prithivMLmods commited on
Commit
a296ce2
·
verified ·
1 Parent(s): 551a92a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -12,4 +12,70 @@ tags:
12
  - code
13
  - trl
14
  - Qwen
15
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  - code
13
  - trl
14
  - Qwen
15
+ ---
16
+ ![6.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/eH7-BHSRyotx8gYc1FkAm.png)
17
+
18
+ # **Viper-Coder-Hybrid-v1.3**
19
+
20
+ Viper-Coder-Hybrid-v1.3 is based on the Qwen 2.5 14B modality architecture, designed to be the **best** for coding and reasoning tasks. It has been fine-tuned on a synthetic dataset leveraging the latest coding logits and CoT datasets, further optimizing its **chain-of-thought (CoT) reasoning** and **logical problem-solving** abilities. The model demonstrates significant improvements in **context understanding, structured data processing, and long-context comprehension**, making it ideal for **complex coding tasks, instruction-following, and text generation**.
21
+
22
+ ### **Key Improvements**
23
+ 1. **Best-in-Class Coding Proficiency**: Enhanced understanding of programming languages, debugging, and code generation.
24
+ 2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON, YAML), and extended text generation (**8K+ tokens**).
25
+ 3. **Advanced Logical & Mathematical Reasoning**: Improved multi-step problem-solving and theorem proving.
26
+ 4. **Long-Context Mastery**: Handles up to **128K tokens** with an output capability of **8K tokens** per response.
27
+ 5. **Multilingual Code Support**: Excels in **Python, JavaScript, C++, Java, SQL**, and other major programming languages, with documentation in **29+ languages**.
28
+
29
+ ### **Quickstart with Transformers**
30
+
31
+ ```python
32
+ from transformers import AutoModelForCausalLM, AutoTokenizer
33
+
34
+ model_name = "prithivMLmods/Viper-Coder-Hybrid-v1.3"
35
+
36
+ model = AutoModelForCausalLM.from_pretrained(
37
+ model_name,
38
+ torch_dtype="auto",
39
+ device_map="auto",
40
+ trust_remote_code=True
41
+ )
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+
44
+ prompt = "Write a Python function to merge two sorted lists."
45
+ messages = [
46
+ {"role": "system", "content": "You are an advanced AI assistant with expert-level coding and reasoning abilities."},
47
+ {"role": "user", "content": prompt}
48
+ ]
49
+ text = tokenizer.apply_chat_template(
50
+ messages,
51
+ tokenize=False,
52
+ add_generation_prompt=True
53
+ )
54
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
55
+
56
+ generated_ids = model.generate(
57
+ **model_inputs,
58
+ max_new_tokens=512
59
+ )
60
+ generated_ids = [
61
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
62
+ ]
63
+
64
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
65
+ print(response)
66
+ ```
67
+
68
+ ### **Intended Use**
69
+ - **Elite Coding & Debugging**: Best-in-class model for writing, analyzing, and optimizing code.
70
+ - **Complex Algorithmic Reasoning**: Solves intricate logic problems and algorithm-based challenges.
71
+ - **Scientific & Mathematical Computation**: Advanced support for formulas, equations, and theorem verification.
72
+ - **Structured Data Processing**: Seamlessly handles JSON, XML, SQL, and data pipeline automation.
73
+ - **Multilingual Programming Support**: Proficient in Python, JavaScript, C++, Java, Go, and more.
74
+ - **Extended Technical Content Generation**: Ideal for writing documentation, research papers, and technical blogs.
75
+
76
+ ### **Limitations**
77
+ 1. **High Computational Demand**: Requires powerful GPUs/TPUs for smooth inference due to **14B parameters**.
78
+ 2. **Language-Specific Variability**: Performance may vary across different programming languages.
79
+ 3. **Possible Error Propagation**: Extended text outputs might introduce logical inconsistencies.
80
+ 4. **Limited Real-World Awareness**: The model does not have access to real-time internet updates.
81
+ 5. **Prompt Sensitivity**: Performance depends on how well the prompt is structured.