Training in progress, step 800, checkpoint
Browse files- checkpoint-800/README.md +202 -0
- checkpoint-800/adapter_config.json +34 -0
- checkpoint-800/adapter_model.safetensors +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-800/global_step800/mp_rank_00_model_states.pt +3 -0
- checkpoint-800/latest +1 -0
- checkpoint-800/rng_state_0.pth +3 -0
- checkpoint-800/rng_state_1.pth +3 -0
- checkpoint-800/rng_state_2.pth +3 -0
- checkpoint-800/rng_state_3.pth +3 -0
- checkpoint-800/rng_state_4.pth +3 -0
- checkpoint-800/rng_state_5.pth +3 -0
- checkpoint-800/rng_state_6.pth +3 -0
- checkpoint-800/rng_state_7.pth +3 -0
- checkpoint-800/scheduler.pt +3 -0
- checkpoint-800/special_tokens_map.json +30 -0
- checkpoint-800/tokenizer.json +0 -0
- checkpoint-800/tokenizer_config.json +133 -0
- checkpoint-800/trainer_state.json +1489 -0
- checkpoint-800/training_args.bin +3 -0
- checkpoint-800/zero_to_fp32.py +674 -0
checkpoint-800/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-800/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"gate_up_proj",
|
27 |
+
"qkv_proj",
|
28 |
+
"down_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-800/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fc9c3bf696aec981b040faf7fa40379bc826255f7834dc74701cc30ac2ea708
|
3 |
+
size 25200088
|
checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91ec8c61cc9522c6c05e9926c4d84a175ac41dcb0dfdc188d1e5c43cc248eb08
|
3 |
+
size 18881328
|
checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2bb7ebfea599685c59c5a3d5b53ed545060412469dee3a427f500914b3ef540
|
3 |
+
size 18881328
|
checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae90ff648a53d97eef03aedcd993cac136f5ec258f23434a5c41a93248bec285
|
3 |
+
size 18881328
|
checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:722a6f4fb2315f8576561de51b58fb5746819b6665310e815cb772da15f063b0
|
3 |
+
size 18881392
|
checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc3bea06eca0f05bf2c46e433883a5f44111d1038313762f6d573a591070f93f
|
3 |
+
size 18881392
|
checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3389951c8ab0ef9e9ba18d5feeab7e59817e7b323132e0181b829a6a9dc5a1d7
|
3 |
+
size 18881392
|
checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad3e2ce9a40f5b59091c9c283bc05fb847a6888226e697353ab077ec68cd27a4
|
3 |
+
size 18881392
|
checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a9031501428cdd8aeda1a8b59e3512340202db2f7459200d05284e00566d150
|
3 |
+
size 18881392
|
checkpoint-800/global_step800/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cc322f3de1beaa559966dae388da2aaee37a60409451938e0b078b5d97b3e05
|
3 |
+
size 25379244
|
checkpoint-800/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step800
|
checkpoint-800/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3bae17ea03fef9b7a71d175e609746f5f3fe2a60f3ed13635f6dc665b11f354
|
3 |
+
size 15984
|
checkpoint-800/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:923a360532bddf10ba1645b451f7759402dad170be3620bc17d5f6f4fb00de36
|
3 |
+
size 15984
|
checkpoint-800/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d71813f450c82f8af72c2cd844617dfe5f76fb4aa51ff57fece979d10d0c8170
|
3 |
+
size 15984
|
checkpoint-800/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d5298c6ce71cac9a3de67ce5987382569aedae7042216a68b8a5d6589481a48
|
3 |
+
size 15984
|
checkpoint-800/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:216e2aae4ea0e03b6c9709171221e51c73a1ca974c74a698d09a6e0e90e7a102
|
3 |
+
size 15984
|
checkpoint-800/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:549ec918a3957d0f1b3143c1d9ff03581199729925aaa57987967cad5ce3913e
|
3 |
+
size 15984
|
checkpoint-800/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eacf66f46690cb657e6ccb8105ac57343b666f504a27c9e8486c483c383012b9
|
3 |
+
size 15984
|
checkpoint-800/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb94ba11b1ba7011123e588c395190bbe8fd47f934d7816c934d6dc7d11065ba
|
3 |
+
size 15984
|
checkpoint-800/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70738be5abb38e8cfb91cc830ac49dd9920dd3cf34dfffcb1efb26bab828bcb1
|
3 |
+
size 1064
|
checkpoint-800/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
checkpoint-800/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-800/tokenizer_config.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<|endoftext|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "<|assistant|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<|placeholder1|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<|placeholder2|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<|placeholder3|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"32005": {
|
71 |
+
"content": "<|placeholder4|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"32006": {
|
79 |
+
"content": "<|system|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"32007": {
|
87 |
+
"content": "<|end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"32008": {
|
95 |
+
"content": "<|placeholder5|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"32009": {
|
103 |
+
"content": "<|placeholder6|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": true,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"32010": {
|
111 |
+
"content": "<|user|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": true,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
|
121 |
+
"clean_up_tokenization_spaces": false,
|
122 |
+
"eos_token": "<|end|>",
|
123 |
+
"extra_special_tokens": {},
|
124 |
+
"legacy": false,
|
125 |
+
"model_max_length": 4096,
|
126 |
+
"pad_token": "<|endoftext|>",
|
127 |
+
"padding_side": "right",
|
128 |
+
"sp_model_kwargs": {},
|
129 |
+
"split_special_tokens": false,
|
130 |
+
"tokenizer_class": "LlamaTokenizer",
|
131 |
+
"unk_token": "<unk>",
|
132 |
+
"use_default_system_prompt": false
|
133 |
+
}
|
checkpoint-800/trainer_state.json
ADDED
@@ -0,0 +1,1489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.7104795737122558,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008880994671403197,
|
13 |
+
"grad_norm": 0.045356735587120056,
|
14 |
+
"learning_rate": 4.999451708687114e-06,
|
15 |
+
"logits/chosen": 14.352750778198242,
|
16 |
+
"logits/rejected": 14.82281494140625,
|
17 |
+
"logps/chosen": -0.2592294216156006,
|
18 |
+
"logps/rejected": -0.32852867245674133,
|
19 |
+
"loss": 0.9315,
|
20 |
+
"rewards/accuracies": 0.574999988079071,
|
21 |
+
"rewards/chosen": -0.38884416222572327,
|
22 |
+
"rewards/margins": 0.10394889116287231,
|
23 |
+
"rewards/rejected": -0.4927930235862732,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.017761989342806393,
|
28 |
+
"grad_norm": 0.05255189165472984,
|
29 |
+
"learning_rate": 4.997807075247147e-06,
|
30 |
+
"logits/chosen": 14.80792236328125,
|
31 |
+
"logits/rejected": 15.017183303833008,
|
32 |
+
"logps/chosen": -0.2825874388217926,
|
33 |
+
"logps/rejected": -0.36373966932296753,
|
34 |
+
"loss": 0.9318,
|
35 |
+
"rewards/accuracies": 0.5249999761581421,
|
36 |
+
"rewards/chosen": -0.4238811433315277,
|
37 |
+
"rewards/margins": 0.12172831594944,
|
38 |
+
"rewards/rejected": -0.5456094741821289,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.02664298401420959,
|
43 |
+
"grad_norm": 0.056027185171842575,
|
44 |
+
"learning_rate": 4.9950668210706795e-06,
|
45 |
+
"logits/chosen": 14.45336627960205,
|
46 |
+
"logits/rejected": 15.261484146118164,
|
47 |
+
"logps/chosen": -0.2638034522533417,
|
48 |
+
"logps/rejected": -0.37216562032699585,
|
49 |
+
"loss": 0.9211,
|
50 |
+
"rewards/accuracies": 0.6625000238418579,
|
51 |
+
"rewards/chosen": -0.3957051932811737,
|
52 |
+
"rewards/margins": 0.1625431776046753,
|
53 |
+
"rewards/rejected": -0.5582484006881714,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.035523978685612786,
|
58 |
+
"grad_norm": 0.06511653959751129,
|
59 |
+
"learning_rate": 4.9912321481237616e-06,
|
60 |
+
"logits/chosen": 14.59851360321045,
|
61 |
+
"logits/rejected": 15.112770080566406,
|
62 |
+
"logps/chosen": -0.28972768783569336,
|
63 |
+
"logps/rejected": -0.36043626070022583,
|
64 |
+
"loss": 0.941,
|
65 |
+
"rewards/accuracies": 0.5375000238418579,
|
66 |
+
"rewards/chosen": -0.43459147214889526,
|
67 |
+
"rewards/margins": 0.10606291145086288,
|
68 |
+
"rewards/rejected": -0.5406544208526611,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.04440497335701599,
|
73 |
+
"grad_norm": 0.0637577474117279,
|
74 |
+
"learning_rate": 4.986304738420684e-06,
|
75 |
+
"logits/chosen": 14.678179740905762,
|
76 |
+
"logits/rejected": 15.114399909973145,
|
77 |
+
"logps/chosen": -0.3033604919910431,
|
78 |
+
"logps/rejected": -0.3262741267681122,
|
79 |
+
"loss": 0.929,
|
80 |
+
"rewards/accuracies": 0.44999998807907104,
|
81 |
+
"rewards/chosen": -0.45504075288772583,
|
82 |
+
"rewards/margins": 0.03437047079205513,
|
83 |
+
"rewards/rejected": -0.4894111752510071,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.04440497335701599,
|
88 |
+
"eval_logits/chosen": 14.936029434204102,
|
89 |
+
"eval_logits/rejected": 14.780267715454102,
|
90 |
+
"eval_logps/chosen": -0.29386037588119507,
|
91 |
+
"eval_logps/rejected": -0.3304942548274994,
|
92 |
+
"eval_loss": 0.9458721876144409,
|
93 |
+
"eval_rewards/accuracies": 0.49450549483299255,
|
94 |
+
"eval_rewards/chosen": -0.4407905340194702,
|
95 |
+
"eval_rewards/margins": 0.05495081841945648,
|
96 |
+
"eval_rewards/rejected": -0.49574142694473267,
|
97 |
+
"eval_runtime": 27.7436,
|
98 |
+
"eval_samples_per_second": 26.24,
|
99 |
+
"eval_steps_per_second": 3.28,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.05328596802841918,
|
104 |
+
"grad_norm": 0.06470987200737,
|
105 |
+
"learning_rate": 4.980286753286196e-06,
|
106 |
+
"logits/chosen": 14.19079303741455,
|
107 |
+
"logits/rejected": 14.986845016479492,
|
108 |
+
"logps/chosen": -0.26126712560653687,
|
109 |
+
"logps/rejected": -0.31976616382598877,
|
110 |
+
"loss": 0.9335,
|
111 |
+
"rewards/accuracies": 0.5,
|
112 |
+
"rewards/chosen": -0.3919006288051605,
|
113 |
+
"rewards/margins": 0.08774860948324203,
|
114 |
+
"rewards/rejected": -0.47964924573898315,
|
115 |
+
"step": 60
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06216696269982238,
|
119 |
+
"grad_norm": 0.06163545697927475,
|
120 |
+
"learning_rate": 4.973180832407471e-06,
|
121 |
+
"logits/chosen": 14.062408447265625,
|
122 |
+
"logits/rejected": 15.050743103027344,
|
123 |
+
"logps/chosen": -0.2698076367378235,
|
124 |
+
"logps/rejected": -0.37131980061531067,
|
125 |
+
"loss": 0.9234,
|
126 |
+
"rewards/accuracies": 0.6499999761581421,
|
127 |
+
"rewards/chosen": -0.4047114849090576,
|
128 |
+
"rewards/margins": 0.1522682160139084,
|
129 |
+
"rewards/rejected": -0.556979775428772,
|
130 |
+
"step": 70
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.07104795737122557,
|
134 |
+
"grad_norm": 0.05943402647972107,
|
135 |
+
"learning_rate": 4.964990092676263e-06,
|
136 |
+
"logits/chosen": 14.523780822753906,
|
137 |
+
"logits/rejected": 15.173608779907227,
|
138 |
+
"logps/chosen": -0.2835150957107544,
|
139 |
+
"logps/rejected": -0.35379332304000854,
|
140 |
+
"loss": 0.9317,
|
141 |
+
"rewards/accuracies": 0.550000011920929,
|
142 |
+
"rewards/chosen": -0.4252726137638092,
|
143 |
+
"rewards/margins": 0.10541732609272003,
|
144 |
+
"rewards/rejected": -0.5306899547576904,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.07992895204262877,
|
149 |
+
"grad_norm": 0.05566830188035965,
|
150 |
+
"learning_rate": 4.9557181268217225e-06,
|
151 |
+
"logits/chosen": 14.752237319946289,
|
152 |
+
"logits/rejected": 15.213434219360352,
|
153 |
+
"logps/chosen": -0.25490278005599976,
|
154 |
+
"logps/rejected": -0.31673288345336914,
|
155 |
+
"loss": 0.9276,
|
156 |
+
"rewards/accuracies": 0.5625,
|
157 |
+
"rewards/chosen": -0.38235417008399963,
|
158 |
+
"rewards/margins": 0.09274514764547348,
|
159 |
+
"rewards/rejected": -0.4750993847846985,
|
160 |
+
"step": 90
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.08880994671403197,
|
164 |
+
"grad_norm": 0.07879115641117096,
|
165 |
+
"learning_rate": 4.9453690018345144e-06,
|
166 |
+
"logits/chosen": 14.362078666687012,
|
167 |
+
"logits/rejected": 14.708786010742188,
|
168 |
+
"logps/chosen": -0.27969443798065186,
|
169 |
+
"logps/rejected": -0.3294224143028259,
|
170 |
+
"loss": 0.9448,
|
171 |
+
"rewards/accuracies": 0.5249999761581421,
|
172 |
+
"rewards/chosen": -0.41954168677330017,
|
173 |
+
"rewards/margins": 0.0745919868350029,
|
174 |
+
"rewards/rejected": -0.4941336512565613,
|
175 |
+
"step": 100
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.08880994671403197,
|
179 |
+
"eval_logits/chosen": 14.668691635131836,
|
180 |
+
"eval_logits/rejected": 14.53217601776123,
|
181 |
+
"eval_logps/chosen": -0.2837528884410858,
|
182 |
+
"eval_logps/rejected": -0.33105531334877014,
|
183 |
+
"eval_loss": 0.9382757544517517,
|
184 |
+
"eval_rewards/accuracies": 0.5164835453033447,
|
185 |
+
"eval_rewards/chosen": -0.4256293475627899,
|
186 |
+
"eval_rewards/margins": 0.07095365226268768,
|
187 |
+
"eval_rewards/rejected": -0.4965830445289612,
|
188 |
+
"eval_runtime": 26.9204,
|
189 |
+
"eval_samples_per_second": 27.043,
|
190 |
+
"eval_steps_per_second": 3.38,
|
191 |
+
"step": 100
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.09769094138543517,
|
195 |
+
"grad_norm": 0.0677201971411705,
|
196 |
+
"learning_rate": 4.933947257182901e-06,
|
197 |
+
"logits/chosen": 14.2677640914917,
|
198 |
+
"logits/rejected": 14.437828063964844,
|
199 |
+
"logps/chosen": -0.26914283633232117,
|
200 |
+
"logps/rejected": -0.3498677909374237,
|
201 |
+
"loss": 0.9307,
|
202 |
+
"rewards/accuracies": 0.5874999761581421,
|
203 |
+
"rewards/chosen": -0.40371423959732056,
|
204 |
+
"rewards/margins": 0.12108743190765381,
|
205 |
+
"rewards/rejected": -0.5248016715049744,
|
206 |
+
"step": 110
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.10657193605683836,
|
210 |
+
"grad_norm": 0.08429163694381714,
|
211 |
+
"learning_rate": 4.921457902821578e-06,
|
212 |
+
"logits/chosen": 13.978253364562988,
|
213 |
+
"logits/rejected": 14.673884391784668,
|
214 |
+
"logps/chosen": -0.2842218279838562,
|
215 |
+
"logps/rejected": -0.35421326756477356,
|
216 |
+
"loss": 0.9046,
|
217 |
+
"rewards/accuracies": 0.574999988079071,
|
218 |
+
"rewards/chosen": -0.4263327121734619,
|
219 |
+
"rewards/margins": 0.10498716682195663,
|
220 |
+
"rewards/rejected": -0.5313198566436768,
|
221 |
+
"step": 120
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.11545293072824156,
|
225 |
+
"grad_norm": 0.08969741314649582,
|
226 |
+
"learning_rate": 4.907906416994146e-06,
|
227 |
+
"logits/chosen": 13.98906135559082,
|
228 |
+
"logits/rejected": 14.70555305480957,
|
229 |
+
"logps/chosen": -0.26557397842407227,
|
230 |
+
"logps/rejected": -0.3823702037334442,
|
231 |
+
"loss": 0.9151,
|
232 |
+
"rewards/accuracies": 0.6000000238418579,
|
233 |
+
"rewards/chosen": -0.3983609974384308,
|
234 |
+
"rewards/margins": 0.1751943826675415,
|
235 |
+
"rewards/rejected": -0.5735553503036499,
|
236 |
+
"step": 130
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.12433392539964476,
|
240 |
+
"grad_norm": 0.10470724105834961,
|
241 |
+
"learning_rate": 4.893298743830168e-06,
|
242 |
+
"logits/chosen": 13.948530197143555,
|
243 |
+
"logits/rejected": 14.77311897277832,
|
244 |
+
"logps/chosen": -0.2675064504146576,
|
245 |
+
"logps/rejected": -0.3631269335746765,
|
246 |
+
"loss": 0.9053,
|
247 |
+
"rewards/accuracies": 0.6000000238418579,
|
248 |
+
"rewards/chosen": -0.4012596607208252,
|
249 |
+
"rewards/margins": 0.14343078434467316,
|
250 |
+
"rewards/rejected": -0.5446904301643372,
|
251 |
+
"step": 140
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.13321492007104796,
|
255 |
+
"grad_norm": 0.09238290041685104,
|
256 |
+
"learning_rate": 4.8776412907378845e-06,
|
257 |
+
"logits/chosen": 12.939355850219727,
|
258 |
+
"logits/rejected": 13.387840270996094,
|
259 |
+
"logps/chosen": -0.27794820070266724,
|
260 |
+
"logps/rejected": -0.3520648777484894,
|
261 |
+
"loss": 0.9097,
|
262 |
+
"rewards/accuracies": 0.5375000238418579,
|
263 |
+
"rewards/chosen": -0.41692233085632324,
|
264 |
+
"rewards/margins": 0.11117497831583023,
|
265 |
+
"rewards/rejected": -0.5280972719192505,
|
266 |
+
"step": 150
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.13321492007104796,
|
270 |
+
"eval_logits/chosen": 13.123927116394043,
|
271 |
+
"eval_logits/rejected": 13.085403442382812,
|
272 |
+
"eval_logps/chosen": -0.28104570508003235,
|
273 |
+
"eval_logps/rejected": -0.3562033474445343,
|
274 |
+
"eval_loss": 0.9194123148918152,
|
275 |
+
"eval_rewards/accuracies": 0.5824176073074341,
|
276 |
+
"eval_rewards/chosen": -0.42156851291656494,
|
277 |
+
"eval_rewards/margins": 0.11273646354675293,
|
278 |
+
"eval_rewards/rejected": -0.5343050360679626,
|
279 |
+
"eval_runtime": 26.928,
|
280 |
+
"eval_samples_per_second": 27.035,
|
281 |
+
"eval_steps_per_second": 3.379,
|
282 |
+
"step": 150
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.14209591474245115,
|
286 |
+
"grad_norm": 0.14459910988807678,
|
287 |
+
"learning_rate": 4.860940925593703e-06,
|
288 |
+
"logits/chosen": 11.937938690185547,
|
289 |
+
"logits/rejected": 13.300163269042969,
|
290 |
+
"logps/chosen": -0.24840429425239563,
|
291 |
+
"logps/rejected": -0.4205872118473053,
|
292 |
+
"loss": 0.8929,
|
293 |
+
"rewards/accuracies": 0.6000000238418579,
|
294 |
+
"rewards/chosen": -0.37260642647743225,
|
295 |
+
"rewards/margins": 0.2582743763923645,
|
296 |
+
"rewards/rejected": -0.6308808326721191,
|
297 |
+
"step": 160
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.15097690941385436,
|
301 |
+
"grad_norm": 0.13749755918979645,
|
302 |
+
"learning_rate": 4.84320497372973e-06,
|
303 |
+
"logits/chosen": 12.549962997436523,
|
304 |
+
"logits/rejected": 12.858027458190918,
|
305 |
+
"logps/chosen": -0.2944340109825134,
|
306 |
+
"logps/rejected": -0.38480544090270996,
|
307 |
+
"loss": 0.895,
|
308 |
+
"rewards/accuracies": 0.625,
|
309 |
+
"rewards/chosen": -0.44165101647377014,
|
310 |
+
"rewards/margins": 0.1355571448802948,
|
311 |
+
"rewards/rejected": -0.5772081613540649,
|
312 |
+
"step": 170
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.15985790408525755,
|
316 |
+
"grad_norm": 0.14530803263187408,
|
317 |
+
"learning_rate": 4.824441214720629e-06,
|
318 |
+
"logits/chosen": 10.892537117004395,
|
319 |
+
"logits/rejected": 11.756756782531738,
|
320 |
+
"logps/chosen": -0.2693363130092621,
|
321 |
+
"logps/rejected": -0.3874126374721527,
|
322 |
+
"loss": 0.8801,
|
323 |
+
"rewards/accuracies": 0.5625,
|
324 |
+
"rewards/chosen": -0.4040044844150543,
|
325 |
+
"rewards/margins": 0.17711447179317474,
|
326 |
+
"rewards/rejected": -0.5811189413070679,
|
327 |
+
"step": 180
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.16873889875666073,
|
331 |
+
"grad_norm": 0.20053793489933014,
|
332 |
+
"learning_rate": 4.804657878971252e-06,
|
333 |
+
"logits/chosen": 9.238119125366211,
|
334 |
+
"logits/rejected": 10.233763694763184,
|
335 |
+
"logps/chosen": -0.269479900598526,
|
336 |
+
"logps/rejected": -0.4149019122123718,
|
337 |
+
"loss": 0.8776,
|
338 |
+
"rewards/accuracies": 0.6499999761581421,
|
339 |
+
"rewards/chosen": -0.4042198657989502,
|
340 |
+
"rewards/margins": 0.21813304722309113,
|
341 |
+
"rewards/rejected": -0.6223528385162354,
|
342 |
+
"step": 190
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.17761989342806395,
|
346 |
+
"grad_norm": 0.20254959166049957,
|
347 |
+
"learning_rate": 4.783863644106502e-06,
|
348 |
+
"logits/chosen": 9.261235237121582,
|
349 |
+
"logits/rejected": 9.7451753616333,
|
350 |
+
"logps/chosen": -0.29611462354660034,
|
351 |
+
"logps/rejected": -0.44530659914016724,
|
352 |
+
"loss": 0.8596,
|
353 |
+
"rewards/accuracies": 0.5874999761581421,
|
354 |
+
"rewards/chosen": -0.4441719651222229,
|
355 |
+
"rewards/margins": 0.22378793358802795,
|
356 |
+
"rewards/rejected": -0.6679598689079285,
|
357 |
+
"step": 200
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.17761989342806395,
|
361 |
+
"eval_logits/chosen": 8.231317520141602,
|
362 |
+
"eval_logits/rejected": 8.285564422607422,
|
363 |
+
"eval_logps/chosen": -0.3201982080936432,
|
364 |
+
"eval_logps/rejected": -0.4862101078033447,
|
365 |
+
"eval_loss": 0.8602121472358704,
|
366 |
+
"eval_rewards/accuracies": 0.6153846383094788,
|
367 |
+
"eval_rewards/chosen": -0.480297327041626,
|
368 |
+
"eval_rewards/margins": 0.2490178644657135,
|
369 |
+
"eval_rewards/rejected": -0.7293152213096619,
|
370 |
+
"eval_runtime": 26.9054,
|
371 |
+
"eval_samples_per_second": 27.058,
|
372 |
+
"eval_steps_per_second": 3.382,
|
373 |
+
"step": 200
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.18650088809946713,
|
377 |
+
"grad_norm": 0.25219231843948364,
|
378 |
+
"learning_rate": 4.762067631165049e-06,
|
379 |
+
"logits/chosen": 7.822943687438965,
|
380 |
+
"logits/rejected": 8.847550392150879,
|
381 |
+
"logps/chosen": -0.3111446797847748,
|
382 |
+
"logps/rejected": -0.5253105163574219,
|
383 |
+
"loss": 0.8553,
|
384 |
+
"rewards/accuracies": 0.625,
|
385 |
+
"rewards/chosen": -0.46671706438064575,
|
386 |
+
"rewards/margins": 0.3212486803531647,
|
387 |
+
"rewards/rejected": -0.787965714931488,
|
388 |
+
"step": 210
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.19538188277087035,
|
392 |
+
"grad_norm": 0.29052653908729553,
|
393 |
+
"learning_rate": 4.7392794005985324e-06,
|
394 |
+
"logits/chosen": 7.404467582702637,
|
395 |
+
"logits/rejected": 7.140469551086426,
|
396 |
+
"logps/chosen": -0.35531798005104065,
|
397 |
+
"logps/rejected": -0.4979163110256195,
|
398 |
+
"loss": 0.8204,
|
399 |
+
"rewards/accuracies": 0.574999988079071,
|
400 |
+
"rewards/chosen": -0.5329769849777222,
|
401 |
+
"rewards/margins": 0.21389751136302948,
|
402 |
+
"rewards/rejected": -0.7468745112419128,
|
403 |
+
"step": 220
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.20426287744227353,
|
407 |
+
"grad_norm": 0.30769258737564087,
|
408 |
+
"learning_rate": 4.715508948078037e-06,
|
409 |
+
"logits/chosen": 5.096299648284912,
|
410 |
+
"logits/rejected": 5.143233299255371,
|
411 |
+
"logps/chosen": -0.3684440553188324,
|
412 |
+
"logps/rejected": -0.557721734046936,
|
413 |
+
"loss": 0.7884,
|
414 |
+
"rewards/accuracies": 0.612500011920929,
|
415 |
+
"rewards/chosen": -0.5526660084724426,
|
416 |
+
"rewards/margins": 0.2839165925979614,
|
417 |
+
"rewards/rejected": -0.8365826606750488,
|
418 |
+
"step": 230
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.21314387211367672,
|
422 |
+
"grad_norm": 0.3165770471096039,
|
423 |
+
"learning_rate": 4.690766700109659e-06,
|
424 |
+
"logits/chosen": 5.376433372497559,
|
425 |
+
"logits/rejected": 4.738249778747559,
|
426 |
+
"logps/chosen": -0.4181212782859802,
|
427 |
+
"logps/rejected": -0.6782273054122925,
|
428 |
+
"loss": 0.7919,
|
429 |
+
"rewards/accuracies": 0.612500011920929,
|
430 |
+
"rewards/chosen": -0.627181887626648,
|
431 |
+
"rewards/margins": 0.39015907049179077,
|
432 |
+
"rewards/rejected": -1.0173410177230835,
|
433 |
+
"step": 240
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.22202486678507993,
|
437 |
+
"grad_norm": 0.6854519844055176,
|
438 |
+
"learning_rate": 4.665063509461098e-06,
|
439 |
+
"logits/chosen": 3.3769917488098145,
|
440 |
+
"logits/rejected": 2.865615129470825,
|
441 |
+
"logps/chosen": -0.42344069480895996,
|
442 |
+
"logps/rejected": -0.8046137094497681,
|
443 |
+
"loss": 0.7456,
|
444 |
+
"rewards/accuracies": 0.675000011920929,
|
445 |
+
"rewards/chosen": -0.6351610422134399,
|
446 |
+
"rewards/margins": 0.5717595219612122,
|
447 |
+
"rewards/rejected": -1.2069203853607178,
|
448 |
+
"step": 250
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 0.22202486678507993,
|
452 |
+
"eval_logits/chosen": 2.8929049968719482,
|
453 |
+
"eval_logits/rejected": 2.0500316619873047,
|
454 |
+
"eval_logps/chosen": -0.46059882640838623,
|
455 |
+
"eval_logps/rejected": -0.8680218458175659,
|
456 |
+
"eval_loss": 0.7499477863311768,
|
457 |
+
"eval_rewards/accuracies": 0.6373626589775085,
|
458 |
+
"eval_rewards/chosen": -0.6908981204032898,
|
459 |
+
"eval_rewards/margins": 0.6111345887184143,
|
460 |
+
"eval_rewards/rejected": -1.3020328283309937,
|
461 |
+
"eval_runtime": 26.9489,
|
462 |
+
"eval_samples_per_second": 27.014,
|
463 |
+
"eval_steps_per_second": 3.377,
|
464 |
+
"step": 250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.23090586145648312,
|
468 |
+
"grad_norm": 1.4715200662612915,
|
469 |
+
"learning_rate": 4.638410650401267e-06,
|
470 |
+
"logits/chosen": 1.1702392101287842,
|
471 |
+
"logits/rejected": 0.6887636184692383,
|
472 |
+
"logps/chosen": -0.4449438154697418,
|
473 |
+
"logps/rejected": -1.0861380100250244,
|
474 |
+
"loss": 0.6853,
|
475 |
+
"rewards/accuracies": 0.7749999761581421,
|
476 |
+
"rewards/chosen": -0.6674157381057739,
|
477 |
+
"rewards/margins": 0.9617912173271179,
|
478 |
+
"rewards/rejected": -1.6292070150375366,
|
479 |
+
"step": 260
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.23978685612788633,
|
483 |
+
"grad_norm": 1.1773816347122192,
|
484 |
+
"learning_rate": 4.610819813755038e-06,
|
485 |
+
"logits/chosen": 2.005816698074341,
|
486 |
+
"logits/rejected": 0.7508751749992371,
|
487 |
+
"logps/chosen": -0.520461916923523,
|
488 |
+
"logps/rejected": -1.2372539043426514,
|
489 |
+
"loss": 0.6514,
|
490 |
+
"rewards/accuracies": 0.7124999761581421,
|
491 |
+
"rewards/chosen": -0.7806928157806396,
|
492 |
+
"rewards/margins": 1.0751880407333374,
|
493 |
+
"rewards/rejected": -1.8558809757232666,
|
494 |
+
"step": 270
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.24866785079928952,
|
498 |
+
"grad_norm": 0.4426538348197937,
|
499 |
+
"learning_rate": 4.582303101775249e-06,
|
500 |
+
"logits/chosen": 1.3614282608032227,
|
501 |
+
"logits/rejected": 0.17441503703594208,
|
502 |
+
"logps/chosen": -0.628559410572052,
|
503 |
+
"logps/rejected": -1.3841784000396729,
|
504 |
+
"loss": 0.6447,
|
505 |
+
"rewards/accuracies": 0.612500011920929,
|
506 |
+
"rewards/chosen": -0.9428391456604004,
|
507 |
+
"rewards/margins": 1.1334283351898193,
|
508 |
+
"rewards/rejected": -2.076267719268799,
|
509 |
+
"step": 280
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.25754884547069273,
|
513 |
+
"grad_norm": 0.781704843044281,
|
514 |
+
"learning_rate": 4.55287302283426e-06,
|
515 |
+
"logits/chosen": 2.0829949378967285,
|
516 |
+
"logits/rejected": 1.0815263986587524,
|
517 |
+
"logps/chosen": -0.6394428014755249,
|
518 |
+
"logps/rejected": -1.8771930932998657,
|
519 |
+
"loss": 0.5863,
|
520 |
+
"rewards/accuracies": 0.6875,
|
521 |
+
"rewards/chosen": -0.9591643214225769,
|
522 |
+
"rewards/margins": 1.8566251993179321,
|
523 |
+
"rewards/rejected": -2.8157896995544434,
|
524 |
+
"step": 290
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.2664298401420959,
|
528 |
+
"grad_norm": 1.1327613592147827,
|
529 |
+
"learning_rate": 4.522542485937369e-06,
|
530 |
+
"logits/chosen": 1.197505235671997,
|
531 |
+
"logits/rejected": 0.16260084509849548,
|
532 |
+
"logps/chosen": -0.6966903805732727,
|
533 |
+
"logps/rejected": -2.2350592613220215,
|
534 |
+
"loss": 0.5354,
|
535 |
+
"rewards/accuracies": 0.75,
|
536 |
+
"rewards/chosen": -1.0450356006622314,
|
537 |
+
"rewards/margins": 2.30755352973938,
|
538 |
+
"rewards/rejected": -3.3525891304016113,
|
539 |
+
"step": 300
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.2664298401420959,
|
543 |
+
"eval_logits/chosen": 1.2078615427017212,
|
544 |
+
"eval_logits/rejected": 0.2717524468898773,
|
545 |
+
"eval_logps/chosen": -0.7531170845031738,
|
546 |
+
"eval_logps/rejected": -2.0594394207000732,
|
547 |
+
"eval_loss": 0.5640697479248047,
|
548 |
+
"eval_rewards/accuracies": 0.6703296899795532,
|
549 |
+
"eval_rewards/chosen": -1.1296755075454712,
|
550 |
+
"eval_rewards/margins": 1.9594837427139282,
|
551 |
+
"eval_rewards/rejected": -3.0891592502593994,
|
552 |
+
"eval_runtime": 26.9506,
|
553 |
+
"eval_samples_per_second": 27.012,
|
554 |
+
"eval_steps_per_second": 3.377,
|
555 |
+
"step": 300
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.2753108348134991,
|
559 |
+
"grad_norm": 0.8920393586158752,
|
560 |
+
"learning_rate": 4.491324795060491e-06,
|
561 |
+
"logits/chosen": 1.12120521068573,
|
562 |
+
"logits/rejected": 0.3509993851184845,
|
563 |
+
"logps/chosen": -0.7844308018684387,
|
564 |
+
"logps/rejected": -2.2886409759521484,
|
565 |
+
"loss": 0.5357,
|
566 |
+
"rewards/accuracies": 0.6875,
|
567 |
+
"rewards/chosen": -1.176646113395691,
|
568 |
+
"rewards/margins": 2.256315231323242,
|
569 |
+
"rewards/rejected": -3.4329617023468018,
|
570 |
+
"step": 310
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.2841918294849023,
|
574 |
+
"grad_norm": 0.6658002734184265,
|
575 |
+
"learning_rate": 4.4592336433146e-06,
|
576 |
+
"logits/chosen": 1.750349760055542,
|
577 |
+
"logits/rejected": 0.7707412242889404,
|
578 |
+
"logps/chosen": -0.7995473146438599,
|
579 |
+
"logps/rejected": -2.2184109687805176,
|
580 |
+
"loss": 0.5412,
|
581 |
+
"rewards/accuracies": 0.6625000238418579,
|
582 |
+
"rewards/chosen": -1.199320912361145,
|
583 |
+
"rewards/margins": 2.128295421600342,
|
584 |
+
"rewards/rejected": -3.3276162147521973,
|
585 |
+
"step": 320
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.29307282415630553,
|
589 |
+
"grad_norm": 1.2708265781402588,
|
590 |
+
"learning_rate": 4.426283106939474e-06,
|
591 |
+
"logits/chosen": 1.8776671886444092,
|
592 |
+
"logits/rejected": 1.2588229179382324,
|
593 |
+
"logps/chosen": -0.894809901714325,
|
594 |
+
"logps/rejected": -2.4718618392944336,
|
595 |
+
"loss": 0.5502,
|
596 |
+
"rewards/accuracies": 0.675000011920929,
|
597 |
+
"rewards/chosen": -1.342214822769165,
|
598 |
+
"rewards/margins": 2.3655781745910645,
|
599 |
+
"rewards/rejected": -3.7077927589416504,
|
600 |
+
"step": 330
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.3019538188277087,
|
604 |
+
"grad_norm": 1.2345410585403442,
|
605 |
+
"learning_rate": 4.3924876391293915e-06,
|
606 |
+
"logits/chosen": 1.9461545944213867,
|
607 |
+
"logits/rejected": 0.9410673975944519,
|
608 |
+
"logps/chosen": -0.891791045665741,
|
609 |
+
"logps/rejected": -2.2217679023742676,
|
610 |
+
"loss": 0.5519,
|
611 |
+
"rewards/accuracies": 0.637499988079071,
|
612 |
+
"rewards/chosen": -1.3376867771148682,
|
613 |
+
"rewards/margins": 1.9949653148651123,
|
614 |
+
"rewards/rejected": -3.3326523303985596,
|
615 |
+
"step": 340
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.3108348134991119,
|
619 |
+
"grad_norm": 11.159003257751465,
|
620 |
+
"learning_rate": 4.357862063693486e-06,
|
621 |
+
"logits/chosen": 2.396707534790039,
|
622 |
+
"logits/rejected": 1.4882147312164307,
|
623 |
+
"logps/chosen": -1.1443694829940796,
|
624 |
+
"logps/rejected": -2.867492914199829,
|
625 |
+
"loss": 0.4806,
|
626 |
+
"rewards/accuracies": 0.7124999761581421,
|
627 |
+
"rewards/chosen": -1.7165542840957642,
|
628 |
+
"rewards/margins": 2.5846848487854004,
|
629 |
+
"rewards/rejected": -4.301239490509033,
|
630 |
+
"step": 350
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 0.3108348134991119,
|
634 |
+
"eval_logits/chosen": 1.7898317575454712,
|
635 |
+
"eval_logits/rejected": 1.109007477760315,
|
636 |
+
"eval_logps/chosen": -1.3312609195709229,
|
637 |
+
"eval_logps/rejected": -3.0454280376434326,
|
638 |
+
"eval_loss": 0.4698469638824463,
|
639 |
+
"eval_rewards/accuracies": 0.8131868243217468,
|
640 |
+
"eval_rewards/chosen": -1.9968912601470947,
|
641 |
+
"eval_rewards/margins": 2.5712504386901855,
|
642 |
+
"eval_rewards/rejected": -4.568141937255859,
|
643 |
+
"eval_runtime": 26.9108,
|
644 |
+
"eval_samples_per_second": 27.052,
|
645 |
+
"eval_steps_per_second": 3.382,
|
646 |
+
"step": 350
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.3197158081705151,
|
650 |
+
"grad_norm": 2.2653048038482666,
|
651 |
+
"learning_rate": 4.322421568553529e-06,
|
652 |
+
"logits/chosen": 0.36641037464141846,
|
653 |
+
"logits/rejected": -0.4621815085411072,
|
654 |
+
"logps/chosen": -1.5972144603729248,
|
655 |
+
"logps/rejected": -3.1685004234313965,
|
656 |
+
"loss": 0.472,
|
657 |
+
"rewards/accuracies": 0.7875000238418579,
|
658 |
+
"rewards/chosen": -2.3958218097686768,
|
659 |
+
"rewards/margins": 2.356929063796997,
|
660 |
+
"rewards/rejected": -4.752750396728516,
|
661 |
+
"step": 360
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.3285968028419183,
|
665 |
+
"grad_norm": 2.6831283569335938,
|
666 |
+
"learning_rate": 4.286181699082008e-06,
|
667 |
+
"logits/chosen": 1.18975830078125,
|
668 |
+
"logits/rejected": 0.7668083310127258,
|
669 |
+
"logps/chosen": -2.1462299823760986,
|
670 |
+
"logps/rejected": -3.7489593029022217,
|
671 |
+
"loss": 0.4169,
|
672 |
+
"rewards/accuracies": 0.8374999761581421,
|
673 |
+
"rewards/chosen": -3.2193446159362793,
|
674 |
+
"rewards/margins": 2.4040939807891846,
|
675 |
+
"rewards/rejected": -5.623438835144043,
|
676 |
+
"step": 370
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.33747779751332146,
|
680 |
+
"grad_norm": 3.5498828887939453,
|
681 |
+
"learning_rate": 4.249158351283414e-06,
|
682 |
+
"logits/chosen": 1.8030259609222412,
|
683 |
+
"logits/rejected": 1.4276998043060303,
|
684 |
+
"logps/chosen": -2.189352512359619,
|
685 |
+
"logps/rejected": -3.8717925548553467,
|
686 |
+
"loss": 0.4156,
|
687 |
+
"rewards/accuracies": 0.8500000238418579,
|
688 |
+
"rewards/chosen": -3.2840285301208496,
|
689 |
+
"rewards/margins": 2.523660182952881,
|
690 |
+
"rewards/rejected": -5.807689189910889,
|
691 |
+
"step": 380
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.3463587921847247,
|
695 |
+
"grad_norm": 1.46839439868927,
|
696 |
+
"learning_rate": 4.211367764821722e-06,
|
697 |
+
"logits/chosen": 2.2764127254486084,
|
698 |
+
"logits/rejected": 1.9199844598770142,
|
699 |
+
"logps/chosen": -2.4463610649108887,
|
700 |
+
"logps/rejected": -4.317194938659668,
|
701 |
+
"loss": 0.4085,
|
702 |
+
"rewards/accuracies": 0.862500011920929,
|
703 |
+
"rewards/chosen": -3.669541597366333,
|
704 |
+
"rewards/margins": 2.806250810623169,
|
705 |
+
"rewards/rejected": -6.475791931152344,
|
706 |
+
"step": 390
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.3552397868561279,
|
710 |
+
"grad_norm": 1.6744616031646729,
|
711 |
+
"learning_rate": 4.172826515897146e-06,
|
712 |
+
"logits/chosen": 2.0364136695861816,
|
713 |
+
"logits/rejected": 1.4645214080810547,
|
714 |
+
"logps/chosen": -2.5738539695739746,
|
715 |
+
"logps/rejected": -4.41655158996582,
|
716 |
+
"loss": 0.3723,
|
717 |
+
"rewards/accuracies": 0.887499988079071,
|
718 |
+
"rewards/chosen": -3.8607802391052246,
|
719 |
+
"rewards/margins": 2.764047145843506,
|
720 |
+
"rewards/rejected": -6.6248273849487305,
|
721 |
+
"step": 400
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.3552397868561279,
|
725 |
+
"eval_logits/chosen": 2.0340981483459473,
|
726 |
+
"eval_logits/rejected": 1.376452922821045,
|
727 |
+
"eval_logps/chosen": -2.6443424224853516,
|
728 |
+
"eval_logps/rejected": -4.638274192810059,
|
729 |
+
"eval_loss": 0.38738909363746643,
|
730 |
+
"eval_rewards/accuracies": 0.901098906993866,
|
731 |
+
"eval_rewards/chosen": -3.9665138721466064,
|
732 |
+
"eval_rewards/margins": 2.9908969402313232,
|
733 |
+
"eval_rewards/rejected": -6.95741081237793,
|
734 |
+
"eval_runtime": 26.943,
|
735 |
+
"eval_samples_per_second": 27.02,
|
736 |
+
"eval_steps_per_second": 3.377,
|
737 |
+
"step": 400
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.3641207815275311,
|
741 |
+
"grad_norm": 24.103384017944336,
|
742 |
+
"learning_rate": 4.133551509975264e-06,
|
743 |
+
"logits/chosen": 1.3653905391693115,
|
744 |
+
"logits/rejected": 0.7307125329971313,
|
745 |
+
"logps/chosen": -2.450911045074463,
|
746 |
+
"logps/rejected": -4.609705924987793,
|
747 |
+
"loss": 0.4031,
|
748 |
+
"rewards/accuracies": 0.8999999761581421,
|
749 |
+
"rewards/chosen": -3.6763663291931152,
|
750 |
+
"rewards/margins": 3.2381927967071533,
|
751 |
+
"rewards/rejected": -6.914559364318848,
|
752 |
+
"step": 410
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.37300177619893427,
|
756 |
+
"grad_norm": 2.102792263031006,
|
757 |
+
"learning_rate": 4.093559974371725e-06,
|
758 |
+
"logits/chosen": 1.6425203084945679,
|
759 |
+
"logits/rejected": 0.9890750050544739,
|
760 |
+
"logps/chosen": -2.1248934268951416,
|
761 |
+
"logps/rejected": -3.8592541217803955,
|
762 |
+
"loss": 0.3609,
|
763 |
+
"rewards/accuracies": 0.862500011920929,
|
764 |
+
"rewards/chosen": -3.187340497970581,
|
765 |
+
"rewards/margins": 2.601541042327881,
|
766 |
+
"rewards/rejected": -5.788880825042725,
|
767 |
+
"step": 420
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.38188277087033745,
|
771 |
+
"grad_norm": 2.970210552215576,
|
772 |
+
"learning_rate": 4.052869450695776e-06,
|
773 |
+
"logits/chosen": 2.258129358291626,
|
774 |
+
"logits/rejected": 1.7126191854476929,
|
775 |
+
"logps/chosen": -2.9822497367858887,
|
776 |
+
"logps/rejected": -4.995323657989502,
|
777 |
+
"loss": 0.3669,
|
778 |
+
"rewards/accuracies": 0.8500000238418579,
|
779 |
+
"rewards/chosen": -4.473374366760254,
|
780 |
+
"rewards/margins": 3.01961088180542,
|
781 |
+
"rewards/rejected": -7.492985725402832,
|
782 |
+
"step": 430
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.3907637655417407,
|
786 |
+
"grad_norm": 2.3307077884674072,
|
787 |
+
"learning_rate": 4.011497787155938e-06,
|
788 |
+
"logits/chosen": 1.5054914951324463,
|
789 |
+
"logits/rejected": 0.6257806420326233,
|
790 |
+
"logps/chosen": -3.2783126831054688,
|
791 |
+
"logps/rejected": -5.625805854797363,
|
792 |
+
"loss": 0.3428,
|
793 |
+
"rewards/accuracies": 0.925000011920929,
|
794 |
+
"rewards/chosen": -4.917469024658203,
|
795 |
+
"rewards/margins": 3.521239757537842,
|
796 |
+
"rewards/rejected": -8.438708305358887,
|
797 |
+
"step": 440
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.3996447602131439,
|
801 |
+
"grad_norm": 3.2838215827941895,
|
802 |
+
"learning_rate": 3.969463130731183e-06,
|
803 |
+
"logits/chosen": 1.711268424987793,
|
804 |
+
"logits/rejected": 1.4157356023788452,
|
805 |
+
"logps/chosen": -3.0163674354553223,
|
806 |
+
"logps/rejected": -5.020781517028809,
|
807 |
+
"loss": 0.3589,
|
808 |
+
"rewards/accuracies": 0.8500000238418579,
|
809 |
+
"rewards/chosen": -4.524550437927246,
|
810 |
+
"rewards/margins": 3.006621837615967,
|
811 |
+
"rewards/rejected": -7.531172752380371,
|
812 |
+
"step": 450
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.3996447602131439,
|
816 |
+
"eval_logits/chosen": 2.209981679916382,
|
817 |
+
"eval_logits/rejected": 1.6256438493728638,
|
818 |
+
"eval_logps/chosen": -2.841517925262451,
|
819 |
+
"eval_logps/rejected": -5.154296875,
|
820 |
+
"eval_loss": 0.35665163397789,
|
821 |
+
"eval_rewards/accuracies": 0.9120879173278809,
|
822 |
+
"eval_rewards/chosen": -4.262276649475098,
|
823 |
+
"eval_rewards/margins": 3.4691689014434814,
|
824 |
+
"eval_rewards/rejected": -7.7314453125,
|
825 |
+
"eval_runtime": 26.9493,
|
826 |
+
"eval_samples_per_second": 27.014,
|
827 |
+
"eval_steps_per_second": 3.377,
|
828 |
+
"step": 450
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.40852575488454707,
|
832 |
+
"grad_norm": 3.4476094245910645,
|
833 |
+
"learning_rate": 3.92678391921108e-06,
|
834 |
+
"logits/chosen": 1.3581907749176025,
|
835 |
+
"logits/rejected": 0.8621677160263062,
|
836 |
+
"logps/chosen": -2.831627130508423,
|
837 |
+
"logps/rejected": -5.023026943206787,
|
838 |
+
"loss": 0.3338,
|
839 |
+
"rewards/accuracies": 0.875,
|
840 |
+
"rewards/chosen": -4.247440338134766,
|
841 |
+
"rewards/margins": 3.287100315093994,
|
842 |
+
"rewards/rejected": -7.534541130065918,
|
843 |
+
"step": 460
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.41740674955595025,
|
847 |
+
"grad_norm": 2.6653027534484863,
|
848 |
+
"learning_rate": 3.88347887310836e-06,
|
849 |
+
"logits/chosen": 1.8693492412567139,
|
850 |
+
"logits/rejected": 1.605238676071167,
|
851 |
+
"logps/chosen": -2.7347512245178223,
|
852 |
+
"logps/rejected": -5.385977745056152,
|
853 |
+
"loss": 0.3348,
|
854 |
+
"rewards/accuracies": 0.925000011920929,
|
855 |
+
"rewards/chosen": -4.1021270751953125,
|
856 |
+
"rewards/margins": 3.976839542388916,
|
857 |
+
"rewards/rejected": -8.07896614074707,
|
858 |
+
"step": 470
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.42628774422735344,
|
862 |
+
"grad_norm": 6.658248424530029,
|
863 |
+
"learning_rate": 3.839566987447492e-06,
|
864 |
+
"logits/chosen": 1.8902003765106201,
|
865 |
+
"logits/rejected": 1.4942703247070312,
|
866 |
+
"logps/chosen": -3.1413326263427734,
|
867 |
+
"logps/rejected": -5.365391731262207,
|
868 |
+
"loss": 0.3171,
|
869 |
+
"rewards/accuracies": 0.862500011920929,
|
870 |
+
"rewards/chosen": -4.71199893951416,
|
871 |
+
"rewards/margins": 3.3360886573791504,
|
872 |
+
"rewards/rejected": -8.048087120056152,
|
873 |
+
"step": 480
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.4351687388987567,
|
877 |
+
"grad_norm": 3.2576091289520264,
|
878 |
+
"learning_rate": 3.795067523432826e-06,
|
879 |
+
"logits/chosen": 2.301971673965454,
|
880 |
+
"logits/rejected": 1.5673840045928955,
|
881 |
+
"logps/chosen": -2.789170980453491,
|
882 |
+
"logps/rejected": -5.354689598083496,
|
883 |
+
"loss": 0.3238,
|
884 |
+
"rewards/accuracies": 0.925000011920929,
|
885 |
+
"rewards/chosen": -4.1837568283081055,
|
886 |
+
"rewards/margins": 3.8482773303985596,
|
887 |
+
"rewards/rejected": -8.032033920288086,
|
888 |
+
"step": 490
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 0.44404973357015987,
|
892 |
+
"grad_norm": 5.094764709472656,
|
893 |
+
"learning_rate": 3.7500000000000005e-06,
|
894 |
+
"logits/chosen": 2.506347179412842,
|
895 |
+
"logits/rejected": 2.2316441535949707,
|
896 |
+
"logps/chosen": -3.1029722690582275,
|
897 |
+
"logps/rejected": -5.757994651794434,
|
898 |
+
"loss": 0.3052,
|
899 |
+
"rewards/accuracies": 0.875,
|
900 |
+
"rewards/chosen": -4.654458522796631,
|
901 |
+
"rewards/margins": 3.9825336933135986,
|
902 |
+
"rewards/rejected": -8.636991500854492,
|
903 |
+
"step": 500
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.44404973357015987,
|
907 |
+
"eval_logits/chosen": 2.332798480987549,
|
908 |
+
"eval_logits/rejected": 1.8098194599151611,
|
909 |
+
"eval_logps/chosen": -3.269892692565918,
|
910 |
+
"eval_logps/rejected": -5.909496307373047,
|
911 |
+
"eval_loss": 0.324949711561203,
|
912 |
+
"eval_rewards/accuracies": 0.9120879173278809,
|
913 |
+
"eval_rewards/chosen": -4.904839038848877,
|
914 |
+
"eval_rewards/margins": 3.9594056606292725,
|
915 |
+
"eval_rewards/rejected": -8.86424446105957,
|
916 |
+
"eval_runtime": 26.9415,
|
917 |
+
"eval_samples_per_second": 27.021,
|
918 |
+
"eval_steps_per_second": 3.378,
|
919 |
+
"step": 500
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.45293072824156305,
|
923 |
+
"grad_norm": 4.973895072937012,
|
924 |
+
"learning_rate": 3.7043841852542884e-06,
|
925 |
+
"logits/chosen": 1.1408557891845703,
|
926 |
+
"logits/rejected": 0.9078874588012695,
|
927 |
+
"logps/chosen": -3.2813212871551514,
|
928 |
+
"logps/rejected": -5.6853814125061035,
|
929 |
+
"loss": 0.3185,
|
930 |
+
"rewards/accuracies": 0.862500011920929,
|
931 |
+
"rewards/chosen": -4.9219818115234375,
|
932 |
+
"rewards/margins": 3.6060900688171387,
|
933 |
+
"rewards/rejected": -8.528071403503418,
|
934 |
+
"step": 510
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.46181172291296624,
|
938 |
+
"grad_norm": 2.726701021194458,
|
939 |
+
"learning_rate": 3.658240087799655e-06,
|
940 |
+
"logits/chosen": 1.5950994491577148,
|
941 |
+
"logits/rejected": 1.124607801437378,
|
942 |
+
"logps/chosen": -3.333927631378174,
|
943 |
+
"logps/rejected": -6.0137128829956055,
|
944 |
+
"loss": 0.3148,
|
945 |
+
"rewards/accuracies": 0.875,
|
946 |
+
"rewards/chosen": -5.000891208648682,
|
947 |
+
"rewards/margins": 4.019678592681885,
|
948 |
+
"rewards/rejected": -9.020570755004883,
|
949 |
+
"step": 520
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.4706927175843694,
|
953 |
+
"grad_norm": 4.8865556716918945,
|
954 |
+
"learning_rate": 3.611587947962319e-06,
|
955 |
+
"logits/chosen": 2.257068157196045,
|
956 |
+
"logits/rejected": 1.7986671924591064,
|
957 |
+
"logps/chosen": -3.1947333812713623,
|
958 |
+
"logps/rejected": -6.262570381164551,
|
959 |
+
"loss": 0.3191,
|
960 |
+
"rewards/accuracies": 0.9375,
|
961 |
+
"rewards/chosen": -4.792099952697754,
|
962 |
+
"rewards/margins": 4.601754665374756,
|
963 |
+
"rewards/rejected": -9.393855094909668,
|
964 |
+
"step": 530
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.47957371225577267,
|
968 |
+
"grad_norm": 4.325016021728516,
|
969 |
+
"learning_rate": 3.564448228912682e-06,
|
970 |
+
"logits/chosen": 2.3096823692321777,
|
971 |
+
"logits/rejected": 1.7991451025009155,
|
972 |
+
"logps/chosen": -3.3641560077667236,
|
973 |
+
"logps/rejected": -6.142219543457031,
|
974 |
+
"loss": 0.276,
|
975 |
+
"rewards/accuracies": 0.8999999761581421,
|
976 |
+
"rewards/chosen": -5.046233654022217,
|
977 |
+
"rewards/margins": 4.167095184326172,
|
978 |
+
"rewards/rejected": -9.213329315185547,
|
979 |
+
"step": 540
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.48845470692717585,
|
983 |
+
"grad_norm": 3.15216326713562,
|
984 |
+
"learning_rate": 3.516841607689501e-06,
|
985 |
+
"logits/chosen": 1.4415160417556763,
|
986 |
+
"logits/rejected": 1.1298859119415283,
|
987 |
+
"logps/chosen": -2.851362466812134,
|
988 |
+
"logps/rejected": -6.210903167724609,
|
989 |
+
"loss": 0.3257,
|
990 |
+
"rewards/accuracies": 0.9375,
|
991 |
+
"rewards/chosen": -4.277044296264648,
|
992 |
+
"rewards/margins": 5.039311408996582,
|
993 |
+
"rewards/rejected": -9.316354751586914,
|
994 |
+
"step": 550
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.48845470692717585,
|
998 |
+
"eval_logits/chosen": 2.296088695526123,
|
999 |
+
"eval_logits/rejected": 1.8609188795089722,
|
1000 |
+
"eval_logps/chosen": -3.422206401824951,
|
1001 |
+
"eval_logps/rejected": -6.41662073135376,
|
1002 |
+
"eval_loss": 0.30456680059432983,
|
1003 |
+
"eval_rewards/accuracies": 0.9120879173278809,
|
1004 |
+
"eval_rewards/chosen": -5.133309841156006,
|
1005 |
+
"eval_rewards/margins": 4.491621971130371,
|
1006 |
+
"eval_rewards/rejected": -9.624931335449219,
|
1007 |
+
"eval_runtime": 26.9409,
|
1008 |
+
"eval_samples_per_second": 27.022,
|
1009 |
+
"eval_steps_per_second": 3.378,
|
1010 |
+
"step": 550
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.49733570159857904,
|
1014 |
+
"grad_norm": 3.456071615219116,
|
1015 |
+
"learning_rate": 3.4687889661302577e-06,
|
1016 |
+
"logits/chosen": 1.6153348684310913,
|
1017 |
+
"logits/rejected": 1.1999633312225342,
|
1018 |
+
"logps/chosen": -3.450087785720825,
|
1019 |
+
"logps/rejected": -6.294098854064941,
|
1020 |
+
"loss": 0.3094,
|
1021 |
+
"rewards/accuracies": 0.925000011920929,
|
1022 |
+
"rewards/chosen": -5.175131797790527,
|
1023 |
+
"rewards/margins": 4.266016960144043,
|
1024 |
+
"rewards/rejected": -9.44114875793457,
|
1025 |
+
"step": 560
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.5062166962699822,
|
1029 |
+
"grad_norm": 3.7813830375671387,
|
1030 |
+
"learning_rate": 3.4203113817116955e-06,
|
1031 |
+
"logits/chosen": 2.5460948944091797,
|
1032 |
+
"logits/rejected": 2.240358829498291,
|
1033 |
+
"logps/chosen": -3.441761016845703,
|
1034 |
+
"logps/rejected": -6.200081825256348,
|
1035 |
+
"loss": 0.2967,
|
1036 |
+
"rewards/accuracies": 0.8374999761581421,
|
1037 |
+
"rewards/chosen": -5.1626410484313965,
|
1038 |
+
"rewards/margins": 4.137481212615967,
|
1039 |
+
"rewards/rejected": -9.300122261047363,
|
1040 |
+
"step": 570
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5150976909413855,
|
1044 |
+
"grad_norm": 3.561509847640991,
|
1045 |
+
"learning_rate": 3.3714301183045382e-06,
|
1046 |
+
"logits/chosen": 2.236506223678589,
|
1047 |
+
"logits/rejected": 2.0224223136901855,
|
1048 |
+
"logps/chosen": -3.6373534202575684,
|
1049 |
+
"logps/rejected": -6.733517646789551,
|
1050 |
+
"loss": 0.2781,
|
1051 |
+
"rewards/accuracies": 0.875,
|
1052 |
+
"rewards/chosen": -5.45603084564209,
|
1053 |
+
"rewards/margins": 4.6442461013793945,
|
1054 |
+
"rewards/rejected": -10.1002779006958,
|
1055 |
+
"step": 580
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.5239786856127886,
|
1059 |
+
"grad_norm": 2.540649175643921,
|
1060 |
+
"learning_rate": 3.3221666168464584e-06,
|
1061 |
+
"logits/chosen": 1.9122869968414307,
|
1062 |
+
"logits/rejected": 1.8370224237442017,
|
1063 |
+
"logps/chosen": -3.241629123687744,
|
1064 |
+
"logps/rejected": -6.666001319885254,
|
1065 |
+
"loss": 0.2678,
|
1066 |
+
"rewards/accuracies": 0.9375,
|
1067 |
+
"rewards/chosen": -4.862443447113037,
|
1068 |
+
"rewards/margins": 5.1365580558776855,
|
1069 |
+
"rewards/rejected": -9.999002456665039,
|
1070 |
+
"step": 590
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.5328596802841918,
|
1074 |
+
"grad_norm": 2.05529522895813,
|
1075 |
+
"learning_rate": 3.272542485937369e-06,
|
1076 |
+
"logits/chosen": 1.9268839359283447,
|
1077 |
+
"logits/rejected": 1.4725837707519531,
|
1078 |
+
"logps/chosen": -3.7067363262176514,
|
1079 |
+
"logps/rejected": -6.972158908843994,
|
1080 |
+
"loss": 0.264,
|
1081 |
+
"rewards/accuracies": 0.9125000238418579,
|
1082 |
+
"rewards/chosen": -5.560103893280029,
|
1083 |
+
"rewards/margins": 4.898133754730225,
|
1084 |
+
"rewards/rejected": -10.458237648010254,
|
1085 |
+
"step": 600
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.5328596802841918,
|
1089 |
+
"eval_logits/chosen": 2.3668525218963623,
|
1090 |
+
"eval_logits/rejected": 1.9882280826568604,
|
1091 |
+
"eval_logps/chosen": -3.6040353775024414,
|
1092 |
+
"eval_logps/rejected": -6.91050386428833,
|
1093 |
+
"eval_loss": 0.29209136962890625,
|
1094 |
+
"eval_rewards/accuracies": 0.9120879173278809,
|
1095 |
+
"eval_rewards/chosen": -5.406052589416504,
|
1096 |
+
"eval_rewards/margins": 4.95970344543457,
|
1097 |
+
"eval_rewards/rejected": -10.365756034851074,
|
1098 |
+
"eval_runtime": 26.9486,
|
1099 |
+
"eval_samples_per_second": 27.014,
|
1100 |
+
"eval_steps_per_second": 3.377,
|
1101 |
+
"step": 600
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.5417406749555951,
|
1105 |
+
"grad_norm": 5.438882350921631,
|
1106 |
+
"learning_rate": 3.222579492361179e-06,
|
1107 |
+
"logits/chosen": 2.0183475017547607,
|
1108 |
+
"logits/rejected": 1.7007204294204712,
|
1109 |
+
"logps/chosen": -3.7757949829101562,
|
1110 |
+
"logps/rejected": -6.875540256500244,
|
1111 |
+
"loss": 0.2787,
|
1112 |
+
"rewards/accuracies": 0.9375,
|
1113 |
+
"rewards/chosen": -5.663692951202393,
|
1114 |
+
"rewards/margins": 4.6496171951293945,
|
1115 |
+
"rewards/rejected": -10.313310623168945,
|
1116 |
+
"step": 610
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.5506216696269982,
|
1120 |
+
"grad_norm": 6.464421272277832,
|
1121 |
+
"learning_rate": 3.1722995515381644e-06,
|
1122 |
+
"logits/chosen": 1.8897826671600342,
|
1123 |
+
"logits/rejected": 1.6919243335723877,
|
1124 |
+
"logps/chosen": -3.738862991333008,
|
1125 |
+
"logps/rejected": -7.225765228271484,
|
1126 |
+
"loss": 0.296,
|
1127 |
+
"rewards/accuracies": 0.8999999761581421,
|
1128 |
+
"rewards/chosen": -5.6082940101623535,
|
1129 |
+
"rewards/margins": 5.230353355407715,
|
1130 |
+
"rewards/rejected": -10.83864688873291,
|
1131 |
+
"step": 620
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.5595026642984015,
|
1135 |
+
"grad_norm": 3.983937978744507,
|
1136 |
+
"learning_rate": 3.121724717912138e-06,
|
1137 |
+
"logits/chosen": 1.8497775793075562,
|
1138 |
+
"logits/rejected": 1.3537144660949707,
|
1139 |
+
"logps/chosen": -3.6511616706848145,
|
1140 |
+
"logps/rejected": -7.310211181640625,
|
1141 |
+
"loss": 0.2604,
|
1142 |
+
"rewards/accuracies": 0.949999988079071,
|
1143 |
+
"rewards/chosen": -5.476742267608643,
|
1144 |
+
"rewards/margins": 5.488574028015137,
|
1145 |
+
"rewards/rejected": -10.965316772460938,
|
1146 |
+
"step": 630
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.5683836589698046,
|
1150 |
+
"grad_norm": 9.850502014160156,
|
1151 |
+
"learning_rate": 3.0708771752766397e-06,
|
1152 |
+
"logits/chosen": 2.073599338531494,
|
1153 |
+
"logits/rejected": 1.3638606071472168,
|
1154 |
+
"logps/chosen": -4.1297831535339355,
|
1155 |
+
"logps/rejected": -7.344725131988525,
|
1156 |
+
"loss": 0.2868,
|
1157 |
+
"rewards/accuracies": 0.9125000238418579,
|
1158 |
+
"rewards/chosen": -6.194674491882324,
|
1159 |
+
"rewards/margins": 4.822413444519043,
|
1160 |
+
"rewards/rejected": -11.017088890075684,
|
1161 |
+
"step": 640
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.5772646536412078,
|
1165 |
+
"grad_norm": 3.2157247066497803,
|
1166 |
+
"learning_rate": 3.019779227044398e-06,
|
1167 |
+
"logits/chosen": 1.492789387702942,
|
1168 |
+
"logits/rejected": 1.2012196779251099,
|
1169 |
+
"logps/chosen": -3.458716630935669,
|
1170 |
+
"logps/rejected": -6.776049613952637,
|
1171 |
+
"loss": 0.2489,
|
1172 |
+
"rewards/accuracies": 0.925000011920929,
|
1173 |
+
"rewards/chosen": -5.188075542449951,
|
1174 |
+
"rewards/margins": 4.975998878479004,
|
1175 |
+
"rewards/rejected": -10.164074897766113,
|
1176 |
+
"step": 650
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.5772646536412078,
|
1180 |
+
"eval_logits/chosen": 2.4555883407592773,
|
1181 |
+
"eval_logits/rejected": 2.1057684421539307,
|
1182 |
+
"eval_logps/chosen": -3.6452677249908447,
|
1183 |
+
"eval_logps/rejected": -7.163515090942383,
|
1184 |
+
"eval_loss": 0.2778012156486511,
|
1185 |
+
"eval_rewards/accuracies": 0.901098906993866,
|
1186 |
+
"eval_rewards/chosen": -5.467901706695557,
|
1187 |
+
"eval_rewards/margins": 5.277371406555176,
|
1188 |
+
"eval_rewards/rejected": -10.745272636413574,
|
1189 |
+
"eval_runtime": 26.906,
|
1190 |
+
"eval_samples_per_second": 27.057,
|
1191 |
+
"eval_steps_per_second": 3.382,
|
1192 |
+
"step": 650
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.5861456483126111,
|
1196 |
+
"grad_norm": 3.6115524768829346,
|
1197 |
+
"learning_rate": 2.9684532864643123e-06,
|
1198 |
+
"logits/chosen": 2.066650390625,
|
1199 |
+
"logits/rejected": 1.7030436992645264,
|
1200 |
+
"logps/chosen": -3.875563859939575,
|
1201 |
+
"logps/rejected": -7.133286476135254,
|
1202 |
+
"loss": 0.2752,
|
1203 |
+
"rewards/accuracies": 0.862500011920929,
|
1204 |
+
"rewards/chosen": -5.813345432281494,
|
1205 |
+
"rewards/margins": 4.88658332824707,
|
1206 |
+
"rewards/rejected": -10.699929237365723,
|
1207 |
+
"step": 660
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.5950266429840142,
|
1211 |
+
"grad_norm": 3.460318088531494,
|
1212 |
+
"learning_rate": 2.9169218667902562e-06,
|
1213 |
+
"logits/chosen": 2.433854341506958,
|
1214 |
+
"logits/rejected": 2.045027256011963,
|
1215 |
+
"logps/chosen": -3.6893928050994873,
|
1216 |
+
"logps/rejected": -6.720344543457031,
|
1217 |
+
"loss": 0.2562,
|
1218 |
+
"rewards/accuracies": 0.9125000238418579,
|
1219 |
+
"rewards/chosen": -5.534089088439941,
|
1220 |
+
"rewards/margins": 4.5464277267456055,
|
1221 |
+
"rewards/rejected": -10.080517768859863,
|
1222 |
+
"step": 670
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.6039076376554174,
|
1226 |
+
"grad_norm": 2.232542037963867,
|
1227 |
+
"learning_rate": 2.8652075714060296e-06,
|
1228 |
+
"logits/chosen": 2.3069093227386475,
|
1229 |
+
"logits/rejected": 1.7321109771728516,
|
1230 |
+
"logps/chosen": -3.936506748199463,
|
1231 |
+
"logps/rejected": -7.7827630043029785,
|
1232 |
+
"loss": 0.2333,
|
1233 |
+
"rewards/accuracies": 0.987500011920929,
|
1234 |
+
"rewards/chosen": -5.904759883880615,
|
1235 |
+
"rewards/margins": 5.769384860992432,
|
1236 |
+
"rewards/rejected": -11.674144744873047,
|
1237 |
+
"step": 680
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.6127886323268206,
|
1241 |
+
"grad_norm": 3.947690010070801,
|
1242 |
+
"learning_rate": 2.813333083910761e-06,
|
1243 |
+
"logits/chosen": 1.467885136604309,
|
1244 |
+
"logits/rejected": 1.0833615064620972,
|
1245 |
+
"logps/chosen": -3.2870895862579346,
|
1246 |
+
"logps/rejected": -7.22244930267334,
|
1247 |
+
"loss": 0.2739,
|
1248 |
+
"rewards/accuracies": 0.949999988079071,
|
1249 |
+
"rewards/chosen": -4.930634498596191,
|
1250 |
+
"rewards/margins": 5.90303897857666,
|
1251 |
+
"rewards/rejected": -10.833673477172852,
|
1252 |
+
"step": 690
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 0.6216696269982238,
|
1256 |
+
"grad_norm": 4.934174060821533,
|
1257 |
+
"learning_rate": 2.761321158169134e-06,
|
1258 |
+
"logits/chosen": 2.440274477005005,
|
1259 |
+
"logits/rejected": 2.157214403152466,
|
1260 |
+
"logps/chosen": -4.241659641265869,
|
1261 |
+
"logps/rejected": -7.748563289642334,
|
1262 |
+
"loss": 0.2859,
|
1263 |
+
"rewards/accuracies": 0.8999999761581421,
|
1264 |
+
"rewards/chosen": -6.362490177154541,
|
1265 |
+
"rewards/margins": 5.260354995727539,
|
1266 |
+
"rewards/rejected": -11.622844696044922,
|
1267 |
+
"step": 700
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 0.6216696269982238,
|
1271 |
+
"eval_logits/chosen": 2.5609161853790283,
|
1272 |
+
"eval_logits/rejected": 2.258920431137085,
|
1273 |
+
"eval_logps/chosen": -3.965893507003784,
|
1274 |
+
"eval_logps/rejected": -7.77095365524292,
|
1275 |
+
"eval_loss": 0.26121068000793457,
|
1276 |
+
"eval_rewards/accuracies": 0.9340659379959106,
|
1277 |
+
"eval_rewards/chosen": -5.948840618133545,
|
1278 |
+
"eval_rewards/margins": 5.707590579986572,
|
1279 |
+
"eval_rewards/rejected": -11.656431198120117,
|
1280 |
+
"eval_runtime": 26.9101,
|
1281 |
+
"eval_samples_per_second": 27.053,
|
1282 |
+
"eval_steps_per_second": 3.382,
|
1283 |
+
"step": 700
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.6305506216696269,
|
1287 |
+
"grad_norm": 5.9008684158325195,
|
1288 |
+
"learning_rate": 2.70919460833079e-06,
|
1289 |
+
"logits/chosen": 1.6100571155548096,
|
1290 |
+
"logits/rejected": 1.341528296470642,
|
1291 |
+
"logps/chosen": -3.8634166717529297,
|
1292 |
+
"logps/rejected": -7.63654088973999,
|
1293 |
+
"loss": 0.2351,
|
1294 |
+
"rewards/accuracies": 0.9624999761581421,
|
1295 |
+
"rewards/chosen": -5.795124053955078,
|
1296 |
+
"rewards/margins": 5.659686088562012,
|
1297 |
+
"rewards/rejected": -11.454811096191406,
|
1298 |
+
"step": 710
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.6394316163410302,
|
1302 |
+
"grad_norm": 2.7195751667022705,
|
1303 |
+
"learning_rate": 2.6569762988232838e-06,
|
1304 |
+
"logits/chosen": 2.1212353706359863,
|
1305 |
+
"logits/rejected": 1.864898443222046,
|
1306 |
+
"logps/chosen": -3.8487918376922607,
|
1307 |
+
"logps/rejected": -7.823777198791504,
|
1308 |
+
"loss": 0.2329,
|
1309 |
+
"rewards/accuracies": 0.8999999761581421,
|
1310 |
+
"rewards/chosen": -5.77318811416626,
|
1311 |
+
"rewards/margins": 5.9624762535095215,
|
1312 |
+
"rewards/rejected": -11.735665321350098,
|
1313 |
+
"step": 720
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.6483126110124334,
|
1317 |
+
"grad_norm": 4.423059463500977,
|
1318 |
+
"learning_rate": 2.604689134322999e-06,
|
1319 |
+
"logits/chosen": 2.0979533195495605,
|
1320 |
+
"logits/rejected": 1.7213973999023438,
|
1321 |
+
"logps/chosen": -3.9874777793884277,
|
1322 |
+
"logps/rejected": -7.617144584655762,
|
1323 |
+
"loss": 0.2482,
|
1324 |
+
"rewards/accuracies": 0.8999999761581421,
|
1325 |
+
"rewards/chosen": -5.981216907501221,
|
1326 |
+
"rewards/margins": 5.4444990158081055,
|
1327 |
+
"rewards/rejected": -11.4257173538208,
|
1328 |
+
"step": 730
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.6571936056838366,
|
1332 |
+
"grad_norm": 4.327184200286865,
|
1333 |
+
"learning_rate": 2.5523560497083927e-06,
|
1334 |
+
"logits/chosen": 2.2398109436035156,
|
1335 |
+
"logits/rejected": 1.913095474243164,
|
1336 |
+
"logps/chosen": -3.72918701171875,
|
1337 |
+
"logps/rejected": -7.094988822937012,
|
1338 |
+
"loss": 0.223,
|
1339 |
+
"rewards/accuracies": 0.887499988079071,
|
1340 |
+
"rewards/chosen": -5.593780517578125,
|
1341 |
+
"rewards/margins": 5.048702716827393,
|
1342 |
+
"rewards/rejected": -10.64248275756836,
|
1343 |
+
"step": 740
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.6660746003552398,
|
1347 |
+
"grad_norm": 3.1207029819488525,
|
1348 |
+
"learning_rate": 2.5e-06,
|
1349 |
+
"logits/chosen": 1.7178529500961304,
|
1350 |
+
"logits/rejected": 1.7194137573242188,
|
1351 |
+
"logps/chosen": -3.9564640522003174,
|
1352 |
+
"logps/rejected": -7.360040187835693,
|
1353 |
+
"loss": 0.2227,
|
1354 |
+
"rewards/accuracies": 0.887499988079071,
|
1355 |
+
"rewards/chosen": -5.934695243835449,
|
1356 |
+
"rewards/margins": 5.10536527633667,
|
1357 |
+
"rewards/rejected": -11.040060043334961,
|
1358 |
+
"step": 750
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.6660746003552398,
|
1362 |
+
"eval_logits/chosen": 2.521843671798706,
|
1363 |
+
"eval_logits/rejected": 2.2902743816375732,
|
1364 |
+
"eval_logps/chosen": -4.141489028930664,
|
1365 |
+
"eval_logps/rejected": -8.121171951293945,
|
1366 |
+
"eval_loss": 0.25929248332977295,
|
1367 |
+
"eval_rewards/accuracies": 0.9120879173278809,
|
1368 |
+
"eval_rewards/chosen": -6.212233543395996,
|
1369 |
+
"eval_rewards/margins": 5.969525337219238,
|
1370 |
+
"eval_rewards/rejected": -12.181758880615234,
|
1371 |
+
"eval_runtime": 26.9435,
|
1372 |
+
"eval_samples_per_second": 27.019,
|
1373 |
+
"eval_steps_per_second": 3.377,
|
1374 |
+
"step": 750
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.6749555950266429,
|
1378 |
+
"grad_norm": 2.5788235664367676,
|
1379 |
+
"learning_rate": 2.447643950291608e-06,
|
1380 |
+
"logits/chosen": 1.7696739435195923,
|
1381 |
+
"logits/rejected": 1.624455213546753,
|
1382 |
+
"logps/chosen": -4.3122711181640625,
|
1383 |
+
"logps/rejected": -8.191080093383789,
|
1384 |
+
"loss": 0.1991,
|
1385 |
+
"rewards/accuracies": 0.9624999761581421,
|
1386 |
+
"rewards/chosen": -6.468405723571777,
|
1387 |
+
"rewards/margins": 5.81821346282959,
|
1388 |
+
"rewards/rejected": -12.286620140075684,
|
1389 |
+
"step": 760
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.6838365896980462,
|
1393 |
+
"grad_norm": 4.544955730438232,
|
1394 |
+
"learning_rate": 2.3953108656770018e-06,
|
1395 |
+
"logits/chosen": 1.9560623168945312,
|
1396 |
+
"logits/rejected": 1.7740411758422852,
|
1397 |
+
"logps/chosen": -4.327980041503906,
|
1398 |
+
"logps/rejected": -8.547250747680664,
|
1399 |
+
"loss": 0.2301,
|
1400 |
+
"rewards/accuracies": 0.9750000238418579,
|
1401 |
+
"rewards/chosen": -6.491971492767334,
|
1402 |
+
"rewards/margins": 6.328906059265137,
|
1403 |
+
"rewards/rejected": -12.82087516784668,
|
1404 |
+
"step": 770
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.6927175843694494,
|
1408 |
+
"grad_norm": 3.706414222717285,
|
1409 |
+
"learning_rate": 2.3430237011767166e-06,
|
1410 |
+
"logits/chosen": 2.664365291595459,
|
1411 |
+
"logits/rejected": 2.338026285171509,
|
1412 |
+
"logps/chosen": -3.8961780071258545,
|
1413 |
+
"logps/rejected": -7.658777713775635,
|
1414 |
+
"loss": 0.2398,
|
1415 |
+
"rewards/accuracies": 0.949999988079071,
|
1416 |
+
"rewards/chosen": -5.84426736831665,
|
1417 |
+
"rewards/margins": 5.643899917602539,
|
1418 |
+
"rewards/rejected": -11.488167762756348,
|
1419 |
+
"step": 780
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.7015985790408525,
|
1423 |
+
"grad_norm": 1.7868493795394897,
|
1424 |
+
"learning_rate": 2.290805391669212e-06,
|
1425 |
+
"logits/chosen": 3.1498961448669434,
|
1426 |
+
"logits/rejected": 2.860450267791748,
|
1427 |
+
"logps/chosen": -4.245728492736816,
|
1428 |
+
"logps/rejected": -8.142782211303711,
|
1429 |
+
"loss": 0.184,
|
1430 |
+
"rewards/accuracies": 1.0,
|
1431 |
+
"rewards/chosen": -6.368593215942383,
|
1432 |
+
"rewards/margins": 5.845582008361816,
|
1433 |
+
"rewards/rejected": -12.214174270629883,
|
1434 |
+
"step": 790
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.7104795737122558,
|
1438 |
+
"grad_norm": 4.593838214874268,
|
1439 |
+
"learning_rate": 2.238678841830867e-06,
|
1440 |
+
"logits/chosen": 2.4697837829589844,
|
1441 |
+
"logits/rejected": 2.062006950378418,
|
1442 |
+
"logps/chosen": -4.312434673309326,
|
1443 |
+
"logps/rejected": -7.9613471031188965,
|
1444 |
+
"loss": 0.2373,
|
1445 |
+
"rewards/accuracies": 0.9750000238418579,
|
1446 |
+
"rewards/chosen": -6.468652248382568,
|
1447 |
+
"rewards/margins": 5.4733686447143555,
|
1448 |
+
"rewards/rejected": -11.942021369934082,
|
1449 |
+
"step": 800
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.7104795737122558,
|
1453 |
+
"eval_logits/chosen": 2.5936477184295654,
|
1454 |
+
"eval_logits/rejected": 2.3626792430877686,
|
1455 |
+
"eval_logps/chosen": -3.92742919921875,
|
1456 |
+
"eval_logps/rejected": -8.105939865112305,
|
1457 |
+
"eval_loss": 0.24979564547538757,
|
1458 |
+
"eval_rewards/accuracies": 0.9230769276618958,
|
1459 |
+
"eval_rewards/chosen": -5.891143321990967,
|
1460 |
+
"eval_rewards/margins": 6.267765045166016,
|
1461 |
+
"eval_rewards/rejected": -12.15890884399414,
|
1462 |
+
"eval_runtime": 26.9514,
|
1463 |
+
"eval_samples_per_second": 27.012,
|
1464 |
+
"eval_steps_per_second": 3.376,
|
1465 |
+
"step": 800
|
1466 |
+
}
|
1467 |
+
],
|
1468 |
+
"logging_steps": 10,
|
1469 |
+
"max_steps": 1500,
|
1470 |
+
"num_input_tokens_seen": 0,
|
1471 |
+
"num_train_epochs": 2,
|
1472 |
+
"save_steps": 50,
|
1473 |
+
"stateful_callbacks": {
|
1474 |
+
"TrainerControl": {
|
1475 |
+
"args": {
|
1476 |
+
"should_epoch_stop": false,
|
1477 |
+
"should_evaluate": false,
|
1478 |
+
"should_log": false,
|
1479 |
+
"should_save": true,
|
1480 |
+
"should_training_stop": false
|
1481 |
+
},
|
1482 |
+
"attributes": {}
|
1483 |
+
}
|
1484 |
+
},
|
1485 |
+
"total_flos": 1.94866406062293e+18,
|
1486 |
+
"train_batch_size": 1,
|
1487 |
+
"trial_name": null,
|
1488 |
+
"trial_params": null
|
1489 |
+
}
|
checkpoint-800/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71bc9387fe632b190c857fa4052c3667f7da2a0079c5f2572bee765dfa764ce3
|
3 |
+
size 7224
|
checkpoint-800/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|