Update README.md
Browse files
README.md
CHANGED
@@ -3,6 +3,12 @@ license: apache-2.0
|
|
3 |
datasets:
|
4 |
- strangerguardhf/NSFW-MultiDomain-Classification-v2.0
|
5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
```py
|
8 |
Classification Report:
|
@@ -20,3 +26,85 @@ Extincing & Sensual 0.9245 0.9717 0.9475 5618
|
|
20 |
```
|
21 |
|
22 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
datasets:
|
4 |
- strangerguardhf/NSFW-MultiDomain-Classification-v2.0
|
5 |
---
|
6 |
+
# **vit-mini-explicit-content**
|
7 |
+
|
8 |
+
> **vit-mini-explicit-content** is an image classification vision-language model fine-tuned from **vit-base-patch16-224-in21k** for a single-label classification task. It categorizes images based on their explicitness using the **ViTForImageClassification** architecture.
|
9 |
+
|
10 |
+
> \[!Note]
|
11 |
+
> This model is designed to promote safe, respectful, and responsible online spaces. It does **not** generate explicit content; it only classifies images. Misuse may violate platform or regional policies and is strongly discouraged.
|
12 |
|
13 |
```py
|
14 |
Classification Report:
|
|
|
26 |
```
|
27 |
|
28 |

|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
The model categorizes images into five classes:
|
33 |
+
|
34 |
+
* **Class 0:** Anime Picture
|
35 |
+
* **Class 1:** Enticing & Sensual
|
36 |
+
* **Class 2:** Hentai
|
37 |
+
* **Class 3:** Pornography
|
38 |
+
* **Class 4:** Safe for Work
|
39 |
+
|
40 |
+
# **Run with Transformers 🤗**
|
41 |
+
|
42 |
+
```python
|
43 |
+
!pip install -q transformers torch pillow gradio
|
44 |
+
```
|
45 |
+
|
46 |
+
```python
|
47 |
+
import gradio as gr
|
48 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
49 |
+
from PIL import Image
|
50 |
+
import torch
|
51 |
+
|
52 |
+
# Load model and processor
|
53 |
+
model_name = "prithivMLmods/vit-mini-explicit-content" # Updated model path
|
54 |
+
model = ViTForImageClassification.from_pretrained(model_name)
|
55 |
+
processor = ViTImageProcessor.from_pretrained(model_name)
|
56 |
+
|
57 |
+
# Updated label mapping
|
58 |
+
labels = {
|
59 |
+
"0": "Anime Picture",
|
60 |
+
"1": "Enticing & Sensual",
|
61 |
+
"2": "Hentai",
|
62 |
+
"3": "Pornography",
|
63 |
+
"4": "Safe for Work"
|
64 |
+
}
|
65 |
+
|
66 |
+
def explicit_content_detection(image):
|
67 |
+
"""Predicts the type of content in the image."""
|
68 |
+
image = Image.fromarray(image).convert("RGB")
|
69 |
+
inputs = processor(images=image, return_tensors="pt")
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model(**inputs)
|
73 |
+
logits = outputs.logits
|
74 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
75 |
+
|
76 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
77 |
+
|
78 |
+
return predictions
|
79 |
+
|
80 |
+
# Create Gradio interface
|
81 |
+
iface = gr.Interface(
|
82 |
+
fn=explicit_content_detection,
|
83 |
+
inputs=gr.Image(type="numpy"),
|
84 |
+
outputs=gr.Label(label="Prediction Scores"),
|
85 |
+
title="vit-mini-explicit-content",
|
86 |
+
description="Upload an image to classify whether it is anime, enticing & sensual, hentai, pornographic, or safe for work."
|
87 |
+
)
|
88 |
+
|
89 |
+
# Launch the app
|
90 |
+
if __name__ == "__main__":
|
91 |
+
iface.launch()
|
92 |
+
```
|
93 |
+
|
94 |
+
---
|
95 |
+
|
96 |
+
# **Recommended Use Cases**
|
97 |
+
|
98 |
+
* Image moderation pipelines
|
99 |
+
* Parental and institutional content filters
|
100 |
+
* Dataset cleansing before training
|
101 |
+
* Online safety and well-being platforms
|
102 |
+
* Enhancing search engine filtering
|
103 |
+
|
104 |
+
# **Discouraged / Prohibited Use**
|
105 |
+
|
106 |
+
* Non-consensual or malicious monitoring
|
107 |
+
* Automated judgments without human review
|
108 |
+
* Misrepresentation of moderation systems
|
109 |
+
* Use in unlawful or unethical surveillance
|
110 |
+
* Harassment, exploitation, or shaming
|