File size: 7,430 Bytes
5e5e788 2f42aae 6199cb2 a7778f2 6199cb2 a7778f2 6199cb2 a7778f2 6199cb2 a7778f2 6199cb2 a7778f2 6199cb2 a7778f2 6199cb2 a7778f2 6130590 7c0e6e2 a7778f2 6199cb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
license: apache-2.0
language:
- en
- zh
base_model:
- prithivMLmods/Viper-Coder-v0.1
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- coder
- v1.1
model-index:
- name: Viper-Coder-v1.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 44.32
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.27
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 54.61
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.13
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 26.21
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.02
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FViper-Coder-v1.1
name: Open LLM Leaderboard
---

# **Viper-Coder-v1.1**
Viper-Coder-v1.1 is based on the Qwen 2.5 14B modality architecture, designed to be the **best** for coding and reasoning tasks. It has been fine-tuned on a synthetic dataset leveraging the latest coding logits and CoT datasets, further optimizing its **chain-of-thought (CoT) reasoning** and **logical problem-solving** abilities. The model demonstrates significant improvements in **context understanding, structured data processing, and long-context comprehension**, making it ideal for **complex coding tasks, instruction-following, and text generation**.
### **Key Improvements**
1. **Best-in-Class Coding Proficiency**: Enhanced understanding of programming languages, debugging, and code generation.
2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON, YAML), and extended text generation (**8K+ tokens**).
3. **Advanced Logical & Mathematical Reasoning**: Improved multi-step problem-solving and theorem proving.
4. **Long-Context Mastery**: Handles up to **128K tokens** with an output capability of **8K tokens** per response.
5. **Multilingual Code Support**: Excels in **Python, JavaScript, C++, Java, SQL**, and other major programming languages, with documentation in **29+ languages**.
### **Quickstart with Transformers**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Viper-Coder-v1.1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Write a Python function to merge two sorted lists."
messages = [
{"role": "system", "content": "You are an advanced AI assistant with expert-level coding and reasoning abilities."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
### **Intended Use**
- **Elite Coding & Debugging**: Best-in-class model for writing, analyzing, and optimizing code.
- **Complex Algorithmic Reasoning**: Solves intricate logic problems and algorithm-based challenges.
- **Scientific & Mathematical Computation**: Advanced support for formulas, equations, and theorem verification.
- **Structured Data Processing**: Seamlessly handles JSON, XML, SQL, and data pipeline automation.
- **Multilingual Programming Support**: Proficient in Python, JavaScript, C++, Java, Go, and more.
- **Extended Technical Content Generation**: Ideal for writing documentation, research papers, and technical blogs.
### **Limitations**
1. **High Computational Demand**: Requires powerful GPUs/TPUs for smooth inference due to **14B parameters**.
2. **Language-Specific Variability**: Performance may vary across different programming languages.
3. **Possible Error Propagation**: Extended text outputs might introduce logical inconsistencies.
4. **Limited Real-World Awareness**: The model does not have access to real-time internet updates.
5. **Prompt Sensitivity**: Performance depends on how well the prompt is structured.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Viper-Coder-v1.1-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FViper-Coder-v1.1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 40.26|
|IFEval (0-Shot) | 44.32|
|BBH (3-Shot) | 49.27|
|MATH Lvl 5 (4-Shot)| 54.61|
|GPQA (0-shot) | 20.13|
|MuSR (0-shot) | 26.21|
|MMLU-PRO (5-shot) | 47.02| |