File size: 6,200 Bytes
d53f229
 
 
 
589597d
 
 
 
 
 
 
ebca1d4
589597d
 
ebca1d4
08b568f
589597d
 
 
 
 
 
 
43e5829
 
 
b42f6ca
 
589597d
08b568f
 
 
 
 
 
 
 
 
 
 
 
 
589597d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb33c72
 
ce32ed8
eb33c72
 
ce32ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb33c72
 
ce32ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb33c72
ce32ed8
eb33c72
589597d
 
 
 
 
 
 
ce32ed8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: apache-2.0
datasets:
- qwertyforce/scenery_watermarks
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- Image-Classification
- Watermark-Detection
- SigLIP2

---

![5.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/VXSOLkmcLM1t6XhTcYXUh.png)

# **Watermark-Detection-SigLIP2**

> **Watermark-Detection-SigLIP2** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is trained to detect whether an image **contains a watermark or not**, using the **SiglipForImageClassification** architecture.

> [!note]
> Watermark detection works best with crisp and high-quality images. Noisy images are not recommended for validation.

> [!note]
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786

```py
Classification Report:
              precision    recall  f1-score   support

No Watermark     0.9290    0.9722    0.9501     12779
   Watermark     0.9622    0.9048    0.9326      9983

    accuracy                         0.9427     22762
   macro avg     0.9456    0.9385    0.9414     22762
weighted avg     0.9435    0.9427    0.9424     22762
```

![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/_rKqtbSJbglsRiXmRF1ij.png)

---

## **Label Space: 2 Classes**

The model classifies an image as either:

```
Class 0: "No Watermark"
Class 1: "Watermark"
```

---

## **Install dependencies**

```bash
pip install -q transformers torch pillow gradio
```

---

## **Inference Code**

```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/Watermark-Detection-SigLIP2"  # Update this if using a different path
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# Label mapping
id2label = {
    "0": "No Watermark",
    "1": "Watermark"
}

def classify_watermark(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")
    
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
    
    prediction = {
        id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
    }

    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=classify_watermark,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Watermark Detection"),
    title="Watermark-Detection-SigLIP2",
    description="Upload an image to detect whether it contains a watermark."
)

if __name__ == "__main__":
    iface.launch()
```

---

## **Demo Inference**

> [!Warning]
> Watermark

<table>
  <tr>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/sm062kFE7QJiLisTTjNwv.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/UFymm_tzVRmov6vn_cElE.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bPzPAK-Mib8nFhHCkjD2B.png" width="300"/></td>
  </tr>
  <tr>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4fP8SBIYofKEeDBU0klQ2.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/wD5M4YgyQGk9-QLFjMcn9.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yg0q88-0S4k4FUS4-qGNw.png" width="300"/></td>
  </tr>
  <tr>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/WhRkeYw8-wIgldpaz0E4m.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Uhb1zBxQV_5CWLoyTAMmD.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/7hnLD2b0f7B7edwgx_eOR.png" width="300"/></td>
  </tr>
</table>

> [!Warning]
> No Watermark

<table>
  <tr>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/edyFBIETs3Dosn1edpGZ8.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3bRMcr2r0k00mMkthbYDW.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/eeMLQEg4r89f9owe8jSij.png" width="300"/></td>
  </tr>
  <tr>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/45jk4dvZk1wT3L7cprqql.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mrkm0JXXgSQVXi0_d7EKH.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/f_5R7Inb8I-32hWJchkgj.png" width="300"/></td>
  </tr>
  <tr>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qIUTSy8SuJEsRkYGd0L5d.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/DnlNo9lM4mBNUjlexKLVa.png" width="300"/></td>
    <td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bs4oyaapW8mi0lizOqWSf.png" width="300"/></td>
  </tr>
</table>

---

## **Intended Use**

**Watermark-Detection-SigLIP2** is useful in scenarios such as:

- **Content Moderation** – Automatically detect watermarked content on image sharing platforms.
- **Dataset Cleaning** – Filter out watermarked images from training datasets.
- **Copyright Enforcement** – Monitor and flag usage of watermarked media.
- **Digital Forensics** – Support analysis of tampered or protected media assets.