File size: 8,570 Bytes
8b3dfe9
 
 
 
 
 
 
 
 
 
 
 
9d4d983
c3ddba5
3a9b6ea
b0b9e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a928116
aa8fcaa
 
 
a928116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0b9e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
license: llama3.1
language:
- en
base_model:
- microsoft/phi-4
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- llama3.1
- phi4
- LlamaForCausalLM
- Corpus
- trl
model-index:
- name: Megatron-Opus-14B-2.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 66.94
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Opus-14B-2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 54.7
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Opus-14B-2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 27.79
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Opus-14B-2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.54
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Opus-14B-2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.52
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Opus-14B-2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Opus-14B-2.0
      name: Open LLM Leaderboard
---

![xfghxxfdghfdgh.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/dRGKgIqsV2h7W04Rp4Yld.gif)

# **Megatron-Opus-14B-2.0 [ Exp ]**

[Megatron-Opus-14B-2.0 ] Exp finetuned from Microsoft's Phi-4 is a state-of-the-art open model developed with a focus on responsible problem solving and advanced reasoning capabilities. Built upon a diverse blend of synthetic datasets, carefully filtered public domain websites, and high-quality academic books and Q&A datasets, Megatron-Opus-14B-2.0 ensures that small, capable models are trained with datasets of exceptional depth and precision.

Megatron-Opus-14B-2.0 adopts a robust safety post-training approach using open-source and in-house synthetic datasets. This involves a combination of SFT (Supervised Fine-Tuning) and iterative DPO (Direct Preference Optimization) techniques, ensuring helpful and harmless outputs across various safety categories.


# **Dataset Info**

Megatron-Opus-14B-2.0 is fine-tuned on a carefully curated synthetic dataset generated using an advanced pipeline optimized for Chain of Thought (CoT) reasoning and Responsible Problem Breakdown (RPB) methodologies. This ensures that the model excels at:

- **Logical reasoning**  
- **Step-by-step problem-solving**  
- **Breaking down complex tasks into manageable parts**  

The dataset also emphasizes responsible decision-making and fairness in generating solutions.

# **Run with Transformers**

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/Megatron-Opus-14B-2.0")
model = AutoModelForCausalLM.from_pretrained(
    "prithivMLmods/Megatron-Opus-14B-2.0",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

input_text = "Explain the concept of black holes."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=64)
print(tokenizer.decode(outputs[0]))
```

For chat-style interactions, use `tokenizer.apply_chat_template`:

```python
messages = [
    {"role": "user", "content": "Explain the concept of black holes."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
```

# **Intended Use**

Megatron-Opus-14B-2.0 is tailored for a wide range of applications, especially those involving **advanced reasoning**, **multilingual capabilities**, and **responsible problem-solving**. Its primary use cases include:

1. **Responsible Problem Solving**  
   - Breaking down complex problems into logical, actionable steps.  
   - Offering ethical, well-rounded solutions in academic and professional contexts.  

2. **Advanced Reasoning Tasks**  
   - Excelling in mathematics, logic, and scientific reasoning.  
   - Providing detailed explanations and systematic answers.  

3. **Content Generation**  
   - Assisting in generating high-quality content for various domains, including creative writing and technical documentation.  
   - Supporting marketers, writers, and educators with detailed and well-structured outputs.  

4. **Educational Support**  
   - Acting as a virtual tutor for students by generating practice questions, answers, and detailed explanations.  
   - Helping educators design learning material that promotes critical thinking and step-by-step problem-solving.  

5. **Customer Support & Dialogue Systems**  
   - Enabling chatbots and virtual assistants to provide accurate, helpful, and responsible responses.  
   - Enhancing customer service with reasoning-driven automation.  

# **Limitations**

Despite its strengths, Megatron-Opus-14B-2.0 has some limitations that users should be aware of:

1. **Bias and Fairness**  
   - While great effort has been made to minimize biases, users should critically assess the model’s output in sensitive scenarios to avoid unintended bias.  

2. **Contextual Interpretation**  
   - The model may occasionally misinterpret highly nuanced prompts or ambiguous contexts, leading to suboptimal responses.  

3. **Knowledge Cutoff**  
   - Megatron-Opus-14B-2.0’s knowledge is static and based on the data available at the time of training. It does not include real-time updates or information on recent developments.  

4. **Safety and Harmlessness**  
   - Despite post-training safety alignment, inappropriate or harmful outputs may still occur. Continuous monitoring and human oversight are advised when using the model in critical contexts.  

5. **Computational Requirements**  
   - Deploying Megatron-Opus-14B-2.0 efficiently may require substantial computational resources, particularly for large-scale deployments or real-time applications.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Megatron-Opus-14B-2.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FMegatron-Opus-14B-2.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    36.80|
|IFEval (0-Shot)    |    66.94|
|BBH (3-Shot)       |    54.70|
|MATH Lvl 5 (4-Shot)|    27.79|
|GPQA (0-shot)      |    14.54|
|MuSR (0-shot)      |    10.52|
|MMLU-PRO (5-shot)  |    46.34|