ziansu commited on
Commit
7cd51e4
·
verified ·
1 Parent(s): 369490d

Training in progress, step 950, checkpoint

Browse files
checkpoint-950/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-950/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "gate_up_proj",
27
+ "qkv_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-950/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e08273ceb712f08a2815122661d2d7d01011b88901c1ac1edf823bc23d8f9040
3
+ size 25200088
checkpoint-950/global_step950/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d52cfd87e3745b1269961a75afa4727b8da8675093f9a2083fef1981b99049e
3
+ size 18881328
checkpoint-950/global_step950/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4058b296625f4248b5a33cd4d0242e2484a36796b6d54952bee608c6bf56eb96
3
+ size 18881328
checkpoint-950/global_step950/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03ccfe8d3dbfc2fba02ef91c0dfaefa87b8837e770d0d04bd681e2e4e800645
3
+ size 18881328
checkpoint-950/global_step950/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47d32776440d3c919c3ab00e7ca497e5eed38aa233b62f5435d422807806e247
3
+ size 18881392
checkpoint-950/global_step950/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36da07bab678700648597f580aedd49be3d1de6b54d2b9210a8faa93b54e8a33
3
+ size 18881392
checkpoint-950/global_step950/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a729ac1f820da907722e8a5d0108d05f4a07b793e92d83eaa2a614bda589fd9
3
+ size 18881392
checkpoint-950/global_step950/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7e1c9c930d613248c3976779ad24263a46ece12684e781a5799c4e6d50cb9e
3
+ size 18881392
checkpoint-950/global_step950/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01bff4f33860cba08d1d31820b66128a988a01a7870570383238679c2a20f98d
3
+ size 18881392
checkpoint-950/global_step950/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:553ecbfb0e635bcf723f910884245eb5ae56f0e0a91f1765e6f88e36c791fdf4
3
+ size 25379244
checkpoint-950/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step950
checkpoint-950/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc0b4819898a49cb50f6fb7bab4d801df3c0173ece6ef2ff38f36207597856d0
3
+ size 15984
checkpoint-950/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae28471a0a04a53d3ba94b6bbeb3d304fb092f7bb69e61fbcd60ade743970b87
3
+ size 15984
checkpoint-950/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f12ddc933576ec84d344c12bddeb7de08d5c44d45bf1bc029a542a7a06ff2adc
3
+ size 15984
checkpoint-950/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19328fcb03008873543059492b92b3800cb0049a38d31ca04fe302a8bf5456ad
3
+ size 15984
checkpoint-950/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7655a205ef4a9a18c7a399dbda37bb18fc5c674f87796d6d28102e102e54a9de
3
+ size 15984
checkpoint-950/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e69388d4203ea379b10a270c3adb691e4f32323504669b7636bf09f3404a904
3
+ size 15984
checkpoint-950/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46badbd50f32686ee554c7eb87f933665e9fed831942f21e950e87da676c9596
3
+ size 15984
checkpoint-950/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:662673c4fd4eeb350cb25f2d55ea54a71a5aa0fd48aff7b60e3a32e64b494e8e
3
+ size 15984
checkpoint-950/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:512e1e5e95d661cfadb7039d790a1233b423c22e8fec0c0e5f038c40be21d11e
3
+ size 1064
checkpoint-950/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-950/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-950/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-950/trainer_state.json ADDED
@@ -0,0 +1,1762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8436944937833037,
5
+ "eval_steps": 50,
6
+ "global_step": 950,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008880994671403197,
13
+ "grad_norm": 0.045356735587120056,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.352750778198242,
16
+ "logits/rejected": 14.82281494140625,
17
+ "logps/chosen": -0.2592294216156006,
18
+ "logps/rejected": -0.32852867245674133,
19
+ "loss": 0.9315,
20
+ "rewards/accuracies": 0.574999988079071,
21
+ "rewards/chosen": -0.38884416222572327,
22
+ "rewards/margins": 0.10394889116287231,
23
+ "rewards/rejected": -0.4927930235862732,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.017761989342806393,
28
+ "grad_norm": 0.05255189165472984,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.80792236328125,
31
+ "logits/rejected": 15.017183303833008,
32
+ "logps/chosen": -0.2825874388217926,
33
+ "logps/rejected": -0.36373966932296753,
34
+ "loss": 0.9318,
35
+ "rewards/accuracies": 0.5249999761581421,
36
+ "rewards/chosen": -0.4238811433315277,
37
+ "rewards/margins": 0.12172831594944,
38
+ "rewards/rejected": -0.5456094741821289,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.02664298401420959,
43
+ "grad_norm": 0.056027185171842575,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.45336627960205,
46
+ "logits/rejected": 15.261484146118164,
47
+ "logps/chosen": -0.2638034522533417,
48
+ "logps/rejected": -0.37216562032699585,
49
+ "loss": 0.9211,
50
+ "rewards/accuracies": 0.6625000238418579,
51
+ "rewards/chosen": -0.3957051932811737,
52
+ "rewards/margins": 0.1625431776046753,
53
+ "rewards/rejected": -0.5582484006881714,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.035523978685612786,
58
+ "grad_norm": 0.06511653959751129,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.59851360321045,
61
+ "logits/rejected": 15.112770080566406,
62
+ "logps/chosen": -0.28972768783569336,
63
+ "logps/rejected": -0.36043626070022583,
64
+ "loss": 0.941,
65
+ "rewards/accuracies": 0.5375000238418579,
66
+ "rewards/chosen": -0.43459147214889526,
67
+ "rewards/margins": 0.10606291145086288,
68
+ "rewards/rejected": -0.5406544208526611,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04440497335701599,
73
+ "grad_norm": 0.0637577474117279,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.678179740905762,
76
+ "logits/rejected": 15.114399909973145,
77
+ "logps/chosen": -0.3033604919910431,
78
+ "logps/rejected": -0.3262741267681122,
79
+ "loss": 0.929,
80
+ "rewards/accuracies": 0.44999998807907104,
81
+ "rewards/chosen": -0.45504075288772583,
82
+ "rewards/margins": 0.03437047079205513,
83
+ "rewards/rejected": -0.4894111752510071,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04440497335701599,
88
+ "eval_logits/chosen": 14.936029434204102,
89
+ "eval_logits/rejected": 14.780267715454102,
90
+ "eval_logps/chosen": -0.29386037588119507,
91
+ "eval_logps/rejected": -0.3304942548274994,
92
+ "eval_loss": 0.9458721876144409,
93
+ "eval_rewards/accuracies": 0.49450549483299255,
94
+ "eval_rewards/chosen": -0.4407905340194702,
95
+ "eval_rewards/margins": 0.05495081841945648,
96
+ "eval_rewards/rejected": -0.49574142694473267,
97
+ "eval_runtime": 27.7436,
98
+ "eval_samples_per_second": 26.24,
99
+ "eval_steps_per_second": 3.28,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.05328596802841918,
104
+ "grad_norm": 0.06470987200737,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.19079303741455,
107
+ "logits/rejected": 14.986845016479492,
108
+ "logps/chosen": -0.26126712560653687,
109
+ "logps/rejected": -0.31976616382598877,
110
+ "loss": 0.9335,
111
+ "rewards/accuracies": 0.5,
112
+ "rewards/chosen": -0.3919006288051605,
113
+ "rewards/margins": 0.08774860948324203,
114
+ "rewards/rejected": -0.47964924573898315,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.06216696269982238,
119
+ "grad_norm": 0.06163545697927475,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.062408447265625,
122
+ "logits/rejected": 15.050743103027344,
123
+ "logps/chosen": -0.2698076367378235,
124
+ "logps/rejected": -0.37131980061531067,
125
+ "loss": 0.9234,
126
+ "rewards/accuracies": 0.6499999761581421,
127
+ "rewards/chosen": -0.4047114849090576,
128
+ "rewards/margins": 0.1522682160139084,
129
+ "rewards/rejected": -0.556979775428772,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.07104795737122557,
134
+ "grad_norm": 0.05943402647972107,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 14.523780822753906,
137
+ "logits/rejected": 15.173608779907227,
138
+ "logps/chosen": -0.2835150957107544,
139
+ "logps/rejected": -0.35379332304000854,
140
+ "loss": 0.9317,
141
+ "rewards/accuracies": 0.550000011920929,
142
+ "rewards/chosen": -0.4252726137638092,
143
+ "rewards/margins": 0.10541732609272003,
144
+ "rewards/rejected": -0.5306899547576904,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07992895204262877,
149
+ "grad_norm": 0.05566830188035965,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 14.752237319946289,
152
+ "logits/rejected": 15.213434219360352,
153
+ "logps/chosen": -0.25490278005599976,
154
+ "logps/rejected": -0.31673288345336914,
155
+ "loss": 0.9276,
156
+ "rewards/accuracies": 0.5625,
157
+ "rewards/chosen": -0.38235417008399963,
158
+ "rewards/margins": 0.09274514764547348,
159
+ "rewards/rejected": -0.4750993847846985,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08880994671403197,
164
+ "grad_norm": 0.07879115641117096,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.362078666687012,
167
+ "logits/rejected": 14.708786010742188,
168
+ "logps/chosen": -0.27969443798065186,
169
+ "logps/rejected": -0.3294224143028259,
170
+ "loss": 0.9448,
171
+ "rewards/accuracies": 0.5249999761581421,
172
+ "rewards/chosen": -0.41954168677330017,
173
+ "rewards/margins": 0.0745919868350029,
174
+ "rewards/rejected": -0.4941336512565613,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08880994671403197,
179
+ "eval_logits/chosen": 14.668691635131836,
180
+ "eval_logits/rejected": 14.53217601776123,
181
+ "eval_logps/chosen": -0.2837528884410858,
182
+ "eval_logps/rejected": -0.33105531334877014,
183
+ "eval_loss": 0.9382757544517517,
184
+ "eval_rewards/accuracies": 0.5164835453033447,
185
+ "eval_rewards/chosen": -0.4256293475627899,
186
+ "eval_rewards/margins": 0.07095365226268768,
187
+ "eval_rewards/rejected": -0.4965830445289612,
188
+ "eval_runtime": 26.9204,
189
+ "eval_samples_per_second": 27.043,
190
+ "eval_steps_per_second": 3.38,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.09769094138543517,
195
+ "grad_norm": 0.0677201971411705,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 14.2677640914917,
198
+ "logits/rejected": 14.437828063964844,
199
+ "logps/chosen": -0.26914283633232117,
200
+ "logps/rejected": -0.3498677909374237,
201
+ "loss": 0.9307,
202
+ "rewards/accuracies": 0.5874999761581421,
203
+ "rewards/chosen": -0.40371423959732056,
204
+ "rewards/margins": 0.12108743190765381,
205
+ "rewards/rejected": -0.5248016715049744,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.10657193605683836,
210
+ "grad_norm": 0.08429163694381714,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 13.978253364562988,
213
+ "logits/rejected": 14.673884391784668,
214
+ "logps/chosen": -0.2842218279838562,
215
+ "logps/rejected": -0.35421326756477356,
216
+ "loss": 0.9046,
217
+ "rewards/accuracies": 0.574999988079071,
218
+ "rewards/chosen": -0.4263327121734619,
219
+ "rewards/margins": 0.10498716682195663,
220
+ "rewards/rejected": -0.5313198566436768,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.11545293072824156,
225
+ "grad_norm": 0.08969741314649582,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 13.98906135559082,
228
+ "logits/rejected": 14.70555305480957,
229
+ "logps/chosen": -0.26557397842407227,
230
+ "logps/rejected": -0.3823702037334442,
231
+ "loss": 0.9151,
232
+ "rewards/accuracies": 0.6000000238418579,
233
+ "rewards/chosen": -0.3983609974384308,
234
+ "rewards/margins": 0.1751943826675415,
235
+ "rewards/rejected": -0.5735553503036499,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.12433392539964476,
240
+ "grad_norm": 0.10470724105834961,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 13.948530197143555,
243
+ "logits/rejected": 14.77311897277832,
244
+ "logps/chosen": -0.2675064504146576,
245
+ "logps/rejected": -0.3631269335746765,
246
+ "loss": 0.9053,
247
+ "rewards/accuracies": 0.6000000238418579,
248
+ "rewards/chosen": -0.4012596607208252,
249
+ "rewards/margins": 0.14343078434467316,
250
+ "rewards/rejected": -0.5446904301643372,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.13321492007104796,
255
+ "grad_norm": 0.09238290041685104,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 12.939355850219727,
258
+ "logits/rejected": 13.387840270996094,
259
+ "logps/chosen": -0.27794820070266724,
260
+ "logps/rejected": -0.3520648777484894,
261
+ "loss": 0.9097,
262
+ "rewards/accuracies": 0.5375000238418579,
263
+ "rewards/chosen": -0.41692233085632324,
264
+ "rewards/margins": 0.11117497831583023,
265
+ "rewards/rejected": -0.5280972719192505,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.13321492007104796,
270
+ "eval_logits/chosen": 13.123927116394043,
271
+ "eval_logits/rejected": 13.085403442382812,
272
+ "eval_logps/chosen": -0.28104570508003235,
273
+ "eval_logps/rejected": -0.3562033474445343,
274
+ "eval_loss": 0.9194123148918152,
275
+ "eval_rewards/accuracies": 0.5824176073074341,
276
+ "eval_rewards/chosen": -0.42156851291656494,
277
+ "eval_rewards/margins": 0.11273646354675293,
278
+ "eval_rewards/rejected": -0.5343050360679626,
279
+ "eval_runtime": 26.928,
280
+ "eval_samples_per_second": 27.035,
281
+ "eval_steps_per_second": 3.379,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.14209591474245115,
286
+ "grad_norm": 0.14459910988807678,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 11.937938690185547,
289
+ "logits/rejected": 13.300163269042969,
290
+ "logps/chosen": -0.24840429425239563,
291
+ "logps/rejected": -0.4205872118473053,
292
+ "loss": 0.8929,
293
+ "rewards/accuracies": 0.6000000238418579,
294
+ "rewards/chosen": -0.37260642647743225,
295
+ "rewards/margins": 0.2582743763923645,
296
+ "rewards/rejected": -0.6308808326721191,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.15097690941385436,
301
+ "grad_norm": 0.13749755918979645,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 12.549962997436523,
304
+ "logits/rejected": 12.858027458190918,
305
+ "logps/chosen": -0.2944340109825134,
306
+ "logps/rejected": -0.38480544090270996,
307
+ "loss": 0.895,
308
+ "rewards/accuracies": 0.625,
309
+ "rewards/chosen": -0.44165101647377014,
310
+ "rewards/margins": 0.1355571448802948,
311
+ "rewards/rejected": -0.5772081613540649,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.15985790408525755,
316
+ "grad_norm": 0.14530803263187408,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 10.892537117004395,
319
+ "logits/rejected": 11.756756782531738,
320
+ "logps/chosen": -0.2693363130092621,
321
+ "logps/rejected": -0.3874126374721527,
322
+ "loss": 0.8801,
323
+ "rewards/accuracies": 0.5625,
324
+ "rewards/chosen": -0.4040044844150543,
325
+ "rewards/margins": 0.17711447179317474,
326
+ "rewards/rejected": -0.5811189413070679,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.16873889875666073,
331
+ "grad_norm": 0.20053793489933014,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 9.238119125366211,
334
+ "logits/rejected": 10.233763694763184,
335
+ "logps/chosen": -0.269479900598526,
336
+ "logps/rejected": -0.4149019122123718,
337
+ "loss": 0.8776,
338
+ "rewards/accuracies": 0.6499999761581421,
339
+ "rewards/chosen": -0.4042198657989502,
340
+ "rewards/margins": 0.21813304722309113,
341
+ "rewards/rejected": -0.6223528385162354,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.17761989342806395,
346
+ "grad_norm": 0.20254959166049957,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 9.261235237121582,
349
+ "logits/rejected": 9.7451753616333,
350
+ "logps/chosen": -0.29611462354660034,
351
+ "logps/rejected": -0.44530659914016724,
352
+ "loss": 0.8596,
353
+ "rewards/accuracies": 0.5874999761581421,
354
+ "rewards/chosen": -0.4441719651222229,
355
+ "rewards/margins": 0.22378793358802795,
356
+ "rewards/rejected": -0.6679598689079285,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.17761989342806395,
361
+ "eval_logits/chosen": 8.231317520141602,
362
+ "eval_logits/rejected": 8.285564422607422,
363
+ "eval_logps/chosen": -0.3201982080936432,
364
+ "eval_logps/rejected": -0.4862101078033447,
365
+ "eval_loss": 0.8602121472358704,
366
+ "eval_rewards/accuracies": 0.6153846383094788,
367
+ "eval_rewards/chosen": -0.480297327041626,
368
+ "eval_rewards/margins": 0.2490178644657135,
369
+ "eval_rewards/rejected": -0.7293152213096619,
370
+ "eval_runtime": 26.9054,
371
+ "eval_samples_per_second": 27.058,
372
+ "eval_steps_per_second": 3.382,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.18650088809946713,
377
+ "grad_norm": 0.25219231843948364,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 7.822943687438965,
380
+ "logits/rejected": 8.847550392150879,
381
+ "logps/chosen": -0.3111446797847748,
382
+ "logps/rejected": -0.5253105163574219,
383
+ "loss": 0.8553,
384
+ "rewards/accuracies": 0.625,
385
+ "rewards/chosen": -0.46671706438064575,
386
+ "rewards/margins": 0.3212486803531647,
387
+ "rewards/rejected": -0.787965714931488,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.19538188277087035,
392
+ "grad_norm": 0.29052653908729553,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 7.404467582702637,
395
+ "logits/rejected": 7.140469551086426,
396
+ "logps/chosen": -0.35531798005104065,
397
+ "logps/rejected": -0.4979163110256195,
398
+ "loss": 0.8204,
399
+ "rewards/accuracies": 0.574999988079071,
400
+ "rewards/chosen": -0.5329769849777222,
401
+ "rewards/margins": 0.21389751136302948,
402
+ "rewards/rejected": -0.7468745112419128,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.20426287744227353,
407
+ "grad_norm": 0.30769258737564087,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 5.096299648284912,
410
+ "logits/rejected": 5.143233299255371,
411
+ "logps/chosen": -0.3684440553188324,
412
+ "logps/rejected": -0.557721734046936,
413
+ "loss": 0.7884,
414
+ "rewards/accuracies": 0.612500011920929,
415
+ "rewards/chosen": -0.5526660084724426,
416
+ "rewards/margins": 0.2839165925979614,
417
+ "rewards/rejected": -0.8365826606750488,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.21314387211367672,
422
+ "grad_norm": 0.3165770471096039,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 5.376433372497559,
425
+ "logits/rejected": 4.738249778747559,
426
+ "logps/chosen": -0.4181212782859802,
427
+ "logps/rejected": -0.6782273054122925,
428
+ "loss": 0.7919,
429
+ "rewards/accuracies": 0.612500011920929,
430
+ "rewards/chosen": -0.627181887626648,
431
+ "rewards/margins": 0.39015907049179077,
432
+ "rewards/rejected": -1.0173410177230835,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.22202486678507993,
437
+ "grad_norm": 0.6854519844055176,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 3.3769917488098145,
440
+ "logits/rejected": 2.865615129470825,
441
+ "logps/chosen": -0.42344069480895996,
442
+ "logps/rejected": -0.8046137094497681,
443
+ "loss": 0.7456,
444
+ "rewards/accuracies": 0.675000011920929,
445
+ "rewards/chosen": -0.6351610422134399,
446
+ "rewards/margins": 0.5717595219612122,
447
+ "rewards/rejected": -1.2069203853607178,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.22202486678507993,
452
+ "eval_logits/chosen": 2.8929049968719482,
453
+ "eval_logits/rejected": 2.0500316619873047,
454
+ "eval_logps/chosen": -0.46059882640838623,
455
+ "eval_logps/rejected": -0.8680218458175659,
456
+ "eval_loss": 0.7499477863311768,
457
+ "eval_rewards/accuracies": 0.6373626589775085,
458
+ "eval_rewards/chosen": -0.6908981204032898,
459
+ "eval_rewards/margins": 0.6111345887184143,
460
+ "eval_rewards/rejected": -1.3020328283309937,
461
+ "eval_runtime": 26.9489,
462
+ "eval_samples_per_second": 27.014,
463
+ "eval_steps_per_second": 3.377,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.23090586145648312,
468
+ "grad_norm": 1.4715200662612915,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 1.1702392101287842,
471
+ "logits/rejected": 0.6887636184692383,
472
+ "logps/chosen": -0.4449438154697418,
473
+ "logps/rejected": -1.0861380100250244,
474
+ "loss": 0.6853,
475
+ "rewards/accuracies": 0.7749999761581421,
476
+ "rewards/chosen": -0.6674157381057739,
477
+ "rewards/margins": 0.9617912173271179,
478
+ "rewards/rejected": -1.6292070150375366,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.23978685612788633,
483
+ "grad_norm": 1.1773816347122192,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 2.005816698074341,
486
+ "logits/rejected": 0.7508751749992371,
487
+ "logps/chosen": -0.520461916923523,
488
+ "logps/rejected": -1.2372539043426514,
489
+ "loss": 0.6514,
490
+ "rewards/accuracies": 0.7124999761581421,
491
+ "rewards/chosen": -0.7806928157806396,
492
+ "rewards/margins": 1.0751880407333374,
493
+ "rewards/rejected": -1.8558809757232666,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.24866785079928952,
498
+ "grad_norm": 0.4426538348197937,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 1.3614282608032227,
501
+ "logits/rejected": 0.17441503703594208,
502
+ "logps/chosen": -0.628559410572052,
503
+ "logps/rejected": -1.3841784000396729,
504
+ "loss": 0.6447,
505
+ "rewards/accuracies": 0.612500011920929,
506
+ "rewards/chosen": -0.9428391456604004,
507
+ "rewards/margins": 1.1334283351898193,
508
+ "rewards/rejected": -2.076267719268799,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.25754884547069273,
513
+ "grad_norm": 0.781704843044281,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 2.0829949378967285,
516
+ "logits/rejected": 1.0815263986587524,
517
+ "logps/chosen": -0.6394428014755249,
518
+ "logps/rejected": -1.8771930932998657,
519
+ "loss": 0.5863,
520
+ "rewards/accuracies": 0.6875,
521
+ "rewards/chosen": -0.9591643214225769,
522
+ "rewards/margins": 1.8566251993179321,
523
+ "rewards/rejected": -2.8157896995544434,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.2664298401420959,
528
+ "grad_norm": 1.1327613592147827,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 1.197505235671997,
531
+ "logits/rejected": 0.16260084509849548,
532
+ "logps/chosen": -0.6966903805732727,
533
+ "logps/rejected": -2.2350592613220215,
534
+ "loss": 0.5354,
535
+ "rewards/accuracies": 0.75,
536
+ "rewards/chosen": -1.0450356006622314,
537
+ "rewards/margins": 2.30755352973938,
538
+ "rewards/rejected": -3.3525891304016113,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.2664298401420959,
543
+ "eval_logits/chosen": 1.2078615427017212,
544
+ "eval_logits/rejected": 0.2717524468898773,
545
+ "eval_logps/chosen": -0.7531170845031738,
546
+ "eval_logps/rejected": -2.0594394207000732,
547
+ "eval_loss": 0.5640697479248047,
548
+ "eval_rewards/accuracies": 0.6703296899795532,
549
+ "eval_rewards/chosen": -1.1296755075454712,
550
+ "eval_rewards/margins": 1.9594837427139282,
551
+ "eval_rewards/rejected": -3.0891592502593994,
552
+ "eval_runtime": 26.9506,
553
+ "eval_samples_per_second": 27.012,
554
+ "eval_steps_per_second": 3.377,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.2753108348134991,
559
+ "grad_norm": 0.8920393586158752,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.12120521068573,
562
+ "logits/rejected": 0.3509993851184845,
563
+ "logps/chosen": -0.7844308018684387,
564
+ "logps/rejected": -2.2886409759521484,
565
+ "loss": 0.5357,
566
+ "rewards/accuracies": 0.6875,
567
+ "rewards/chosen": -1.176646113395691,
568
+ "rewards/margins": 2.256315231323242,
569
+ "rewards/rejected": -3.4329617023468018,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.2841918294849023,
574
+ "grad_norm": 0.6658002734184265,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 1.750349760055542,
577
+ "logits/rejected": 0.7707412242889404,
578
+ "logps/chosen": -0.7995473146438599,
579
+ "logps/rejected": -2.2184109687805176,
580
+ "loss": 0.5412,
581
+ "rewards/accuracies": 0.6625000238418579,
582
+ "rewards/chosen": -1.199320912361145,
583
+ "rewards/margins": 2.128295421600342,
584
+ "rewards/rejected": -3.3276162147521973,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.29307282415630553,
589
+ "grad_norm": 1.2708265781402588,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 1.8776671886444092,
592
+ "logits/rejected": 1.2588229179382324,
593
+ "logps/chosen": -0.894809901714325,
594
+ "logps/rejected": -2.4718618392944336,
595
+ "loss": 0.5502,
596
+ "rewards/accuracies": 0.675000011920929,
597
+ "rewards/chosen": -1.342214822769165,
598
+ "rewards/margins": 2.3655781745910645,
599
+ "rewards/rejected": -3.7077927589416504,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.3019538188277087,
604
+ "grad_norm": 1.2345410585403442,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.9461545944213867,
607
+ "logits/rejected": 0.9410673975944519,
608
+ "logps/chosen": -0.891791045665741,
609
+ "logps/rejected": -2.2217679023742676,
610
+ "loss": 0.5519,
611
+ "rewards/accuracies": 0.637499988079071,
612
+ "rewards/chosen": -1.3376867771148682,
613
+ "rewards/margins": 1.9949653148651123,
614
+ "rewards/rejected": -3.3326523303985596,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.3108348134991119,
619
+ "grad_norm": 11.159003257751465,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 2.396707534790039,
622
+ "logits/rejected": 1.4882147312164307,
623
+ "logps/chosen": -1.1443694829940796,
624
+ "logps/rejected": -2.867492914199829,
625
+ "loss": 0.4806,
626
+ "rewards/accuracies": 0.7124999761581421,
627
+ "rewards/chosen": -1.7165542840957642,
628
+ "rewards/margins": 2.5846848487854004,
629
+ "rewards/rejected": -4.301239490509033,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.3108348134991119,
634
+ "eval_logits/chosen": 1.7898317575454712,
635
+ "eval_logits/rejected": 1.109007477760315,
636
+ "eval_logps/chosen": -1.3312609195709229,
637
+ "eval_logps/rejected": -3.0454280376434326,
638
+ "eval_loss": 0.4698469638824463,
639
+ "eval_rewards/accuracies": 0.8131868243217468,
640
+ "eval_rewards/chosen": -1.9968912601470947,
641
+ "eval_rewards/margins": 2.5712504386901855,
642
+ "eval_rewards/rejected": -4.568141937255859,
643
+ "eval_runtime": 26.9108,
644
+ "eval_samples_per_second": 27.052,
645
+ "eval_steps_per_second": 3.382,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.3197158081705151,
650
+ "grad_norm": 2.2653048038482666,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 0.36641037464141846,
653
+ "logits/rejected": -0.4621815085411072,
654
+ "logps/chosen": -1.5972144603729248,
655
+ "logps/rejected": -3.1685004234313965,
656
+ "loss": 0.472,
657
+ "rewards/accuracies": 0.7875000238418579,
658
+ "rewards/chosen": -2.3958218097686768,
659
+ "rewards/margins": 2.356929063796997,
660
+ "rewards/rejected": -4.752750396728516,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.3285968028419183,
665
+ "grad_norm": 2.6831283569335938,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 1.18975830078125,
668
+ "logits/rejected": 0.7668083310127258,
669
+ "logps/chosen": -2.1462299823760986,
670
+ "logps/rejected": -3.7489593029022217,
671
+ "loss": 0.4169,
672
+ "rewards/accuracies": 0.8374999761581421,
673
+ "rewards/chosen": -3.2193446159362793,
674
+ "rewards/margins": 2.4040939807891846,
675
+ "rewards/rejected": -5.623438835144043,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.33747779751332146,
680
+ "grad_norm": 3.5498828887939453,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 1.8030259609222412,
683
+ "logits/rejected": 1.4276998043060303,
684
+ "logps/chosen": -2.189352512359619,
685
+ "logps/rejected": -3.8717925548553467,
686
+ "loss": 0.4156,
687
+ "rewards/accuracies": 0.8500000238418579,
688
+ "rewards/chosen": -3.2840285301208496,
689
+ "rewards/margins": 2.523660182952881,
690
+ "rewards/rejected": -5.807689189910889,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.3463587921847247,
695
+ "grad_norm": 1.46839439868927,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 2.2764127254486084,
698
+ "logits/rejected": 1.9199844598770142,
699
+ "logps/chosen": -2.4463610649108887,
700
+ "logps/rejected": -4.317194938659668,
701
+ "loss": 0.4085,
702
+ "rewards/accuracies": 0.862500011920929,
703
+ "rewards/chosen": -3.669541597366333,
704
+ "rewards/margins": 2.806250810623169,
705
+ "rewards/rejected": -6.475791931152344,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3552397868561279,
710
+ "grad_norm": 1.6744616031646729,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 2.0364136695861816,
713
+ "logits/rejected": 1.4645214080810547,
714
+ "logps/chosen": -2.5738539695739746,
715
+ "logps/rejected": -4.41655158996582,
716
+ "loss": 0.3723,
717
+ "rewards/accuracies": 0.887499988079071,
718
+ "rewards/chosen": -3.8607802391052246,
719
+ "rewards/margins": 2.764047145843506,
720
+ "rewards/rejected": -6.6248273849487305,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3552397868561279,
725
+ "eval_logits/chosen": 2.0340981483459473,
726
+ "eval_logits/rejected": 1.376452922821045,
727
+ "eval_logps/chosen": -2.6443424224853516,
728
+ "eval_logps/rejected": -4.638274192810059,
729
+ "eval_loss": 0.38738909363746643,
730
+ "eval_rewards/accuracies": 0.901098906993866,
731
+ "eval_rewards/chosen": -3.9665138721466064,
732
+ "eval_rewards/margins": 2.9908969402313232,
733
+ "eval_rewards/rejected": -6.95741081237793,
734
+ "eval_runtime": 26.943,
735
+ "eval_samples_per_second": 27.02,
736
+ "eval_steps_per_second": 3.377,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.3641207815275311,
741
+ "grad_norm": 24.103384017944336,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 1.3653905391693115,
744
+ "logits/rejected": 0.7307125329971313,
745
+ "logps/chosen": -2.450911045074463,
746
+ "logps/rejected": -4.609705924987793,
747
+ "loss": 0.4031,
748
+ "rewards/accuracies": 0.8999999761581421,
749
+ "rewards/chosen": -3.6763663291931152,
750
+ "rewards/margins": 3.2381927967071533,
751
+ "rewards/rejected": -6.914559364318848,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.37300177619893427,
756
+ "grad_norm": 2.102792263031006,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 1.6425203084945679,
759
+ "logits/rejected": 0.9890750050544739,
760
+ "logps/chosen": -2.1248934268951416,
761
+ "logps/rejected": -3.8592541217803955,
762
+ "loss": 0.3609,
763
+ "rewards/accuracies": 0.862500011920929,
764
+ "rewards/chosen": -3.187340497970581,
765
+ "rewards/margins": 2.601541042327881,
766
+ "rewards/rejected": -5.788880825042725,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.38188277087033745,
771
+ "grad_norm": 2.970210552215576,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 2.258129358291626,
774
+ "logits/rejected": 1.7126191854476929,
775
+ "logps/chosen": -2.9822497367858887,
776
+ "logps/rejected": -4.995323657989502,
777
+ "loss": 0.3669,
778
+ "rewards/accuracies": 0.8500000238418579,
779
+ "rewards/chosen": -4.473374366760254,
780
+ "rewards/margins": 3.01961088180542,
781
+ "rewards/rejected": -7.492985725402832,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.3907637655417407,
786
+ "grad_norm": 2.3307077884674072,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 1.5054914951324463,
789
+ "logits/rejected": 0.6257806420326233,
790
+ "logps/chosen": -3.2783126831054688,
791
+ "logps/rejected": -5.625805854797363,
792
+ "loss": 0.3428,
793
+ "rewards/accuracies": 0.925000011920929,
794
+ "rewards/chosen": -4.917469024658203,
795
+ "rewards/margins": 3.521239757537842,
796
+ "rewards/rejected": -8.438708305358887,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3996447602131439,
801
+ "grad_norm": 3.2838215827941895,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 1.711268424987793,
804
+ "logits/rejected": 1.4157356023788452,
805
+ "logps/chosen": -3.0163674354553223,
806
+ "logps/rejected": -5.020781517028809,
807
+ "loss": 0.3589,
808
+ "rewards/accuracies": 0.8500000238418579,
809
+ "rewards/chosen": -4.524550437927246,
810
+ "rewards/margins": 3.006621837615967,
811
+ "rewards/rejected": -7.531172752380371,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3996447602131439,
816
+ "eval_logits/chosen": 2.209981679916382,
817
+ "eval_logits/rejected": 1.6256438493728638,
818
+ "eval_logps/chosen": -2.841517925262451,
819
+ "eval_logps/rejected": -5.154296875,
820
+ "eval_loss": 0.35665163397789,
821
+ "eval_rewards/accuracies": 0.9120879173278809,
822
+ "eval_rewards/chosen": -4.262276649475098,
823
+ "eval_rewards/margins": 3.4691689014434814,
824
+ "eval_rewards/rejected": -7.7314453125,
825
+ "eval_runtime": 26.9493,
826
+ "eval_samples_per_second": 27.014,
827
+ "eval_steps_per_second": 3.377,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.40852575488454707,
832
+ "grad_norm": 3.4476094245910645,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 1.3581907749176025,
835
+ "logits/rejected": 0.8621677160263062,
836
+ "logps/chosen": -2.831627130508423,
837
+ "logps/rejected": -5.023026943206787,
838
+ "loss": 0.3338,
839
+ "rewards/accuracies": 0.875,
840
+ "rewards/chosen": -4.247440338134766,
841
+ "rewards/margins": 3.287100315093994,
842
+ "rewards/rejected": -7.534541130065918,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.41740674955595025,
847
+ "grad_norm": 2.6653027534484863,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 1.8693492412567139,
850
+ "logits/rejected": 1.605238676071167,
851
+ "logps/chosen": -2.7347512245178223,
852
+ "logps/rejected": -5.385977745056152,
853
+ "loss": 0.3348,
854
+ "rewards/accuracies": 0.925000011920929,
855
+ "rewards/chosen": -4.1021270751953125,
856
+ "rewards/margins": 3.976839542388916,
857
+ "rewards/rejected": -8.07896614074707,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.42628774422735344,
862
+ "grad_norm": 6.658248424530029,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 1.8902003765106201,
865
+ "logits/rejected": 1.4942703247070312,
866
+ "logps/chosen": -3.1413326263427734,
867
+ "logps/rejected": -5.365391731262207,
868
+ "loss": 0.3171,
869
+ "rewards/accuracies": 0.862500011920929,
870
+ "rewards/chosen": -4.71199893951416,
871
+ "rewards/margins": 3.3360886573791504,
872
+ "rewards/rejected": -8.048087120056152,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.4351687388987567,
877
+ "grad_norm": 3.2576091289520264,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 2.301971673965454,
880
+ "logits/rejected": 1.5673840045928955,
881
+ "logps/chosen": -2.789170980453491,
882
+ "logps/rejected": -5.354689598083496,
883
+ "loss": 0.3238,
884
+ "rewards/accuracies": 0.925000011920929,
885
+ "rewards/chosen": -4.1837568283081055,
886
+ "rewards/margins": 3.8482773303985596,
887
+ "rewards/rejected": -8.032033920288086,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.44404973357015987,
892
+ "grad_norm": 5.094764709472656,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 2.506347179412842,
895
+ "logits/rejected": 2.2316441535949707,
896
+ "logps/chosen": -3.1029722690582275,
897
+ "logps/rejected": -5.757994651794434,
898
+ "loss": 0.3052,
899
+ "rewards/accuracies": 0.875,
900
+ "rewards/chosen": -4.654458522796631,
901
+ "rewards/margins": 3.9825336933135986,
902
+ "rewards/rejected": -8.636991500854492,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.44404973357015987,
907
+ "eval_logits/chosen": 2.332798480987549,
908
+ "eval_logits/rejected": 1.8098194599151611,
909
+ "eval_logps/chosen": -3.269892692565918,
910
+ "eval_logps/rejected": -5.909496307373047,
911
+ "eval_loss": 0.324949711561203,
912
+ "eval_rewards/accuracies": 0.9120879173278809,
913
+ "eval_rewards/chosen": -4.904839038848877,
914
+ "eval_rewards/margins": 3.9594056606292725,
915
+ "eval_rewards/rejected": -8.86424446105957,
916
+ "eval_runtime": 26.9415,
917
+ "eval_samples_per_second": 27.021,
918
+ "eval_steps_per_second": 3.378,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.45293072824156305,
923
+ "grad_norm": 4.973895072937012,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 1.1408557891845703,
926
+ "logits/rejected": 0.9078874588012695,
927
+ "logps/chosen": -3.2813212871551514,
928
+ "logps/rejected": -5.6853814125061035,
929
+ "loss": 0.3185,
930
+ "rewards/accuracies": 0.862500011920929,
931
+ "rewards/chosen": -4.9219818115234375,
932
+ "rewards/margins": 3.6060900688171387,
933
+ "rewards/rejected": -8.528071403503418,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.46181172291296624,
938
+ "grad_norm": 2.726701021194458,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 1.5950994491577148,
941
+ "logits/rejected": 1.124607801437378,
942
+ "logps/chosen": -3.333927631378174,
943
+ "logps/rejected": -6.0137128829956055,
944
+ "loss": 0.3148,
945
+ "rewards/accuracies": 0.875,
946
+ "rewards/chosen": -5.000891208648682,
947
+ "rewards/margins": 4.019678592681885,
948
+ "rewards/rejected": -9.020570755004883,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.4706927175843694,
953
+ "grad_norm": 4.8865556716918945,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 2.257068157196045,
956
+ "logits/rejected": 1.7986671924591064,
957
+ "logps/chosen": -3.1947333812713623,
958
+ "logps/rejected": -6.262570381164551,
959
+ "loss": 0.3191,
960
+ "rewards/accuracies": 0.9375,
961
+ "rewards/chosen": -4.792099952697754,
962
+ "rewards/margins": 4.601754665374756,
963
+ "rewards/rejected": -9.393855094909668,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.47957371225577267,
968
+ "grad_norm": 4.325016021728516,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 2.3096823692321777,
971
+ "logits/rejected": 1.7991451025009155,
972
+ "logps/chosen": -3.3641560077667236,
973
+ "logps/rejected": -6.142219543457031,
974
+ "loss": 0.276,
975
+ "rewards/accuracies": 0.8999999761581421,
976
+ "rewards/chosen": -5.046233654022217,
977
+ "rewards/margins": 4.167095184326172,
978
+ "rewards/rejected": -9.213329315185547,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.48845470692717585,
983
+ "grad_norm": 3.15216326713562,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 1.4415160417556763,
986
+ "logits/rejected": 1.1298859119415283,
987
+ "logps/chosen": -2.851362466812134,
988
+ "logps/rejected": -6.210903167724609,
989
+ "loss": 0.3257,
990
+ "rewards/accuracies": 0.9375,
991
+ "rewards/chosen": -4.277044296264648,
992
+ "rewards/margins": 5.039311408996582,
993
+ "rewards/rejected": -9.316354751586914,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.48845470692717585,
998
+ "eval_logits/chosen": 2.296088695526123,
999
+ "eval_logits/rejected": 1.8609188795089722,
1000
+ "eval_logps/chosen": -3.422206401824951,
1001
+ "eval_logps/rejected": -6.41662073135376,
1002
+ "eval_loss": 0.30456680059432983,
1003
+ "eval_rewards/accuracies": 0.9120879173278809,
1004
+ "eval_rewards/chosen": -5.133309841156006,
1005
+ "eval_rewards/margins": 4.491621971130371,
1006
+ "eval_rewards/rejected": -9.624931335449219,
1007
+ "eval_runtime": 26.9409,
1008
+ "eval_samples_per_second": 27.022,
1009
+ "eval_steps_per_second": 3.378,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.49733570159857904,
1014
+ "grad_norm": 3.456071615219116,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 1.6153348684310913,
1017
+ "logits/rejected": 1.1999633312225342,
1018
+ "logps/chosen": -3.450087785720825,
1019
+ "logps/rejected": -6.294098854064941,
1020
+ "loss": 0.3094,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -5.175131797790527,
1023
+ "rewards/margins": 4.266016960144043,
1024
+ "rewards/rejected": -9.44114875793457,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.5062166962699822,
1029
+ "grad_norm": 3.7813830375671387,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 2.5460948944091797,
1032
+ "logits/rejected": 2.240358829498291,
1033
+ "logps/chosen": -3.441761016845703,
1034
+ "logps/rejected": -6.200081825256348,
1035
+ "loss": 0.2967,
1036
+ "rewards/accuracies": 0.8374999761581421,
1037
+ "rewards/chosen": -5.1626410484313965,
1038
+ "rewards/margins": 4.137481212615967,
1039
+ "rewards/rejected": -9.300122261047363,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.5150976909413855,
1044
+ "grad_norm": 3.561509847640991,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 2.236506223678589,
1047
+ "logits/rejected": 2.0224223136901855,
1048
+ "logps/chosen": -3.6373534202575684,
1049
+ "logps/rejected": -6.733517646789551,
1050
+ "loss": 0.2781,
1051
+ "rewards/accuracies": 0.875,
1052
+ "rewards/chosen": -5.45603084564209,
1053
+ "rewards/margins": 4.6442461013793945,
1054
+ "rewards/rejected": -10.1002779006958,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.5239786856127886,
1059
+ "grad_norm": 2.540649175643921,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 1.9122869968414307,
1062
+ "logits/rejected": 1.8370224237442017,
1063
+ "logps/chosen": -3.241629123687744,
1064
+ "logps/rejected": -6.666001319885254,
1065
+ "loss": 0.2678,
1066
+ "rewards/accuracies": 0.9375,
1067
+ "rewards/chosen": -4.862443447113037,
1068
+ "rewards/margins": 5.1365580558776855,
1069
+ "rewards/rejected": -9.999002456665039,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.5328596802841918,
1074
+ "grad_norm": 2.05529522895813,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 1.9268839359283447,
1077
+ "logits/rejected": 1.4725837707519531,
1078
+ "logps/chosen": -3.7067363262176514,
1079
+ "logps/rejected": -6.972158908843994,
1080
+ "loss": 0.264,
1081
+ "rewards/accuracies": 0.9125000238418579,
1082
+ "rewards/chosen": -5.560103893280029,
1083
+ "rewards/margins": 4.898133754730225,
1084
+ "rewards/rejected": -10.458237648010254,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.5328596802841918,
1089
+ "eval_logits/chosen": 2.3668525218963623,
1090
+ "eval_logits/rejected": 1.9882280826568604,
1091
+ "eval_logps/chosen": -3.6040353775024414,
1092
+ "eval_logps/rejected": -6.91050386428833,
1093
+ "eval_loss": 0.29209136962890625,
1094
+ "eval_rewards/accuracies": 0.9120879173278809,
1095
+ "eval_rewards/chosen": -5.406052589416504,
1096
+ "eval_rewards/margins": 4.95970344543457,
1097
+ "eval_rewards/rejected": -10.365756034851074,
1098
+ "eval_runtime": 26.9486,
1099
+ "eval_samples_per_second": 27.014,
1100
+ "eval_steps_per_second": 3.377,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.5417406749555951,
1105
+ "grad_norm": 5.438882350921631,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 2.0183475017547607,
1108
+ "logits/rejected": 1.7007204294204712,
1109
+ "logps/chosen": -3.7757949829101562,
1110
+ "logps/rejected": -6.875540256500244,
1111
+ "loss": 0.2787,
1112
+ "rewards/accuracies": 0.9375,
1113
+ "rewards/chosen": -5.663692951202393,
1114
+ "rewards/margins": 4.6496171951293945,
1115
+ "rewards/rejected": -10.313310623168945,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.5506216696269982,
1120
+ "grad_norm": 6.464421272277832,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 1.8897826671600342,
1123
+ "logits/rejected": 1.6919243335723877,
1124
+ "logps/chosen": -3.738862991333008,
1125
+ "logps/rejected": -7.225765228271484,
1126
+ "loss": 0.296,
1127
+ "rewards/accuracies": 0.8999999761581421,
1128
+ "rewards/chosen": -5.6082940101623535,
1129
+ "rewards/margins": 5.230353355407715,
1130
+ "rewards/rejected": -10.83864688873291,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.5595026642984015,
1135
+ "grad_norm": 3.983937978744507,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 1.8497775793075562,
1138
+ "logits/rejected": 1.3537144660949707,
1139
+ "logps/chosen": -3.6511616706848145,
1140
+ "logps/rejected": -7.310211181640625,
1141
+ "loss": 0.2604,
1142
+ "rewards/accuracies": 0.949999988079071,
1143
+ "rewards/chosen": -5.476742267608643,
1144
+ "rewards/margins": 5.488574028015137,
1145
+ "rewards/rejected": -10.965316772460938,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5683836589698046,
1150
+ "grad_norm": 9.850502014160156,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 2.073599338531494,
1153
+ "logits/rejected": 1.3638606071472168,
1154
+ "logps/chosen": -4.1297831535339355,
1155
+ "logps/rejected": -7.344725131988525,
1156
+ "loss": 0.2868,
1157
+ "rewards/accuracies": 0.9125000238418579,
1158
+ "rewards/chosen": -6.194674491882324,
1159
+ "rewards/margins": 4.822413444519043,
1160
+ "rewards/rejected": -11.017088890075684,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5772646536412078,
1165
+ "grad_norm": 3.2157247066497803,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 1.492789387702942,
1168
+ "logits/rejected": 1.2012196779251099,
1169
+ "logps/chosen": -3.458716630935669,
1170
+ "logps/rejected": -6.776049613952637,
1171
+ "loss": 0.2489,
1172
+ "rewards/accuracies": 0.925000011920929,
1173
+ "rewards/chosen": -5.188075542449951,
1174
+ "rewards/margins": 4.975998878479004,
1175
+ "rewards/rejected": -10.164074897766113,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5772646536412078,
1180
+ "eval_logits/chosen": 2.4555883407592773,
1181
+ "eval_logits/rejected": 2.1057684421539307,
1182
+ "eval_logps/chosen": -3.6452677249908447,
1183
+ "eval_logps/rejected": -7.163515090942383,
1184
+ "eval_loss": 0.2778012156486511,
1185
+ "eval_rewards/accuracies": 0.901098906993866,
1186
+ "eval_rewards/chosen": -5.467901706695557,
1187
+ "eval_rewards/margins": 5.277371406555176,
1188
+ "eval_rewards/rejected": -10.745272636413574,
1189
+ "eval_runtime": 26.906,
1190
+ "eval_samples_per_second": 27.057,
1191
+ "eval_steps_per_second": 3.382,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.5861456483126111,
1196
+ "grad_norm": 3.6115524768829346,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 2.066650390625,
1199
+ "logits/rejected": 1.7030436992645264,
1200
+ "logps/chosen": -3.875563859939575,
1201
+ "logps/rejected": -7.133286476135254,
1202
+ "loss": 0.2752,
1203
+ "rewards/accuracies": 0.862500011920929,
1204
+ "rewards/chosen": -5.813345432281494,
1205
+ "rewards/margins": 4.88658332824707,
1206
+ "rewards/rejected": -10.699929237365723,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5950266429840142,
1211
+ "grad_norm": 3.460318088531494,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 2.433854341506958,
1214
+ "logits/rejected": 2.045027256011963,
1215
+ "logps/chosen": -3.6893928050994873,
1216
+ "logps/rejected": -6.720344543457031,
1217
+ "loss": 0.2562,
1218
+ "rewards/accuracies": 0.9125000238418579,
1219
+ "rewards/chosen": -5.534089088439941,
1220
+ "rewards/margins": 4.5464277267456055,
1221
+ "rewards/rejected": -10.080517768859863,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.6039076376554174,
1226
+ "grad_norm": 2.232542037963867,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 2.3069093227386475,
1229
+ "logits/rejected": 1.7321109771728516,
1230
+ "logps/chosen": -3.936506748199463,
1231
+ "logps/rejected": -7.7827630043029785,
1232
+ "loss": 0.2333,
1233
+ "rewards/accuracies": 0.987500011920929,
1234
+ "rewards/chosen": -5.904759883880615,
1235
+ "rewards/margins": 5.769384860992432,
1236
+ "rewards/rejected": -11.674144744873047,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.6127886323268206,
1241
+ "grad_norm": 3.947690010070801,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 1.467885136604309,
1244
+ "logits/rejected": 1.0833615064620972,
1245
+ "logps/chosen": -3.2870895862579346,
1246
+ "logps/rejected": -7.22244930267334,
1247
+ "loss": 0.2739,
1248
+ "rewards/accuracies": 0.949999988079071,
1249
+ "rewards/chosen": -4.930634498596191,
1250
+ "rewards/margins": 5.90303897857666,
1251
+ "rewards/rejected": -10.833673477172852,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.6216696269982238,
1256
+ "grad_norm": 4.934174060821533,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 2.440274477005005,
1259
+ "logits/rejected": 2.157214403152466,
1260
+ "logps/chosen": -4.241659641265869,
1261
+ "logps/rejected": -7.748563289642334,
1262
+ "loss": 0.2859,
1263
+ "rewards/accuracies": 0.8999999761581421,
1264
+ "rewards/chosen": -6.362490177154541,
1265
+ "rewards/margins": 5.260354995727539,
1266
+ "rewards/rejected": -11.622844696044922,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.6216696269982238,
1271
+ "eval_logits/chosen": 2.5609161853790283,
1272
+ "eval_logits/rejected": 2.258920431137085,
1273
+ "eval_logps/chosen": -3.965893507003784,
1274
+ "eval_logps/rejected": -7.77095365524292,
1275
+ "eval_loss": 0.26121068000793457,
1276
+ "eval_rewards/accuracies": 0.9340659379959106,
1277
+ "eval_rewards/chosen": -5.948840618133545,
1278
+ "eval_rewards/margins": 5.707590579986572,
1279
+ "eval_rewards/rejected": -11.656431198120117,
1280
+ "eval_runtime": 26.9101,
1281
+ "eval_samples_per_second": 27.053,
1282
+ "eval_steps_per_second": 3.382,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.6305506216696269,
1287
+ "grad_norm": 5.9008684158325195,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 1.6100571155548096,
1290
+ "logits/rejected": 1.341528296470642,
1291
+ "logps/chosen": -3.8634166717529297,
1292
+ "logps/rejected": -7.63654088973999,
1293
+ "loss": 0.2351,
1294
+ "rewards/accuracies": 0.9624999761581421,
1295
+ "rewards/chosen": -5.795124053955078,
1296
+ "rewards/margins": 5.659686088562012,
1297
+ "rewards/rejected": -11.454811096191406,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.6394316163410302,
1302
+ "grad_norm": 2.7195751667022705,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 2.1212353706359863,
1305
+ "logits/rejected": 1.864898443222046,
1306
+ "logps/chosen": -3.8487918376922607,
1307
+ "logps/rejected": -7.823777198791504,
1308
+ "loss": 0.2329,
1309
+ "rewards/accuracies": 0.8999999761581421,
1310
+ "rewards/chosen": -5.77318811416626,
1311
+ "rewards/margins": 5.9624762535095215,
1312
+ "rewards/rejected": -11.735665321350098,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.6483126110124334,
1317
+ "grad_norm": 4.423059463500977,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 2.0979533195495605,
1320
+ "logits/rejected": 1.7213973999023438,
1321
+ "logps/chosen": -3.9874777793884277,
1322
+ "logps/rejected": -7.617144584655762,
1323
+ "loss": 0.2482,
1324
+ "rewards/accuracies": 0.8999999761581421,
1325
+ "rewards/chosen": -5.981216907501221,
1326
+ "rewards/margins": 5.4444990158081055,
1327
+ "rewards/rejected": -11.4257173538208,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.6571936056838366,
1332
+ "grad_norm": 4.327184200286865,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 2.2398109436035156,
1335
+ "logits/rejected": 1.913095474243164,
1336
+ "logps/chosen": -3.72918701171875,
1337
+ "logps/rejected": -7.094988822937012,
1338
+ "loss": 0.223,
1339
+ "rewards/accuracies": 0.887499988079071,
1340
+ "rewards/chosen": -5.593780517578125,
1341
+ "rewards/margins": 5.048702716827393,
1342
+ "rewards/rejected": -10.64248275756836,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.6660746003552398,
1347
+ "grad_norm": 3.1207029819488525,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 1.7178529500961304,
1350
+ "logits/rejected": 1.7194137573242188,
1351
+ "logps/chosen": -3.9564640522003174,
1352
+ "logps/rejected": -7.360040187835693,
1353
+ "loss": 0.2227,
1354
+ "rewards/accuracies": 0.887499988079071,
1355
+ "rewards/chosen": -5.934695243835449,
1356
+ "rewards/margins": 5.10536527633667,
1357
+ "rewards/rejected": -11.040060043334961,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.6660746003552398,
1362
+ "eval_logits/chosen": 2.521843671798706,
1363
+ "eval_logits/rejected": 2.2902743816375732,
1364
+ "eval_logps/chosen": -4.141489028930664,
1365
+ "eval_logps/rejected": -8.121171951293945,
1366
+ "eval_loss": 0.25929248332977295,
1367
+ "eval_rewards/accuracies": 0.9120879173278809,
1368
+ "eval_rewards/chosen": -6.212233543395996,
1369
+ "eval_rewards/margins": 5.969525337219238,
1370
+ "eval_rewards/rejected": -12.181758880615234,
1371
+ "eval_runtime": 26.9435,
1372
+ "eval_samples_per_second": 27.019,
1373
+ "eval_steps_per_second": 3.377,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.6749555950266429,
1378
+ "grad_norm": 2.5788235664367676,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 1.7696739435195923,
1381
+ "logits/rejected": 1.624455213546753,
1382
+ "logps/chosen": -4.3122711181640625,
1383
+ "logps/rejected": -8.191080093383789,
1384
+ "loss": 0.1991,
1385
+ "rewards/accuracies": 0.9624999761581421,
1386
+ "rewards/chosen": -6.468405723571777,
1387
+ "rewards/margins": 5.81821346282959,
1388
+ "rewards/rejected": -12.286620140075684,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.6838365896980462,
1393
+ "grad_norm": 4.544955730438232,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 1.9560623168945312,
1396
+ "logits/rejected": 1.7740411758422852,
1397
+ "logps/chosen": -4.327980041503906,
1398
+ "logps/rejected": -8.547250747680664,
1399
+ "loss": 0.2301,
1400
+ "rewards/accuracies": 0.9750000238418579,
1401
+ "rewards/chosen": -6.491971492767334,
1402
+ "rewards/margins": 6.328906059265137,
1403
+ "rewards/rejected": -12.82087516784668,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.6927175843694494,
1408
+ "grad_norm": 3.706414222717285,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 2.664365291595459,
1411
+ "logits/rejected": 2.338026285171509,
1412
+ "logps/chosen": -3.8961780071258545,
1413
+ "logps/rejected": -7.658777713775635,
1414
+ "loss": 0.2398,
1415
+ "rewards/accuracies": 0.949999988079071,
1416
+ "rewards/chosen": -5.84426736831665,
1417
+ "rewards/margins": 5.643899917602539,
1418
+ "rewards/rejected": -11.488167762756348,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.7015985790408525,
1423
+ "grad_norm": 1.7868493795394897,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 3.1498961448669434,
1426
+ "logits/rejected": 2.860450267791748,
1427
+ "logps/chosen": -4.245728492736816,
1428
+ "logps/rejected": -8.142782211303711,
1429
+ "loss": 0.184,
1430
+ "rewards/accuracies": 1.0,
1431
+ "rewards/chosen": -6.368593215942383,
1432
+ "rewards/margins": 5.845582008361816,
1433
+ "rewards/rejected": -12.214174270629883,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.7104795737122558,
1438
+ "grad_norm": 4.593838214874268,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 2.4697837829589844,
1441
+ "logits/rejected": 2.062006950378418,
1442
+ "logps/chosen": -4.312434673309326,
1443
+ "logps/rejected": -7.9613471031188965,
1444
+ "loss": 0.2373,
1445
+ "rewards/accuracies": 0.9750000238418579,
1446
+ "rewards/chosen": -6.468652248382568,
1447
+ "rewards/margins": 5.4733686447143555,
1448
+ "rewards/rejected": -11.942021369934082,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.7104795737122558,
1453
+ "eval_logits/chosen": 2.5936477184295654,
1454
+ "eval_logits/rejected": 2.3626792430877686,
1455
+ "eval_logps/chosen": -3.92742919921875,
1456
+ "eval_logps/rejected": -8.105939865112305,
1457
+ "eval_loss": 0.24979564547538757,
1458
+ "eval_rewards/accuracies": 0.9230769276618958,
1459
+ "eval_rewards/chosen": -5.891143321990967,
1460
+ "eval_rewards/margins": 6.267765045166016,
1461
+ "eval_rewards/rejected": -12.15890884399414,
1462
+ "eval_runtime": 26.9514,
1463
+ "eval_samples_per_second": 27.012,
1464
+ "eval_steps_per_second": 3.376,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 0.7193605683836589,
1469
+ "grad_norm": 2.1978909969329834,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 2.2280454635620117,
1472
+ "logits/rejected": 2.280139446258545,
1473
+ "logps/chosen": -4.002463340759277,
1474
+ "logps/rejected": -7.377104759216309,
1475
+ "loss": 0.2502,
1476
+ "rewards/accuracies": 0.9375,
1477
+ "rewards/chosen": -6.003695487976074,
1478
+ "rewards/margins": 5.061962127685547,
1479
+ "rewards/rejected": -11.065656661987305,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 0.7282415630550622,
1484
+ "grad_norm": 3.911423444747925,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 1.973581314086914,
1487
+ "logits/rejected": 1.8624426126480103,
1488
+ "logps/chosen": -3.6720118522644043,
1489
+ "logps/rejected": -7.79262638092041,
1490
+ "loss": 0.249,
1491
+ "rewards/accuracies": 0.949999988079071,
1492
+ "rewards/chosen": -5.5080180168151855,
1493
+ "rewards/margins": 6.18092155456543,
1494
+ "rewards/rejected": -11.688939094543457,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 0.7371225577264654,
1499
+ "grad_norm": 4.506085395812988,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 1.825543999671936,
1502
+ "logits/rejected": 1.6684534549713135,
1503
+ "logps/chosen": -3.7447516918182373,
1504
+ "logps/rejected": -7.67331075668335,
1505
+ "loss": 0.21,
1506
+ "rewards/accuracies": 0.8999999761581421,
1507
+ "rewards/chosen": -5.617127895355225,
1508
+ "rewards/margins": 5.892838954925537,
1509
+ "rewards/rejected": -11.509965896606445,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 0.7460035523978685,
1514
+ "grad_norm": 3.1987173557281494,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 2.580594778060913,
1517
+ "logits/rejected": 2.386385917663574,
1518
+ "logps/chosen": -3.8240609169006348,
1519
+ "logps/rejected": -7.2592315673828125,
1520
+ "loss": 0.2173,
1521
+ "rewards/accuracies": 0.9125000238418579,
1522
+ "rewards/chosen": -5.736091613769531,
1523
+ "rewards/margins": 5.1527557373046875,
1524
+ "rewards/rejected": -10.888847351074219,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 0.7548845470692718,
1529
+ "grad_norm": 3.36380672454834,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 2.644188404083252,
1532
+ "logits/rejected": 2.3516969680786133,
1533
+ "logps/chosen": -3.945826292037964,
1534
+ "logps/rejected": -7.7842698097229,
1535
+ "loss": 0.2176,
1536
+ "rewards/accuracies": 0.9375,
1537
+ "rewards/chosen": -5.918739318847656,
1538
+ "rewards/margins": 5.757664680480957,
1539
+ "rewards/rejected": -11.67640495300293,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 0.7548845470692718,
1544
+ "eval_logits/chosen": 2.703193187713623,
1545
+ "eval_logits/rejected": 2.4475576877593994,
1546
+ "eval_logps/chosen": -3.872364044189453,
1547
+ "eval_logps/rejected": -8.104667663574219,
1548
+ "eval_loss": 0.23388977348804474,
1549
+ "eval_rewards/accuracies": 0.9230769276618958,
1550
+ "eval_rewards/chosen": -5.80854606628418,
1551
+ "eval_rewards/margins": 6.34845495223999,
1552
+ "eval_rewards/rejected": -12.157001495361328,
1553
+ "eval_runtime": 26.9104,
1554
+ "eval_samples_per_second": 27.053,
1555
+ "eval_steps_per_second": 3.382,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 0.7637655417406749,
1560
+ "grad_norm": 5.758064270019531,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 1.682765245437622,
1563
+ "logits/rejected": 1.4204728603363037,
1564
+ "logps/chosen": -3.7396492958068848,
1565
+ "logps/rejected": -7.976266384124756,
1566
+ "loss": 0.2296,
1567
+ "rewards/accuracies": 0.9624999761581421,
1568
+ "rewards/chosen": -5.6094746589660645,
1569
+ "rewards/margins": 6.354925632476807,
1570
+ "rewards/rejected": -11.964399337768555,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 0.7726465364120781,
1575
+ "grad_norm": 5.571817874908447,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 3.255483627319336,
1578
+ "logits/rejected": 2.909604787826538,
1579
+ "logps/chosen": -4.347229957580566,
1580
+ "logps/rejected": -8.916404724121094,
1581
+ "loss": 0.1949,
1582
+ "rewards/accuracies": 0.9375,
1583
+ "rewards/chosen": -6.52084493637085,
1584
+ "rewards/margins": 6.853763580322266,
1585
+ "rewards/rejected": -13.374608039855957,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 0.7815275310834814,
1590
+ "grad_norm": 4.394683361053467,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 2.1075878143310547,
1593
+ "logits/rejected": 1.9253053665161133,
1594
+ "logps/chosen": -4.578610420227051,
1595
+ "logps/rejected": -9.08405876159668,
1596
+ "loss": 0.203,
1597
+ "rewards/accuracies": 0.949999988079071,
1598
+ "rewards/chosen": -6.867916107177734,
1599
+ "rewards/margins": 6.758172512054443,
1600
+ "rewards/rejected": -13.62608814239502,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 0.7904085257548845,
1605
+ "grad_norm": 3.40975284576416,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 1.9907169342041016,
1608
+ "logits/rejected": 2.0108611583709717,
1609
+ "logps/chosen": -3.837683916091919,
1610
+ "logps/rejected": -8.051701545715332,
1611
+ "loss": 0.2023,
1612
+ "rewards/accuracies": 0.9624999761581421,
1613
+ "rewards/chosen": -5.756525993347168,
1614
+ "rewards/margins": 6.3210248947143555,
1615
+ "rewards/rejected": -12.077550888061523,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 0.7992895204262878,
1620
+ "grad_norm": 2.777862548828125,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 2.684932231903076,
1623
+ "logits/rejected": 2.3814995288848877,
1624
+ "logps/chosen": -4.154343128204346,
1625
+ "logps/rejected": -8.115530014038086,
1626
+ "loss": 0.2205,
1627
+ "rewards/accuracies": 0.8999999761581421,
1628
+ "rewards/chosen": -6.231514930725098,
1629
+ "rewards/margins": 5.941780090332031,
1630
+ "rewards/rejected": -12.173295021057129,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 0.7992895204262878,
1635
+ "eval_logits/chosen": 2.7355191707611084,
1636
+ "eval_logits/rejected": 2.505545139312744,
1637
+ "eval_logps/chosen": -4.136618614196777,
1638
+ "eval_logps/rejected": -8.495417594909668,
1639
+ "eval_loss": 0.23354515433311462,
1640
+ "eval_rewards/accuracies": 0.9230769276618958,
1641
+ "eval_rewards/chosen": -6.204929351806641,
1642
+ "eval_rewards/margins": 6.538197040557861,
1643
+ "eval_rewards/rejected": -12.74312686920166,
1644
+ "eval_runtime": 26.9187,
1645
+ "eval_samples_per_second": 27.044,
1646
+ "eval_steps_per_second": 3.381,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 0.8081705150976909,
1651
+ "grad_norm": 4.050413608551025,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 2.0889079570770264,
1654
+ "logits/rejected": 1.8775651454925537,
1655
+ "logps/chosen": -4.024281024932861,
1656
+ "logps/rejected": -8.443221092224121,
1657
+ "loss": 0.1897,
1658
+ "rewards/accuracies": 0.9375,
1659
+ "rewards/chosen": -6.036420822143555,
1660
+ "rewards/margins": 6.628411769866943,
1661
+ "rewards/rejected": -12.664831161499023,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 0.8170515097690941,
1666
+ "grad_norm": 3.4868874549865723,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 2.6587109565734863,
1669
+ "logits/rejected": 2.3555827140808105,
1670
+ "logps/chosen": -4.196071147918701,
1671
+ "logps/rejected": -8.115352630615234,
1672
+ "loss": 0.2111,
1673
+ "rewards/accuracies": 0.9375,
1674
+ "rewards/chosen": -6.294107437133789,
1675
+ "rewards/margins": 5.878922462463379,
1676
+ "rewards/rejected": -12.173029899597168,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 0.8259325044404974,
1681
+ "grad_norm": 2.6183993816375732,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 2.5196542739868164,
1684
+ "logits/rejected": 1.975979208946228,
1685
+ "logps/chosen": -3.9688720703125,
1686
+ "logps/rejected": -8.01060962677002,
1687
+ "loss": 0.1988,
1688
+ "rewards/accuracies": 0.9624999761581421,
1689
+ "rewards/chosen": -5.953307628631592,
1690
+ "rewards/margins": 6.062605857849121,
1691
+ "rewards/rejected": -12.015913963317871,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 0.8348134991119005,
1696
+ "grad_norm": 5.776535511016846,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 2.420212745666504,
1699
+ "logits/rejected": 2.1600253582000732,
1700
+ "logps/chosen": -3.7991039752960205,
1701
+ "logps/rejected": -7.702652931213379,
1702
+ "loss": 0.2148,
1703
+ "rewards/accuracies": 0.887499988079071,
1704
+ "rewards/chosen": -5.69865608215332,
1705
+ "rewards/margins": 5.8553242683410645,
1706
+ "rewards/rejected": -11.553979873657227,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 0.8436944937833037,
1711
+ "grad_norm": 2.062008857727051,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 2.5505709648132324,
1714
+ "logits/rejected": 2.452706813812256,
1715
+ "logps/chosen": -3.9582321643829346,
1716
+ "logps/rejected": -8.513577461242676,
1717
+ "loss": 0.191,
1718
+ "rewards/accuracies": 0.949999988079071,
1719
+ "rewards/chosen": -5.937348365783691,
1720
+ "rewards/margins": 6.833017826080322,
1721
+ "rewards/rejected": -12.770365715026855,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 0.8436944937833037,
1726
+ "eval_logits/chosen": 2.8452956676483154,
1727
+ "eval_logits/rejected": 2.565410852432251,
1728
+ "eval_logps/chosen": -3.9218173027038574,
1729
+ "eval_logps/rejected": -8.294865608215332,
1730
+ "eval_loss": 0.22145631909370422,
1731
+ "eval_rewards/accuracies": 0.9450549483299255,
1732
+ "eval_rewards/chosen": -5.882725238800049,
1733
+ "eval_rewards/margins": 6.559573650360107,
1734
+ "eval_rewards/rejected": -12.442299842834473,
1735
+ "eval_runtime": 26.9101,
1736
+ "eval_samples_per_second": 27.053,
1737
+ "eval_steps_per_second": 3.382,
1738
+ "step": 950
1739
+ }
1740
+ ],
1741
+ "logging_steps": 10,
1742
+ "max_steps": 1500,
1743
+ "num_input_tokens_seen": 0,
1744
+ "num_train_epochs": 2,
1745
+ "save_steps": 50,
1746
+ "stateful_callbacks": {
1747
+ "TrainerControl": {
1748
+ "args": {
1749
+ "should_epoch_stop": false,
1750
+ "should_evaluate": false,
1751
+ "should_log": false,
1752
+ "should_save": true,
1753
+ "should_training_stop": false
1754
+ },
1755
+ "attributes": {}
1756
+ }
1757
+ },
1758
+ "total_flos": 2.311471147243274e+18,
1759
+ "train_batch_size": 1,
1760
+ "trial_name": null,
1761
+ "trial_params": null
1762
+ }
checkpoint-950/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71bc9387fe632b190c857fa4052c3667f7da2a0079c5f2572bee765dfa764ce3
3
+ size 7224
checkpoint-950/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)