File size: 4,842 Bytes
9cf0154
 
 
 
 
 
 
7731cef
9cf0154
 
 
 
 
4f6c188
11f925f
 
4f6c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a663d
 
 
 
4f6c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
language:
- en
- zh
base_model:
- prithivMLmods/Qwen2-VL-OCR-2B-Instruct
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- text-generation-inference
- Qwen
- Hoags
---
![sdefsed.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/hpDw305N-pMouN0EiuJYL.png)

> [!WARNING]
> **Note:**  This model contains artifacts and may perform poorly in some cases.

# **Hoags-2B-Exp**

The **Hoags-2B-Exp** model is a fine-tuned version of Qwen2-VL-2B-Instruct, specifically designed for reasoning tasks, context reasoning, and multi-modal understanding. If you ask for an image description, it will automatically describe the image and answer the question in a conversational manner.

# **Key Enhancements**

* **Advanced Contextual Reasoning**: Hoags-2B-Exp achieves state-of-the-art performance in reasoning tasks by enhancing logical inference and decision-making.

* **Understanding images of various resolution & ratio**: The model excels at visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.

* **Long-Context Video Understanding**: Capable of processing and reasoning over videos of 20 minutes or more for high-quality video-based question answering, content creation, and dialogue.

* **Device Integration**: With strong reasoning and decision-making abilities, the model can be integrated into mobile devices, robots, and automation systems for real-time operation based on both visual and textual input.

* **Multilingual Support**: Supports text understanding in various languages within images, including English, Chinese, Japanese, Korean, Arabic, most European languages, and Vietnamese.

# **Demo Inference**

![demo.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/43w_tJW1-q93qHVegMhIX.png)

# **How to Use**

```python
instruction = "Analyze the image and generate a clear, concise description of the scene, objects, and actions. Respond to user queries with accurate, relevant details derived from the visual content. Maintain a natural conversational flow and ensure logical consistency. Summarize or clarify as needed for understanding."
```

```python
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info

# Load the model with automatic device placement
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/Hoags-2B-Exp", torch_dtype="auto", device_map="auto"
)

# Recommended: Enable flash_attention_2 for better performance in multi-image and video tasks
# model = Qwen2VLForConditionalGeneration.from_pretrained(
#     "prithivMLmods/Hoags-2B-Exp",
#     torch_dtype=torch.bfloat16,
#     attn_implementation="flash_attention_2",
#     device_map="auto",
# )

# Load processor
processor = AutoProcessor.from_pretrained("prithivMLmods/Hoags-2B-Exp")

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Analyze the context of this image."},
        ],
    }
]

# Prepare input
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

# **Buffer Handling**
```python
buffer = ""
for new_text in streamer:
    buffer += new_text
    buffer = buffer.replace("<|im_end|>", "")
    yield buffer
```

# **Key Features**

1. **Advanced Contextual Reasoning:**  
   - Optimized for **context-aware problem-solving** and **logical inference**.

2. **Optical Character Recognition (OCR):**  
   - Extracts and processes text from images with exceptional accuracy.

3. **Mathematical and Logical Problem Solving:**  
   - Supports complex reasoning and outputs equations in **LaTeX format**.

4. **Conversational and Multi-Turn Interaction:**  
   - Handles **multi-turn dialogue** with enhanced memory retention and response coherence.

5. **Multi-Modal Inputs & Outputs:**  
   - Processes images, text, and combined inputs to generate insightful analyses.

6. **Secure and Efficient Model Loading:**  
   - Uses **Safetensors** for faster and more secure model weight handling.