prithivMLmods commited on
Commit
8ea0aa8
·
verified ·
1 Parent(s): 1e53214

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -1
README.md CHANGED
@@ -2,7 +2,20 @@
2
  license: apache-2.0
3
  datasets:
4
  - VinayHajare/Marathi-Sign-Language
 
 
 
 
 
 
 
 
 
 
5
  ---
 
 
 
6
 
7
  ```py
8
  Classification Report:
@@ -55,4 +68,95 @@ Classification Report:
55
  accuracy 0.9027 50099
56
  macro avg 0.9117 0.9039 0.9051 50099
57
  weighted avg 0.9107 0.9027 0.9040 50099
58
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  datasets:
4
  - VinayHajare/Marathi-Sign-Language
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google/siglip2-base-patch16-224
9
+ pipeline_tag: image-classification
10
+ library_name: transformers
11
+ tags:
12
+ - Marathi-Sign-Language-Detection
13
+ - SigLIP2
14
+ - 93M
15
  ---
16
+ # Marathi-Sign-Language-Detection
17
+
18
+ > Marathi-Sign-Language-Detection is a vision-language model fine-tuned from google/siglip2-base-patch16-224 for multi-class image classification. It is trained to recognize Marathi sign language hand gestures and map them to corresponding Devanagari characters using the SiglipForImageClassification architecture.
19
 
20
  ```py
21
  Classification Report:
 
68
  accuracy 0.9027 50099
69
  macro avg 0.9117 0.9039 0.9051 50099
70
  weighted avg 0.9107 0.9027 0.9040 50099
71
+ ```
72
+
73
+ ---
74
+
75
+ ## Label Space: 43 Classes
76
+
77
+ The model classifies a hand sign into one of the following 43 Marathi characters:
78
+
79
+ ```json
80
+ "id2label": {
81
+ "0": "अ", "1": "आ", "2": "इ", "3": "ई", "4": "उ", "5": "ऊ",
82
+ "6": "ए", "7": "ऐ", "8": "ओ", "9": "औ", "10": "क", "11": "क्ष",
83
+ "12": "ख", "13": "ग", "14": "घ", "15": "च", "16": "छ", "17": "ज",
84
+ "18": "ज्ञ", "19": "झ", "20": "ट", "21": "ठ", "22": "ड", "23": "ढ",
85
+ "24": "ण", "25": "त", "26": "थ", "27": "द", "28": "ध", "29": "न",
86
+ "30": "प", "31": "फ", "32": "ब", "33": "भ", "34": "म", "35": "य",
87
+ "36": "र", "37": "ल", "38": "ळ", "39": "व", "40": "श", "41": "स", "42": "ह"
88
+ }
89
+ ```
90
+
91
+ ---
92
+
93
+ ## Install Dependencies
94
+
95
+ ```bash
96
+ pip install -q transformers torch pillow gradio
97
+ ```
98
+
99
+ ---
100
+
101
+ ## Inference Code
102
+
103
+ ```python
104
+ import gradio as gr
105
+ from transformers import AutoImageProcessor, SiglipForImageClassification
106
+ from PIL import Image
107
+ import torch
108
+
109
+ # Load model and processor
110
+ model_name = "prithivMLmods/Marathi-Sign-Language-Detection" # Replace with actual path
111
+ model = SiglipForImageClassification.from_pretrained(model_name)
112
+ processor = AutoImageProcessor.from_pretrained(model_name)
113
+
114
+ # Marathi label mapping
115
+ id2label = {
116
+ "0": "अ", "1": "आ", "2": "इ", "3": "ई", "4": "उ", "5": "ऊ",
117
+ "6": "ए", "7": "ऐ", "8": "ओ", "9": "औ", "10": "क", "11": "क्ष",
118
+ "12": "ख", "13": "ग", "14": "घ", "15": "च", "16": "छ", "17": "ज",
119
+ "18": "ज्ञ", "19": "झ", "20": "ट", "21": "ठ", "22": "ड", "23": "ढ",
120
+ "24": "ण", "25": "त", "26": "थ", "27": "द", "28": "ध", "29": "न",
121
+ "30": "प", "31": "फ", "32": "ब", "33": "भ", "34": "म", "35": "य",
122
+ "36": "र", "37": "ल", "38": "ळ", "39": "व", "40": "श", "41": "स", "42": "ह"
123
+ }
124
+
125
+ def classify_marathi_sign(image):
126
+ image = Image.fromarray(image).convert("RGB")
127
+ inputs = processor(images=image, return_tensors="pt")
128
+
129
+ with torch.no_grad():
130
+ outputs = model(**inputs)
131
+ logits = outputs.logits
132
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
133
+
134
+ prediction = {
135
+ id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
136
+ }
137
+
138
+ return prediction
139
+
140
+ # Gradio Interface
141
+ iface = gr.Interface(
142
+ fn=classify_marathi_sign,
143
+ inputs=gr.Image(type="numpy"),
144
+ outputs=gr.Label(num_top_classes=5, label="Marathi Sign Classification"),
145
+ title="Marathi-Sign-Language-Detection",
146
+ description="Upload an image of a Marathi sign language hand gesture to identify the corresponding character."
147
+ )
148
+
149
+ if __name__ == "__main__":
150
+ iface.launch()
151
+ ```
152
+
153
+ ---
154
+
155
+ ## Intended Use
156
+
157
+ Marathi-Sign-Language-Detection can be applied in:
158
+
159
+ * Educational platforms for learning regional sign language.
160
+ * Assistive communication tools for Marathi-speaking users with hearing impairments.
161
+ * Interactive applications that translate signs into text.
162
+ * Research and data collection for sign language development and recognition.