File size: 7,430 Bytes
5e5e788
 
 
 
 
 
 
 
 
 
 
2f42aae
 
6199cb2
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
 
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
 
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
 
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
 
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
 
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
 
a7778f2
6130590
 
 
7c0e6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7778f2
 
 
 
 
 
 
 
 
 
 
 
 
6199cb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
license: apache-2.0
language:
- en
- zh
base_model:
- prithivMLmods/Viper-Coder-v0.1
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- coder
- v1.1
model-index:
- name: Viper-Coder-v1.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 44.32
      name: averaged accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.27
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 54.61
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 20.13
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 26.21
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.02
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
      name: Open LLM Leaderboard
---

![viper.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/d0ZS41mS_3JpmDBroLM2z.png)

# **Viper-Coder-v1.1**  

Viper-Coder-v1.1 is based on the Qwen 2.5 14B modality architecture, designed to be the **best** for coding and reasoning tasks. It has been fine-tuned on a synthetic dataset leveraging the latest coding logits and CoT datasets, further optimizing its **chain-of-thought (CoT) reasoning** and **logical problem-solving** abilities. The model demonstrates significant improvements in **context understanding, structured data processing, and long-context comprehension**, making it ideal for **complex coding tasks, instruction-following, and text generation**.  

### **Key Improvements**  
1. **Best-in-Class Coding Proficiency**: Enhanced understanding of programming languages, debugging, and code generation.  
2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON, YAML), and extended text generation (**8K+ tokens**).  
3. **Advanced Logical & Mathematical Reasoning**: Improved multi-step problem-solving and theorem proving.  
4. **Long-Context Mastery**: Handles up to **128K tokens** with an output capability of **8K tokens** per response.  
5. **Multilingual Code Support**: Excels in **Python, JavaScript, C++, Java, SQL**, and other major programming languages, with documentation in **29+ languages**.  

### **Quickstart with Transformers**  

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Viper-Coder-v1.1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Write a Python function to merge two sorted lists."
messages = [
    {"role": "system", "content": "You are an advanced AI assistant with expert-level coding and reasoning abilities."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

### **Intended Use**  
- **Elite Coding & Debugging**: Best-in-class model for writing, analyzing, and optimizing code.  
- **Complex Algorithmic Reasoning**: Solves intricate logic problems and algorithm-based challenges.  
- **Scientific & Mathematical Computation**: Advanced support for formulas, equations, and theorem verification.  
- **Structured Data Processing**: Seamlessly handles JSON, XML, SQL, and data pipeline automation.  
- **Multilingual Programming Support**: Proficient in Python, JavaScript, C++, Java, Go, and more.  
- **Extended Technical Content Generation**: Ideal for writing documentation, research papers, and technical blogs.  

### **Limitations**  
1. **High Computational Demand**: Requires powerful GPUs/TPUs for smooth inference due to **14B parameters**.  
2. **Language-Specific Variability**: Performance may vary across different programming languages.  
3. **Possible Error Propagation**: Extended text outputs might introduce logical inconsistencies.  
4. **Limited Real-World Awareness**: The model does not have access to real-time internet updates.  
5. **Prompt Sensitivity**: Performance depends on how well the prompt is structured.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Viper-Coder-v1.1-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FViper-Coder-v1.1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    40.26|
|IFEval (0-Shot)    |    44.32|
|BBH (3-Shot)       |    49.27|
|MATH Lvl 5 (4-Shot)|    54.61|
|GPQA (0-shot)      |    20.13|
|MuSR (0-shot)      |    26.21|
|MMLU-PRO (5-shot)  |    47.02|