File size: 3,816 Bytes
fe18be2
 
 
 
 
 
 
 
 
 
ad8b85d
 
fe18be2
0f52e52
 
210bdef
 
 
bc98a4c
 
 
 
 
 
 
 
 
fe18be2
 
 
 
 
 
 
 
 
bc98a4c
fe18be2
 
210bdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
datasets:
- prithivMLmods/Deepfake-vs-Real
language:
- en
pipeline_tag: image-classification
library_name: transformers
tags:
- Deepfake
base_model:
- google/vit-base-patch32-224-in21k
---
![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/UJytx7u0VTx_SAz49640L.png)

# **Deepfake-Detection-Exp-02-22**

Deepfake-Detection-Exp-02-22 is a minimalist, high-quality dataset trained on a ViT-based model for image classification, distinguishing between deepfake and real images. The model is based on Google's **`google/vit-base-patch32-224-in21k`**.

```bitex
Mapping of IDs to Labels: {0: 'Deepfake', 1: 'Real'} 

Mapping of Labels to IDs: {'Deepfake': 0, 'Real': 1}
```

```python        
Classification report:
        
                      precision    recall  f1-score   support
        
            Deepfake     0.9833    0.9187    0.9499      1600
                Real     0.9238    0.9844    0.9531      1600
        
            accuracy                         0.9516      3200
           macro avg     0.9535    0.9516    0.9515      3200
        weighted avg     0.9535    0.9516    0.9515      3200
```


![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/6720824b15b6282a2464fc58/-25Oh3wureg_MI4nvjh7w.png)

# **Inference with Hugging Face Pipeline**
```python
from transformers import pipeline

# Load the model
pipe = pipeline('image-classification', model="prithivMLmods/Deepfake-Detection-Exp-02-22", device=0)

# Predict on an image
result = pipe("path_to_image.jpg")
print(result)
```

# **Inference with PyTorch**
```python
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch

# Load the model and processor
model = ViTForImageClassification.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-22")
processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-22")

# Load and preprocess the image
image = Image.open("path_to_image.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")

# Perform inference
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class = torch.argmax(logits, dim=1).item()

# Map class index to label
label = model.config.id2label[predicted_class]
print(f"Predicted Label: {label}")
```

# **Limitations**  
1. **Generalization Issues** – The model may not perform well on deepfake images generated by unseen or novel deepfake techniques.  
2. **Dataset Bias** – The training data might not cover all variations of real and fake images, leading to biased predictions.  
3. **Resolution Constraints** – Since the model is based on `vit-base-patch32-224-in21k`, it is optimized for 224x224 image resolution, which may limit its effectiveness on high-resolution images.  
4. **Adversarial Vulnerabilities** – The model may be susceptible to adversarial attacks designed to fool vision transformers.  
5. **False Positives & False Negatives** – The model may occasionally misclassify real images as deepfake and vice versa, requiring human validation in critical applications.  

# **Intended Use**  
1. **Deepfake Detection** – Designed for identifying deepfake images in media, social platforms, and forensic analysis.  
2. **Research & Development** – Useful for researchers studying deepfake detection and improving ViT-based classification models.  
3. **Content Moderation** – Can be integrated into platforms to detect and flag manipulated images.  
4. **Security & Forensics** – Assists in cybersecurity applications where verifying the authenticity of images is crucial.  
5. **Educational Purposes** – Can be used in training AI practitioners and students in the field of computer vision and deepfake detection.