|  | from typing import Dict, List, Any | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  | from auto_gptq import AutoGPTQForCausalLM | 
					
						
						|  |  | 
					
						
						|  | class EndpointHandler(): | 
					
						
						|  | def __init__(self, path=""): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.tokenizer = AutoTokenizer.from_pretrained("philschmid/falcon-40b-instruct-GPTQ-inference-endpoints", use_fast=False) | 
					
						
						|  | self.model = AutoGPTQForCausalLM.from_quantized("philschmid/falcon-40b-instruct-GPTQ-inference-endpoints", device="cuda:0", use_triton=False, use_safetensors=True, torch_dtype=torch.float32, trust_remote_code=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | 
					
						
						|  | """ | 
					
						
						|  | data args: | 
					
						
						|  | inputs (:obj: `str` | `PIL.Image` | `np.array`) | 
					
						
						|  | kwargs | 
					
						
						|  | Return: | 
					
						
						|  | A :obj:`list` | `dict`: will be serialized and returned | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | inputs = data.pop("inputs", data) | 
					
						
						|  | parameters = data.pop("parameters", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if parameters is not None: | 
					
						
						|  | outputs = self.model.generate(input_ids, **parameters) | 
					
						
						|  | else: | 
					
						
						|  | outputs = self.model.generate(input_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  |  | 
					
						
						|  | return [{"generated_text": prediction}] |