--- license: apache-2.0 language: - en - zh base_model: - prithivMLmods/Qwen2-VL-OCR-2B-Instruct pipeline_tag: image-text-to-text library_name: transformers tags: - text-generation-inference - Qwen - Hoags --- ![sdefsed.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/hpDw305N-pMouN0EiuJYL.png) > [!WARNING] > **Note:** This model contains artifacts and may perform poorly in some cases. # **Hoags-2B-Exp** The **Hoags-2B-Exp** model is a fine-tuned version of Qwen2-VL-2B-Instruct, specifically designed for reasoning tasks, context reasoning, and multi-modal understanding. If you ask for an image description, it will automatically describe the image and answer the question in a conversational manner. # **Key Enhancements** * **Advanced Contextual Reasoning**: Hoags-2B-Exp achieves state-of-the-art performance in reasoning tasks by enhancing logical inference and decision-making. * **Understanding images of various resolution & ratio**: The model excels at visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Long-Context Video Understanding**: Capable of processing and reasoning over videos of 20 minutes or more for high-quality video-based question answering, content creation, and dialogue. * **Device Integration**: With strong reasoning and decision-making abilities, the model can be integrated into mobile devices, robots, and automation systems for real-time operation based on both visual and textual input. * **Multilingual Support**: Supports text understanding in various languages within images, including English, Chinese, Japanese, Korean, Arabic, most European languages, and Vietnamese. # **Demo Inference** ![demo.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/43w_tJW1-q93qHVegMhIX.png) # **How to Use** ```python instruction = "Analyze the image and generate a clear, concise description of the scene, objects, and actions. Respond to user queries with accurate, relevant details derived from the visual content. Maintain a natural conversational flow and ensure logical consistency. Summarize or clarify as needed for understanding." ``` ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # Load the model with automatic device placement model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Hoags-2B-Exp", torch_dtype="auto", device_map="auto" ) # Recommended: Enable flash_attention_2 for better performance in multi-image and video tasks # model = Qwen2VLForConditionalGeneration.from_pretrained( # "prithivMLmods/Hoags-2B-Exp", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # Load processor processor = AutoProcessor.from_pretrained("prithivMLmods/Hoags-2B-Exp") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Analyze the context of this image."}, ], } ] # Prepare input text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` # **Buffer Handling** ```python buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") yield buffer ``` # **Key Features** 1. **Advanced Contextual Reasoning:** - Optimized for **context-aware problem-solving** and **logical inference**. 2. **Optical Character Recognition (OCR):** - Extracts and processes text from images with exceptional accuracy. 3. **Mathematical and Logical Problem Solving:** - Supports complex reasoning and outputs equations in **LaTeX format**. 4. **Conversational and Multi-Turn Interaction:** - Handles **multi-turn dialogue** with enhanced memory retention and response coherence. 5. **Multi-Modal Inputs & Outputs:** - Processes images, text, and combined inputs to generate insightful analyses. 6. **Secure and Efficient Model Loading:** - Uses **Safetensors** for faster and more secure model weight handling.