that the refusal penalty is notably lower in evaluations using the LLM-as-a-Judge method, highlighting discrepancies between user and automated assessments.
MeanCache: User-Centric Semantic Caching for LLM Web Services
Large Language Models (LLMs) like ChatGPT and Llama have revolutionized natural language processing and search engine dynamics. However, these models incur exceptionally high computational costs. For instance, GPT-3 consists of 175 billion parameters, where inference demands billions of floating-point operations. Caching is a natural solution to reduce LLM inference costs on repeated queries, which constitute about 31% of the total queries. However, existing caching methods are incapable of finding semantic similarities among LLM queries nor do they operate on contextual queries, leading to unacceptable false hit-and-miss rates. This paper introduces MeanCache, a user-centric semantic cache for LLM-based services that identifies semantically similar queries to determine cache hit or miss. Using MeanCache, the response to a user's semantically similar query can be retrieved from a local cache rather than re-querying the LLM, thus reducing costs, service provider load, and environmental impact. MeanCache leverages Federated Learning (FL) to collaboratively train a query similarity model without violating user privacy. By placing a local cache in each user's device and using FL, MeanCache reduces the latency and costs and enhances model performance, resulting in lower false hit rates. MeanCache also encodes context chains for every cached query, offering a simple yet highly effective mechanism to discern contextual query responses from standalone. Our experiments benchmarked against the state-of-the-art caching method, reveal that MeanCache attains an approximately 17% higher F-score and a 20% increase in precision during semantic cache hit-and-miss decisions while performing even better on contextual queries. It also reduces the storage requirement by 83% and accelerates semantic cache hit-and-miss decisions by 11%.
Smart Multi-Modal Search: Contextual Sparse and Dense Embedding Integration in Adobe Express
As user content and queries become increasingly multi-modal, the need for effective multi-modal search systems has grown. Traditional search systems often rely on textual and metadata annotations for indexed images, while multi-modal embeddings like CLIP enable direct search using text and image embeddings. However, embedding-based approaches face challenges in integrating contextual features such as user locale and recency. Building a scalable multi-modal search system requires fine-tuning several components. This paper presents a multi-modal search architecture and a series of AB tests that optimize embeddings and multi-modal technologies in Adobe Express template search. We address considerations such as embedding model selection, the roles of embeddings in matching and ranking, and the balance between dense and sparse embeddings. Our iterative approach demonstrates how utilizing sparse, dense, and contextual features enhances short and long query search, significantly reduces null rates (over 70\%), and increases click-through rates (CTR). Our findings provide insights into developing robust multi-modal search systems, thereby enhancing relevance for complex queries.
Contextualizing the Limits of Model & Evaluation Dataset Curation on Semantic Similarity Classification Tasks
This paper demonstrates how the limitations of pre-trained models and open evaluation datasets factor into assessing the performance of binary semantic similarity classification tasks. As (1) end-user-facing documentation around the curation of these datasets and pre-trained model training regimes is often not easily accessible and (2) given the lower friction and higher demand to quickly deploy such systems in real-world contexts, our study reinforces prior work showing performance disparities across datasets, embedding techniques and distance metrics, while highlighting the importance of understanding how data is collected, curated and analyzed in semantic similarity classification.
Contextually Customized Video Summaries via Natural Language
The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.
GUI-AIMA: Aligning Intrinsic Multimodal Attention with a Context Anchor for GUI Grounding
Graphical user interface (GUI) grounding is a key function of computer-use agents, which maps natural-language instructions to actionable screen regions. Existing approaches based on Multimodal Large Language Models (MLLMs) typically formulate it as a text-based coordinate generation task, yet directly generating precise coordinates from visual inputs remains challenging and computationally intensive. An intuitive way to implement GUI grounding is to first select visual patches relevant to the instructions and then determine the precise click location within those patches. Based on the observations that general MLLMs have some native grounding capability, nested within their attentions, we propose GUI-AIMA, an attention-based and coordinate-free supervised fine-tuning framework for efficient GUI grounding. GUI-AIMA aligns the intrinsic multimodal attention of MLLMs with patch-wise grounding signals. These signals are calculated adaptively for diverse user instructions by multi-head aggregation on simplified query-visual attention matrices. Besides, its coordinate-free manner can easily integrate a plug-and-play zoom-in stage. GUI-AIMA-3B was trained with only 85k screenshots, demonstrating exceptional data efficiency and verifying that light training can trigger the native grounding capability of MLLMs. It achieves state-of-the-art performance among 3B models, attaining an average accuracy of 58.6% on ScreenSpot-Pro and 62.2% on OSWorld-G. Project page: https://github.com/sjz5202/GUI-AIMA
Auto-ICL: In-Context Learning without Human Supervision
In the era of Large Language Models (LLMs), human-computer interaction has evolved towards natural language, offering unprecedented flexibility. Despite this, LLMs are heavily reliant on well-structured prompts to function efficiently within the realm of In-Context Learning. Vanilla In-Context Learning relies on human-provided contexts, such as labeled examples, explicit instructions, or other guiding mechanisms that shape the model's outputs. To address this challenge, our study presents a universal framework named Automatic In-Context Learning. Upon receiving a user's request, we ask the model to independently generate examples, including labels, instructions, or reasoning pathways. The model then leverages this self-produced context to tackle the given problem. Our approach is universally adaptable and can be implemented in any setting where vanilla In-Context Learning is applicable. We demonstrate that our method yields strong performance across a range of tasks, standing up well when compared to existing methods.
In-context Ranking Preference Optimization
Recent developments in Direct Preference Optimization (DPO) allow large language models (LLMs) to function as implicit ranking models by maximizing the margin between preferred and non-preferred responses. In practice, user feedback on such lists typically involves identifying a few relevant items in context rather than providing detailed pairwise comparisons for every possible item pair. Moreover, many complex information retrieval tasks, such as conversational agents and summarization systems, critically depend on ranking the highest-quality outputs at the top, emphasizing the need to support natural and flexible forms of user feedback. To address the challenge of limited and sparse pairwise feedback in the in-context setting, we propose an In-context Ranking Preference Optimization (IRPO) framework that directly optimizes LLMs based on ranking lists constructed during inference. To further capture flexible forms of feedback, IRPO extends the DPO objective by incorporating both the relevance of items and their positions in the list. Modeling these aspects jointly is non-trivial, as ranking metrics are inherently discrete and non-differentiable, making direct optimization difficult. To overcome this, IRPO introduces a differentiable objective based on positional aggregation of pairwise item preferences, enabling effective gradient-based optimization of discrete ranking metrics. We further provide theoretical insights showing that IRPO (i) automatically emphasizes items with greater disagreement between the model and the reference ranking, and (ii) links its gradient to an importance sampling estimator, yielding an unbiased estimator with reduced variance. Empirical results show IRPO outperforms standard DPO approaches in ranking performance, highlighting its effectiveness in aligning LLMs with direct in-context ranking preferences.
On Synthesizing Data for Context Attribution in Question Answering
Question Answering (QA) accounts for a significant portion of LLM usage "in the wild". However, LLMs sometimes produce false or misleading responses, also known as "hallucinations". Therefore, grounding the generated answers in contextually provided information -- i.e., providing evidence for the generated text -- is paramount for LLMs' trustworthiness. Providing this information is the task of context attribution. In this paper, we systematically study LLM-based approaches for this task, namely we investigate (i) zero-shot inference, (ii) LLM ensembling, and (iii) fine-tuning of small LMs on synthetic data generated by larger LLMs. Our key contribution is SynQA: a novel generative strategy for synthesizing context attribution data. Given selected context sentences, an LLM generates QA pairs that are supported by these sentences. This leverages LLMs' natural strengths in text generation while ensuring clear attribution paths in the synthetic training data. We show that the attribution data synthesized via SynQA is highly effective for fine-tuning small LMs for context attribution in different QA tasks and domains. Finally, with a user study, we validate the usefulness of small LMs (fine-tuned on synthetic data from SynQA) in context attribution for QA.
From Context to Action: Analysis of the Impact of State Representation and Context on the Generalization of Multi-Turn Web Navigation Agents
Recent advancements in Large Language Model (LLM)-based frameworks have extended their capabilities to complex real-world applications, such as interactive web navigation. These systems, driven by user commands, navigate web browsers to complete tasks through multi-turn dialogues, offering both innovative opportunities and significant challenges. Despite the introduction of benchmarks for conversational web navigation, a detailed understanding of the key contextual components that influence the performance of these agents remains elusive. This study aims to fill this gap by analyzing the various contextual elements crucial to the functioning of web navigation agents. We investigate the optimization of context management, focusing on the influence of interaction history and web page representation. Our work highlights improved agent performance across out-of-distribution scenarios, including unseen websites, categories, and geographic locations through effective context management. These findings provide insights into the design and optimization of LLM-based agents, enabling more accurate and effective web navigation in real-world applications.
JumpStarter: Human-AI Planning with Task-Structured Context Curation
Human-AI planning for complex goals remains challenging with current large language models (LLMs), which rely on linear chat histories and simplistic memory mechanisms. Despite advances in long-context prompting, users still manually manage information, leading to a high cognitive burden. Hence, we propose JumpStarter, a system that enables LLMs to collaborate with humans on complex goals by dynamically decomposing tasks to help users manage context. We specifically introduce task-structured context curation, a novel framework that breaks down a user's goal into a hierarchy of actionable subtasks, and scopes context to localized decision points, enabling finer-grained personalization and reuse. The framework is realized through three core mechanisms: context elicitation, selection, and reuse. We demonstrate that task-structured context curation significantly improves plan quality by 16% over ablations. Our user study shows that JumpStarter helped users generate plans with 79% higher quality compared to ChatGPT.
Inferring Rewards from Language in Context
In classic instruction following, language like "I'd like the JetBlue flight" maps to actions (e.g., selecting that flight). However, language also conveys information about a user's underlying reward function (e.g., a general preference for JetBlue), which can allow a model to carry out desirable actions in new contexts. We present a model that infers rewards from language pragmatically: reasoning about how speakers choose utterances not only to elicit desired actions, but also to reveal information about their preferences. On a new interactive flight-booking task with natural language, our model more accurately infers rewards and predicts optimal actions in unseen environments, in comparison to past work that first maps language to actions (instruction following) and then maps actions to rewards (inverse reinforcement learning).
ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features, which serve as the initial tokens. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Experiments on public datasets demonstrate that ActionPiece consistently outperforms existing action tokenization methods, improving NDCG@10 by 6.00% to 12.82%.
CIMemories: A Compositional Benchmark for Contextual Integrity of Persistent Memory in LLMs
Large Language Models (LLMs) increasingly use persistent memory from past interactions to enhance personalization and task performance. However, this memory introduces critical risks when sensitive information is revealed in inappropriate contexts. We present CIMemories, a benchmark for evaluating whether LLMs appropriately control information flow from memory based on task context. CIMemories uses synthetic user profiles with over 100 attributes per user, paired with diverse task contexts in which each attribute may be essential for some tasks but inappropriate for others. Our evaluation reveals that frontier models exhibit up to 69% attribute-level violations (leaking information inappropriately), with lower violation rates often coming at the cost of task utility. Violations accumulate across both tasks and runs: as usage increases from 1 to 40 tasks, GPT-5's violations rise from 0.1% to 9.6%, reaching 25.1% when the same prompt is executed 5 times, revealing arbitrary and unstable behavior in which models leak different attributes for identical prompts. Privacy-conscious prompting does not solve this - models overgeneralize, sharing everything or nothing rather than making nuanced, context-dependent decisions. These findings reveal fundamental limitations that require contextually aware reasoning capabilities, not just better prompting or scaling.
OmniQuery: Contextually Augmenting Captured Multimodal Memory to Enable Personal Question Answering
People often capture memories through photos, screenshots, and videos. While existing AI-based tools enable querying this data using natural language, they mostly only support retrieving individual pieces of information like certain objects in photos and struggle with answering more complex queries that involve interpreting interconnected memories like event sequences. We conducted a one-month diary study to collect realistic user queries and generated a taxonomy of necessary contextual information for integrating with captured memories. We then introduce OmniQuery, a novel system that is able to answer complex personal memory-related questions that require extracting and inferring contextual information. OmniQuery augments single captured memories through integrating scattered contextual information from multiple interconnected memories, retrieves relevant memories, and uses a large language model (LLM) to comprehensive answers. In human evaluations, we show the effectiveness of OmniQuery with an accuracy of 71.5%, and it outperformed a conventional RAG system, winning or tying in 74.5% of the time.
Learning Contextual Retrieval for Robust Conversational Search
Effective conversational search demands a deep understanding of user intent across multiple dialogue turns. Users frequently use abbreviations and shift topics in the middle of conversations, posing challenges for conventional retrievers. While query rewriting techniques improve clarity, they often incur significant computational cost due to additional autoregressive steps. Moreover, although LLM-based retrievers demonstrate strong performance, they are not explicitly optimized to track user intent in multi-turn settings, often failing under topic drift or contextual ambiguity. To address these limitations, we propose ContextualRetriever, a novel LLM-based retriever that directly incorporates conversational context into the retrieval process. Our approach introduces: (1) a context-aware embedding mechanism that highlights the current query within the dialogue history; (2) intent-guided supervision based on high-quality rewritten queries; and (3) a training strategy that preserves the generative capabilities of the base LLM. Extensive evaluations across multiple conversational search benchmarks demonstrate that ContextualRetriever significantly outperforms existing methods while incurring no additional inference overhead.
In-Context Prompt Editing For Conditional Audio Generation
Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.
FinTRec: Transformer Based Unified Contextual Ads Targeting and Personalization for Financial Applications
Transformer-based architectures are widely adopted in sequential recommendation systems, yet their application in Financial Services (FS) presents distinct practical and modeling challenges for real-time recommendation. These include:a) long-range user interactions (implicit and explicit) spanning both digital and physical channels generating temporally heterogeneous context, b) the presence of multiple interrelated products require coordinated models to support varied ad placements and personalized feeds, while balancing competing business goals. We propose FinTRec, a transformer-based framework that addresses these challenges and its operational objectives in FS. While tree-based models have traditionally been preferred in FS due to their explainability and alignment with regulatory requirements, our study demonstrate that FinTRec offers a viable and effective shift toward transformer-based architectures. Through historic simulation and live A/B test correlations, we show FinTRec consistently outperforms the production-grade tree-based baseline. The unified architecture, when fine-tuned for product adaptation, enables cross-product signal sharing, reduces training cost and technical debt, while improving offline performance across all products. To our knowledge, this is the first comprehensive study of unified sequential recommendation modeling in FS that addresses both technical and business considerations.
WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale
Large language models (LLMs) with extended context windows enable tasks requiring extensive information integration but are limited by the scarcity of high-quality, diverse datasets for long-context instruction tuning. Existing data synthesis methods focus narrowly on objectives like fact retrieval and summarization, restricting their generalizability to complex, real-world tasks. WildLong extracts meta-information from real user queries, models co-occurrence relationships via graph-based methods, and employs adaptive generation to produce scalable data. It extends beyond single-document tasks to support multi-document reasoning, such as cross-document comparison and aggregation. Our models, finetuned on 150K instruction-response pairs synthesized using WildLong, surpasses existing open-source long-context-optimized models across benchmarks while maintaining strong performance on short-context tasks without incorporating supplementary short-context data. By generating a more diverse and realistic long-context instruction dataset, WildLong enhances LLMs' ability to generalize to complex, real-world reasoning over long contexts, establishing a new paradigm for long-context data synthesis.
LaMSUM: Creating Extractive Summaries of User Generated Content using LLMs
Large Language Models (LLMs) have demonstrated impressive performance across a wide range of NLP tasks, including summarization. LLMs inherently produce abstractive summaries by paraphrasing the original text, while the generation of extractive summaries - selecting specific subsets from the original text - remains largely unexplored. LLMs have a limited context window size, restricting the amount of data that can be processed at once. We tackle this challenge by introducing LaMSUM, a novel multi-level framework designed to generate extractive summaries from large collections of user-generated text using LLMs. LaMSUM integrates summarization with different voting methods to achieve robust summaries. Extensive evaluation using four popular LLMs (Llama 3, Mixtral, Gemini, GPT-4o) demonstrates that LaMSUM outperforms state-of-the-art extractive summarization methods. Overall, this work represents one of the first attempts to achieve extractive summarization by leveraging the power of LLMs, and is likely to spark further interest within the research community.
ContextDrag: Precise Drag-Based Image Editing via Context-Preserving Token Injection and Position-Consistent Attention
Drag-based image editing aims to modify visual content followed by user-specified drag operations. Despite existing methods having made notable progress, they still fail to fully exploit the contextual information in the reference image, including fine-grained texture details, leading to edits with limited coherence and fidelity. To address this challenge, we introduce ContextDrag, a new paradigm for drag-based editing that leverages the strong contextual modeling capability of editing models, such as FLUX-Kontext. By incorporating VAE-encoded features from the reference image, ContextDrag can leverage rich contextual cues and preserve fine-grained details, without the need for finetuning or inversion. Specifically, ContextDrag introduced a novel Context-preserving Token Injection (CTI) that injects noise-free reference features into their correct destination locations via a Latent-space Reverse Mapping (LRM) algorithm. This strategy enables precise drag control while preserving consistency in both semantics and texture details. Second, ContextDrag adopts a novel Position-Consistent Attention (PCA), which positional re-encodes the reference tokens and applies overlap-aware masking to eliminate interference from irrelevant reference features. Extensive experiments on DragBench-SR and DragBench-DR demonstrate that our approach surpasses all existing SOTA methods. Code will be publicly available.
Falcon-UI: Understanding GUI Before Following User Instructions
Pursuing human-like interaction for Graphical User Interface (GUI) agents requires understanding the GUI context and following user instructions. However, existing works typically couple these two aspects and focus more on instruct-following abilities, while ignoring the importance of understanding the GUI context. In this paper, we introduce an instruction-free GUI navigation dataset, termed Insight-UI Dataset, to enhance model comprehension of GUI environments. Insight-UI Dataset is automatically generated from the Common Crawl corpus, simulating various platforms -- including iOS, Android, Windows, and Linux -- across multiple resolutions on 312K domains. Although GUI interactions vary by context, diverse interfaces share common internal patterns, such as clicking an item to view its details. It implies the feasibility of independent GUI operation learning, followed by joint optimization with instruction tuning. Thereby, we develop the GUI agent model Falcon-UI, which is initially pretrained on Insight-UI Dataset and subsequently fine-tuned on Android and Web GUI datasets, including AITW, AITZ, Android Control, and Mind2Web. With 7 billion parameters, Falcon-UI achieves accuracy comparable to the 72 billion-parameter Qwen2VL on AITZ, validating the alignment between GUI context comprehension and agent performance. Our code and dataset will be open-sourced.
Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
Large Language Models (LLMs) have succeeded considerably in In-Context-Learning (ICL) based summarization. However, saliency is subject to the users' specific preference histories. Hence, we need reliable In-Context Personalization Learning (ICPL) capabilities within such LLMs. For any arbitrary LLM to exhibit ICPL, it needs to have the ability to discern contrast in user profiles. A recent study proposed a measure for degree-of-personalization called EGISES for the first time. EGISES measures a model's responsiveness to user profile differences. However, it cannot test if a model utilizes all three types of cues provided in ICPL prompts: (i) example summaries, (ii) user's reading histories, and (iii) contrast in user profiles. To address this, we propose the iCOPERNICUS framework, a novel In-COntext PERsonalization learNIng sCrUtiny of Summarization capability in LLMs that uses EGISES as a comparative measure. As a case-study, we evaluate 17 state-of-the-art LLMs based on their reported ICL performances and observe that 15 models' ICPL degrades (min: 1.6%; max: 3.6%) when probed with richer prompts, thereby showing lack of true ICPL.
Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing
Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
Tryage: Real-time, intelligent Routing of User Prompts to Large Language Models
The introduction of the transformer architecture and the self-attention mechanism has led to an explosive production of language models trained on specific downstream tasks and data domains. With over 200, 000 models in the Hugging Face ecosystem, users grapple with selecting and optimizing models to suit multifaceted workflows and data domains while addressing computational, security, and recency concerns. There is an urgent need for machine learning frameworks that can eliminate the burden of model selection and customization and unleash the incredible power of the vast emerging model library for end users. Here, we propose a context-aware routing system, Tryage, that leverages a language model router for optimal selection of expert models from a model library based on analysis of individual input prompts. Inspired by the thalamic router in the brain, Tryage employs a perceptive router to predict down-stream model performance on prompts and, then, makes a routing decision using an objective function that integrates performance predictions with user goals and constraints that are incorporated through flags (e.g., model size, model recency). Tryage allows users to explore a Pareto front and automatically trade-off between task accuracy and secondary goals including minimization of model size, recency, security, verbosity, and readability. Across heterogeneous data sets that include code, text, clinical data, and patents, the Tryage framework surpasses Gorilla and GPT3.5 turbo in dynamic model selection identifying the optimal model with an accuracy of 50.9% , compared to 23.6% by GPT 3.5 Turbo and 10.8% by Gorilla. Conceptually, Tryage demonstrates how routing models can be applied to program and control the behavior of multi-model LLM systems to maximize efficient use of the expanding and evolving language model ecosystem.
User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems
User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.
Operationalizing Contextual Integrity in Privacy-Conscious Assistants
Advanced AI assistants combine frontier LLMs and tool access to autonomously perform complex tasks on behalf of users. While the helpfulness of such assistants can increase dramatically with access to user information including emails and documents, this raises privacy concerns about assistants sharing inappropriate information with third parties without user supervision. To steer information-sharing assistants to behave in accordance with privacy expectations, we propose to operationalize contextual integrity (CI), a framework that equates privacy with the appropriate flow of information in a given context. In particular, we design and evaluate a number of strategies to steer assistants' information-sharing actions to be CI compliant. Our evaluation is based on a novel form filling benchmark composed of synthetic data and human annotations, and it reveals that prompting frontier LLMs to perform CI-based reasoning yields strong results.
Modeling Long-term User Behaviors with Diffusion-driven Multi-interest Network for CTR Prediction
CTR (Click-Through Rate) prediction, crucial for recommender systems and online advertising, etc., has been confirmed to benefit from modeling long-term user behaviors. Nonetheless, the vast number of behaviors and complexity of noise interference pose challenges to prediction efficiency and effectiveness. Recent solutions have evolved from single-stage models to two-stage models. However, current two-stage models often filter out significant information, resulting in an inability to capture diverse user interests and build the complete latent space of user interests. Inspired by multi-interest and generative modeling, we propose DiffuMIN (Diffusion-driven Multi-Interest Network) to model long-term user behaviors and thoroughly explore the user interest space. Specifically, we propose a target-oriented multi-interest extraction method that begins by orthogonally decomposing the target to obtain interest channels. This is followed by modeling the relationships between interest channels and user behaviors to disentangle and extract multiple user interests. We then adopt a diffusion module guided by contextual interests and interest channels, which anchor users' personalized and target-oriented interest types, enabling the generation of augmented interests that align with the latent spaces of user interests, thereby further exploring restricted interest space. Finally, we leverage contrastive learning to ensure that the generated augmented interests align with users' genuine preferences. Extensive offline experiments are conducted on two public datasets and one industrial dataset, yielding results that demonstrate the superiority of DiffuMIN. Moreover, DiffuMIN increased CTR by 1.52% and CPM by 1.10% in online A/B testing. Our source code is available at https://github.com/laiweijiang/DiffuMIN.
A Contextual-Aware Position Encoding for Sequential Recommendation
Sequential recommendation (SR), which encodes user activity to predict the next action, has emerged as a widely adopted strategy in developing commercial personalized recommendation systems. A critical component of modern SR models is the attention mechanism, which synthesizes users' historical activities. This mechanism is typically order-invariant and generally relies on position encoding (PE). Conventional SR models simply assign a learnable vector to each position, resulting in only modest gains compared to traditional recommendation models. Moreover, limited research has been conducted on position encoding tailored for sequential recommendation, leaving a significant gap in addressing its unique requirements. To bridge this gap, we propose a novel Contextual-Aware Position Encoding method for sequential recommendation, abbreviated as CAPE. To the best of our knowledge, CAPE is the first PE method specifically designed for sequential recommendation. Comprehensive experiments conducted on benchmark SR datasets demonstrate that CAPE consistently enhances multiple mainstream backbone models and achieves state-of-the-art performance, across small and large scale model size. Furthermore, we deployed CAPE in an industrial setting on a real-world commercial platform, clearly showcasing the effectiveness of our approach. Our source code is available at https://github.com/yjdy/CAPE.
MemeCraft: Contextual and Stance-Driven Multimodal Meme Generation
Online memes have emerged as powerful digital cultural artifacts in the age of social media, offering not only humor but also platforms for political discourse, social critique, and information dissemination. Their extensive reach and influence in shaping online communities' sentiments make them invaluable tools for campaigning and promoting ideologies. Despite the development of several meme-generation tools, there remains a gap in their systematic evaluation and their ability to effectively communicate ideologies. Addressing this, we introduce MemeCraft, an innovative meme generator that leverages large language models (LLMs) and visual language models (VLMs) to produce memes advocating specific social movements. MemeCraft presents an end-to-end pipeline, transforming user prompts into compelling multimodal memes without manual intervention. Conscious of the misuse potential in creating divisive content, an intrinsic safety mechanism is embedded to curb hateful meme production.
RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
CoRe: Context-Regularized Text Embedding Learning for Text-to-Image Personalization
Recent advances in text-to-image personalization have enabled high-quality and controllable image synthesis for user-provided concepts. However, existing methods still struggle to balance identity preservation with text alignment. Our approach is based on the fact that generating prompt-aligned images requires a precise semantic understanding of the prompt, which involves accurately processing the interactions between the new concept and its surrounding context tokens within the CLIP text encoder. To address this, we aim to embed the new concept properly into the input embedding space of the text encoder, allowing for seamless integration with existing tokens. We introduce Context Regularization (CoRe), which enhances the learning of the new concept's text embedding by regularizing its context tokens in the prompt. This is based on the insight that appropriate output vectors of the text encoder for the context tokens can only be achieved if the new concept's text embedding is correctly learned. CoRe can be applied to arbitrary prompts without requiring the generation of corresponding images, thus improving the generalization of the learned text embedding. Additionally, CoRe can serve as a test-time optimization technique to further enhance the generations for specific prompts. Comprehensive experiments demonstrate that our method outperforms several baseline methods in both identity preservation and text alignment. Code will be made publicly available.
EditVerse: Unifying Image and Video Editing and Generation with In-Context Learning
Recent advances in foundation models highlight a clear trend toward unification and scaling, showing emergent capabilities across diverse domains. While image generation and editing have rapidly transitioned from task-specific to unified frameworks, video generation and editing remain fragmented due to architectural limitations and data scarcity. In this work, we introduce EditVerse, a unified framework for image and video generation and editing within a single model. By representing all modalities, i.e., text, image, and video, as a unified token sequence, EditVerse leverages self-attention to achieve robust in-context learning, natural cross-modal knowledge transfer, and flexible handling of inputs and outputs with arbitrary resolutions and durations. To address the lack of video editing training data, we design a scalable data pipeline that curates 232K video editing samples and combines them with large-scale image and video datasets for joint training. Furthermore, we present EditVerseBench, the first benchmark for instruction-based video editing covering diverse tasks and resolutions. Extensive experiments and user studies demonstrate that EditVerse achieves state-of-the-art performance, surpassing existing open-source and commercial models, while exhibiting emergent editing and generation abilities across modalities.
MIMIC-IT: Multi-Modal In-Context Instruction Tuning
High-quality instructions and responses are essential for the zero-shot performance of large language models on interactive natural language tasks. For interactive vision-language tasks involving intricate visual scenes, a large quantity of diverse and creative instruction-response pairs should be imperative to tune vision-language models (VLMs). Nevertheless, the current availability of vision-language instruction-response pairs in terms of quantity, diversity, and creativity remains limited, posing challenges to the generalization of interactive VLMs. Here we present MultI-Modal In-Context Instruction Tuning (MIMIC-IT), a dataset comprising 2.8 million multimodal instruction-response pairs, with 2.2 million unique instructions derived from images and videos. Each pair is accompanied by multi-modal in-context information, forming conversational contexts aimed at empowering VLMs in perception, reasoning, and planning. The instruction-response collection process, dubbed as Syphus, is scaled using an automatic annotation pipeline that combines human expertise with GPT's capabilities. Using the MIMIC-IT dataset, we train a large VLM named Otter. Based on extensive evaluations conducted on vision-language benchmarks, it has been observed that Otter demonstrates remarkable proficiency in multi-modal perception, reasoning, and in-context learning. Human evaluation reveals it effectively aligns with the user's intentions. We release the MIMIC-IT dataset, instruction-response collection pipeline, benchmarks, and the Otter model.
PersonaMem-v2: Towards Personalized Intelligence via Learning Implicit User Personas and Agentic Memory
Personalization is one of the next milestones in advancing AI capability and alignment. We introduce PersonaMem-v2, the state-of-the-art dataset for LLM personalization that simulates 1,000 realistic user-chatbot interactions on 300+ scenarios, 20,000+ user preferences, and 128k-token context windows, where most user preferences are implicitly revealed to reflect real-world interactions. Using this data, we investigate how reinforcement fine-tuning enables a model to improve its long-context reasoning capabilities for user understanding and personalization. We also develop a framework for training an agentic memory system, which maintains a single, human-readable memory that grows with each user over time. In our experiments, frontier LLMs still struggle with implicit personalization, achieving only 37-48% accuracy. While they support long context windows, reasoning remains the bottleneck for implicit personalization tasks. Using reinforcement fine-tuning, we successfully train Qwen3-4B to outperforms GPT-5, reaching 53% accuracy in implicit personalization. Moreover, our agentic memory framework achieves state-of-the-art 55% accuracy while using 16x fewer input tokens, relying on a 2k-token memory instead of full 32k conversation histories. These results underscore the impact of our dataset and demonstrate agentic memory as a scalable path toward real-world personalized intelligence.
CARE: Contextual Adaptation of Recommenders for LLM-based Conversational Recommendation
We tackle the challenge of integrating large language models (LLMs) with external recommender systems to enhance domain expertise in conversational recommendation (CRS). Current LLM-based CRS approaches primarily rely on zero- or few-shot methods for generating item recommendations based on user queries, but this method faces two significant challenges: (1) without domain-specific adaptation, LLMs frequently recommend items not in the target item space, resulting in low recommendation accuracy; and (2) LLMs largely rely on dialogue context for content-based recommendations, neglecting the collaborative relationships among entities or item sequences. To address these limitations, we introduce the CARE (Contextual Adaptation of Recommenders) framework. CARE customizes LLMs for CRS tasks, and synergizes them with external recommendation systems. CARE (a) integrates external recommender systems as domain experts, producing recommendations through entity-level insights, and (b) enhances those recommendations by leveraging contextual information for more accurate and unbiased final recommendations using LLMs. Our results demonstrate that incorporating external recommender systems with entity-level information significantly enhances recommendation accuracy of LLM-based CRS by an average of 54% and 25% for ReDial and INSPIRED datasets. The most effective strategy in the CARE framework involves LLMs selecting and reranking candidate items that external recommenders provide based on contextual insights. Our analysis indicates that the CARE framework effectively addresses the identified challenges and mitigates the popularity bias in the external recommender.
Next Edit Prediction: Learning to Predict Code Edits from Context and Interaction History
The rapid advancement of large language models (LLMs) has led to the widespread adoption of AI-powered coding assistants integrated into a development environment. On one hand, low-latency code completion offers completion suggestions but is fundamentally constrained to the cursor's current position. On the other hand, chat-based editing can perform complex modifications, yet forces developers to stop their work, describe the intent in natural language, which causes a context-switch away from the code. This creates a suboptimal user experience, as neither paradigm proactively predicts the developer's next edit in a sequence of related edits. To bridge this gap and provide the seamless code edit suggestion, we introduce the task of Next Edit Prediction, a novel task designed to infer developer intent from recent interaction history to predict both the location and content of the subsequent edit. Specifically, we curate a high-quality supervised fine-tuning dataset and an evaluation benchmark for the Next Edit Prediction task. Then, we conduct supervised fine-tuning on a series of models and performed a comprehensive evaluation of both the fine-tuned models and other baseline models, yielding several novel findings. This work lays the foundation for a new interaction paradigm that proactively collaborate with developers by anticipating their following action, rather than merely reacting to explicit instructions.
A Context-Aware Dual-Metric Framework for Confidence Estimation in Large Language Models
Accurate confidence estimation is essential for trustworthy large language models (LLMs) systems, as it empowers the user to determine when to trust outputs and enables reliable deployment in safety-critical applications. Current confidence estimation methods for LLMs neglect the relevance between responses and contextual information, a crucial factor in output quality evaluation, particularly in scenarios where background knowledge is provided. To bridge this gap, we propose CRUX (Context-aware entropy Reduction and Unified consistency eXamination), the first framework that integrates context faithfulness and consistency for confidence estimation via two novel metrics. First, contextual entropy reduction represents data uncertainty with the information gain through contrastive sampling with and without context. Second, unified consistency examination captures potential model uncertainty through the global consistency of the generated answers with and without context. Experiments across three benchmark datasets (CoQA, SQuAD, QuAC) and two domain-specific datasets (BioASQ, EduQG) demonstrate CRUX's effectiveness, achieving the highest AUROC than existing baselines.
In-Context Brush: Zero-shot Customized Subject Insertion with Context-Aware Latent Space Manipulation
Recent advances in diffusion models have enhanced multimodal-guided visual generation, enabling customized subject insertion that seamlessly "brushes" user-specified objects into a given image guided by textual prompts. However, existing methods often struggle to insert customized subjects with high fidelity and align results with the user's intent through textual prompts. In this work, we propose "In-Context Brush", a zero-shot framework for customized subject insertion by reformulating the task within the paradigm of in-context learning. Without loss of generality, we formulate the object image and the textual prompts as cross-modal demonstrations, and the target image with the masked region as the query. The goal is to inpaint the target image with the subject aligning textual prompts without model tuning. Building upon a pretrained MMDiT-based inpainting network, we perform test-time enhancement via dual-level latent space manipulation: intra-head "latent feature shifting" within each attention head that dynamically shifts attention outputs to reflect the desired subject semantics and inter-head "attention reweighting" across different heads that amplifies prompt controllability through differential attention prioritization. Extensive experiments and applications demonstrate that our approach achieves superior identity preservation, text alignment, and image quality compared to existing state-of-the-art methods, without requiring dedicated training or additional data collection.
MultiverSeg: Scalable Interactive Segmentation of Biomedical Imaging Datasets with In-Context Guidance
Medical researchers and clinicians often need to perform novel segmentation tasks on a set of related images. Existing methods for segmenting a new dataset are either interactive, requiring substantial human effort for each image, or require an existing set of previously labeled images. We introduce a system, MultiverSeg, that enables practitioners to rapidly segment an entire new dataset without requiring access to any existing labeled data from that task or domain. Along with the image to segment, the model takes user interactions such as clicks, bounding boxes or scribbles as input, and predicts a segmentation. As the user segments more images, those images and segmentations become additional inputs to the model, providing context. As the context set of labeled images grows, the number of interactions required to segment each new image decreases. We demonstrate that MultiverSeg enables users to interactively segment new datasets efficiently, by amortizing the number of interactions per image to achieve an accurate segmentation. Compared to using a state-of-the-art interactive segmentation method, MultiverSeg reduced the total number of clicks by 36% and scribble steps by 25% to achieve 90% Dice on sets of images from unseen tasks. We release code and model weights at https://multiverseg.csail.mit.edu
Let AI Entertain You: Increasing User Engagement with Generative AI and Rejection Sampling
While generative AI excels in content generation, it does not always increase user engagement. This can be attributed to two main factors. First, generative AI generates content without incorporating explicit or implicit feedback about user interactions. Even if the generated content seems to be more informative or well-written, it does not necessarily lead to an increase in user activities, such as clicks. Second, there is a concern with the quality of the content generative AI produces, which often lacks the distinctiveness and authenticity that human-created content possesses. These two factors can lead to content that fails to meet specific needs and preferences of users, ultimately reducing its potential to be engaging. This paper presents a generic framework of how to improve user engagement with generative AI by leveraging user feedback. Our solutions employ rejection sampling, a technique used in reinforcement learning, to boost engagement metrics. We leveraged the framework in the context of email notification subject lines generation for an online social network, and achieved significant engagement metric lift including +1% Session and +0.4% Weekly Active Users. We believe our work offers a universal framework that enhances user engagement with generative AI, particularly when standard generative AI reaches its limits in terms of enhancing content to be more captivating. To the best of our knowledge, this represents an early milestone in the industry's successful use of generative AI to enhance user engagement.
In-context Interference in Chat-based Large Language Models
Large language models (LLMs) have had a huge impact on society due to their impressive capabilities and vast knowledge of the world. Various applications and tools have been created that allow users to interact with these models in a black-box scenario. However, one limitation of this scenario is that users cannot modify the internal knowledge of the model, and the only way to add or modify internal knowledge is by explicitly mentioning it to the model during the current interaction. This learning process is called in-context training, and it refers to training that is confined to the user's current session or context. In-context learning has significant applications, but also has limitations that are seldom studied. In this paper, we present a study that shows how the model can suffer from interference between information that continually flows in the context, causing it to forget previously learned knowledge, which can reduce the model's performance. Along with showing the problem, we propose an evaluation benchmark based on the bAbI dataset.
Sketch2CAD: Sequential CAD Modeling by Sketching in Context
We present a sketch-based CAD modeling system, where users create objects incrementally by sketching the desired shape edits, which our system automatically translates to CAD operations. Our approach is motivated by the close similarities between the steps industrial designers follow to draw 3D shapes, and the operations CAD modeling systems offer to create similar shapes. To overcome the strong ambiguity with parsing 2D sketches, we observe that in a sketching sequence, each step makes sense and can be interpreted in the context of what has been drawn before. In our system, this context corresponds to a partial CAD model, inferred in the previous steps, which we feed along with the input sketch to a deep neural network in charge of interpreting how the model should be modified by that sketch. Our deep network architecture then recognizes the intended CAD operation and segments the sketch accordingly, such that a subsequent optimization estimates the parameters of the operation that best fit the segmented sketch strokes. Since there exists no datasets of paired sketching and CAD modeling sequences, we train our system by generating synthetic sequences of CAD operations that we render as line drawings. We present a proof of concept realization of our algorithm supporting four frequently used CAD operations. Using our system, participants are able to quickly model a large and diverse set of objects, demonstrating Sketch2CAD to be an alternate way of interacting with current CAD modeling systems.
SParC: Cross-Domain Semantic Parsing in Context
We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.
Twitch Plays Pokemon, Machine Learns Twitch: Unsupervised Context-Aware Anomaly Detection for Identifying Trolls in Streaming Data
With the increasing importance of online communities, discussion forums, and customer reviews, Internet "trolls" have proliferated thereby making it difficult for information seekers to find relevant and correct information. In this paper, we consider the problem of detecting and identifying Internet trolls, almost all of which are human agents. Identifying a human agent among a human population presents significant challenges compared to detecting automated spam or computerized robots. To learn a troll's behavior, we use contextual anomaly detection to profile each chat user. Using clustering and distance-based methods, we use contextual data such as the group's current goal, the current time, and the username to classify each point as an anomaly. A user whose features significantly differ from the norm will be classified as a troll. We collected 38 million data points from the viral Internet fad, Twitch Plays Pokemon. Using clustering and distance-based methods, we develop heuristics for identifying trolls. Using MapReduce techniques for preprocessing and user profiling, we are able to classify trolls based on 10 features extracted from a user's lifetime history.
RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering
With advancements in Large Language Models (LLMs), a major use case that has emerged is querying databases in plain English, translating user questions into executable database queries, which has improved significantly. However, real-world datasets often feature a vast array of attributes and complex values, complicating the LLMs task of accurately identifying relevant columns or values from natural language queries. Traditional methods cannot fully relay the datasets size and complexity to the LLM. To address these challenges, we propose a novel framework that leverages Full-Text Search (FTS) on the input table. This approach not only enables precise detection of specific values and columns but also narrows the search space for language models, thereby enhancing query accuracy. Additionally, it supports a custom auto-complete feature that suggests queries based on the data in the table. This integration significantly refines the interaction between the user and complex datasets, offering a sophisticated solution to the limitations faced by current table querying capabilities. This work is accompanied by an application for both Mac and Windows platforms, which readers can try out themselves on their own data.
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model
The integration of Retrieval-Augmented Generation (RAG) with Multimodal Large Language Models (MLLMs) has revolutionized information retrieval and expanded the practical applications of AI. However, current systems struggle in accurately interpreting user intent, employing diverse retrieval strategies, and effectively filtering unintended or inappropriate responses, limiting their effectiveness. This paper introduces Contextual Understanding and Enhanced Search with MLLM (CUE-M), a novel multimodal search framework that addresses these challenges through a multi-stage pipeline comprising image context enrichment, intent refinement, contextual query generation, external API integration, and relevance-based filtering. CUE-M incorporates a robust filtering pipeline combining image-based, text-based, and multimodal classifiers, dynamically adapting to instance- and category-specific concern defined by organizational policies. Evaluations on a multimodal Q&A dataset and a public safety benchmark demonstrate that CUE-M outperforms baselines in accuracy, knowledge integration, and safety, advancing the capabilities of multimodal retrieval systems.
