ziansu commited on
Commit
b295cf6
·
verified ·
1 Parent(s): 3cdbc81

Training in progress, step 400, checkpoint

Browse files
checkpoint-400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "gate_up_proj",
27
+ "down_proj",
28
+ "o_proj",
29
+ "qkv_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4536ef2974aa09ce1e948c88ab1bb493563e6b259d6d8b5d99fdcfed4854e70
3
+ size 25200088
checkpoint-400/global_step400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed00254977b425336d1e20d983398cf07160d35f07b62da9d6913b90ce24a01
3
+ size 18881328
checkpoint-400/global_step400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6da617795bf09ca2a6cbe0cac1c780579e2628602267f8774d3ea68adbd7022
3
+ size 18881328
checkpoint-400/global_step400/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7139659023711159ff364e12fc5b994763c272d905c8dac9065e50a6fc9f0452
3
+ size 18881328
checkpoint-400/global_step400/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7572623b32bd7df078beff29c077865961bca979b245f71816ba1c9324335fc
3
+ size 18881392
checkpoint-400/global_step400/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06e2745cf8fca3e9c72623419a74255a72a6a514ab1a9933a7832a53642cbcfa
3
+ size 18881392
checkpoint-400/global_step400/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb67de47743c0b42d49877deaf5679c71b9197a1b59755876b26dc7d29d09f2e
3
+ size 18881392
checkpoint-400/global_step400/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d40ffabb3f54f1b709266c46fe699b9036174ac897d0a5ca45d5f92baf1fb161
3
+ size 18881392
checkpoint-400/global_step400/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b591a1e49332b1745e511ce3abdee97ff63e04a29f576a3f288d72a370308609
3
+ size 18881392
checkpoint-400/global_step400/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4738b1533798f2325033cf8f6814b88f87a85805a3254b32d2a86a1169d2bd5d
3
+ size 25379244
checkpoint-400/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step400
checkpoint-400/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e735ed11597ed40a2b6854e0229902e1a21fedc0a0dbc608ca905fae57d5b06b
3
+ size 15984
checkpoint-400/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ba3815fc0953b1b7f08cea092dfc0a62c4bbc2a2c68780d3f4dd0b5e22582a7
3
+ size 15984
checkpoint-400/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:647ac15563fcad903adbb616e9b2c36b237a3ed5939d088620212da969930f6c
3
+ size 15984
checkpoint-400/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93e3733c5b180986b7efbec17b663bf5231343d187374d184768fcd913797167
3
+ size 15984
checkpoint-400/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9820ea4fec1b01f3da091290c3e8b5ddb86a3a3fa17285c248b64910c2d0b4f0
3
+ size 15984
checkpoint-400/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7413035def085e41776a629afc94fc24fe5a955f1ad83b32f9b370ab60f9a18d
3
+ size 15984
checkpoint-400/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e3953bcbf4089415abffbd914fbbe4580121f6c843eabbf70624c5ed144814
3
+ size 15984
checkpoint-400/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:369fde7bff4dfc0d6b9cf773cf9b0352696083f84763999e05a631ee6d52c5e3
3
+ size 15984
checkpoint-400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aac1d10a4fba6674d4d4d256177d8ea7a4d21f425de7e6b2e1a3c89e3d13c186
3
+ size 1064
checkpoint-400/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-400/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-400/trainer_state.json ADDED
@@ -0,0 +1,761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.3229061553985873,
5
+ "eval_steps": 50,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008072653884964682,
13
+ "grad_norm": 0.04381619393825531,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.719314575195312,
16
+ "logits/rejected": 15.156938552856445,
17
+ "logps/chosen": -0.2856016755104065,
18
+ "logps/rejected": -0.31895095109939575,
19
+ "loss": 0.9242,
20
+ "rewards/accuracies": 0.4375,
21
+ "rewards/chosen": -0.42840251326560974,
22
+ "rewards/margins": 0.050023891031742096,
23
+ "rewards/rejected": -0.47842639684677124,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.016145307769929364,
28
+ "grad_norm": 0.05155143886804581,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.559402465820312,
31
+ "logits/rejected": 15.32939338684082,
32
+ "logps/chosen": -0.2736968398094177,
33
+ "logps/rejected": -0.3458033502101898,
34
+ "loss": 0.9127,
35
+ "rewards/accuracies": 0.5375000238418579,
36
+ "rewards/chosen": -0.4105452597141266,
37
+ "rewards/margins": 0.10815979540348053,
38
+ "rewards/rejected": -0.5187050104141235,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.024217961654894045,
43
+ "grad_norm": 0.05071854218840599,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.653738021850586,
46
+ "logits/rejected": 15.168347358703613,
47
+ "logps/chosen": -0.2985997200012207,
48
+ "logps/rejected": -0.34624338150024414,
49
+ "loss": 0.9141,
50
+ "rewards/accuracies": 0.4625000059604645,
51
+ "rewards/chosen": -0.44789963960647583,
52
+ "rewards/margins": 0.07146544009447098,
53
+ "rewards/rejected": -0.5193650722503662,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.03229061553985873,
58
+ "grad_norm": 0.052318744361400604,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.621539115905762,
61
+ "logits/rejected": 15.138806343078613,
62
+ "logps/chosen": -0.27971988916397095,
63
+ "logps/rejected": -0.360626757144928,
64
+ "loss": 0.9313,
65
+ "rewards/accuracies": 0.5625,
66
+ "rewards/chosen": -0.4195798337459564,
67
+ "rewards/margins": 0.12136033922433853,
68
+ "rewards/rejected": -0.5409401655197144,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04036326942482341,
73
+ "grad_norm": 0.06900553405284882,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.308789253234863,
76
+ "logits/rejected": 14.605737686157227,
77
+ "logps/chosen": -0.2685723304748535,
78
+ "logps/rejected": -0.323064386844635,
79
+ "loss": 0.9076,
80
+ "rewards/accuracies": 0.4749999940395355,
81
+ "rewards/chosen": -0.40285855531692505,
82
+ "rewards/margins": 0.08173803985118866,
83
+ "rewards/rejected": -0.4845965802669525,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04036326942482341,
88
+ "eval_logits/chosen": 14.528907775878906,
89
+ "eval_logits/rejected": 15.016877174377441,
90
+ "eval_logps/chosen": -0.2801212966442108,
91
+ "eval_logps/rejected": -0.34862396121025085,
92
+ "eval_loss": 0.9108895063400269,
93
+ "eval_rewards/accuracies": 0.5544554591178894,
94
+ "eval_rewards/chosen": -0.4201819598674774,
95
+ "eval_rewards/margins": 0.10275395959615707,
96
+ "eval_rewards/rejected": -0.5229359865188599,
97
+ "eval_runtime": 30.01,
98
+ "eval_samples_per_second": 26.691,
99
+ "eval_steps_per_second": 3.366,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.04843592330978809,
104
+ "grad_norm": 0.32321593165397644,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.644981384277344,
107
+ "logits/rejected": 15.177103996276855,
108
+ "logps/chosen": -0.26382654905319214,
109
+ "logps/rejected": -0.33932510018348694,
110
+ "loss": 0.9204,
111
+ "rewards/accuracies": 0.5249999761581421,
112
+ "rewards/chosen": -0.3957397937774658,
113
+ "rewards/margins": 0.1132478266954422,
114
+ "rewards/rejected": -0.5089876055717468,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.056508577194752774,
119
+ "grad_norm": 0.07268164306879044,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.562113761901855,
122
+ "logits/rejected": 15.092450141906738,
123
+ "logps/chosen": -0.2856511175632477,
124
+ "logps/rejected": -0.34295767545700073,
125
+ "loss": 0.915,
126
+ "rewards/accuracies": 0.5375000238418579,
127
+ "rewards/chosen": -0.42847663164138794,
128
+ "rewards/margins": 0.08595988899469376,
129
+ "rewards/rejected": -0.5144366025924683,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.06458123107971746,
134
+ "grad_norm": 0.06727313250303268,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 13.979713439941406,
137
+ "logits/rejected": 14.924532890319824,
138
+ "logps/chosen": -0.27184560894966125,
139
+ "logps/rejected": -0.3679867386817932,
140
+ "loss": 0.9223,
141
+ "rewards/accuracies": 0.637499988079071,
142
+ "rewards/chosen": -0.4077683985233307,
143
+ "rewards/margins": 0.14421164989471436,
144
+ "rewards/rejected": -0.5519800186157227,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07265388496468214,
149
+ "grad_norm": 0.06138753890991211,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 14.366241455078125,
152
+ "logits/rejected": 14.924840927124023,
153
+ "logps/chosen": -0.2656143009662628,
154
+ "logps/rejected": -0.3583180606365204,
155
+ "loss": 0.9117,
156
+ "rewards/accuracies": 0.6000000238418579,
157
+ "rewards/chosen": -0.39842137694358826,
158
+ "rewards/margins": 0.13905569911003113,
159
+ "rewards/rejected": -0.5374771356582642,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08072653884964683,
164
+ "grad_norm": 0.14299456775188446,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.401769638061523,
167
+ "logits/rejected": 14.532609939575195,
168
+ "logps/chosen": -0.2966740131378174,
169
+ "logps/rejected": -0.3347373604774475,
170
+ "loss": 0.9162,
171
+ "rewards/accuracies": 0.5249999761581421,
172
+ "rewards/chosen": -0.4450109899044037,
173
+ "rewards/margins": 0.05709508806467056,
174
+ "rewards/rejected": -0.5021060705184937,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08072653884964683,
179
+ "eval_logits/chosen": 14.096770286560059,
180
+ "eval_logits/rejected": 14.638699531555176,
181
+ "eval_logps/chosen": -0.2713560461997986,
182
+ "eval_logps/rejected": -0.35128629207611084,
183
+ "eval_loss": 0.900999128818512,
184
+ "eval_rewards/accuracies": 0.5643564462661743,
185
+ "eval_rewards/chosen": -0.4070340394973755,
186
+ "eval_rewards/margins": 0.11989541351795197,
187
+ "eval_rewards/rejected": -0.5269294381141663,
188
+ "eval_runtime": 29.986,
189
+ "eval_samples_per_second": 26.712,
190
+ "eval_steps_per_second": 3.368,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.08879919273461151,
195
+ "grad_norm": 0.0759090781211853,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 13.392621994018555,
198
+ "logits/rejected": 14.395462036132812,
199
+ "logps/chosen": -0.22954440116882324,
200
+ "logps/rejected": -0.36977845430374146,
201
+ "loss": 0.8951,
202
+ "rewards/accuracies": 0.699999988079071,
203
+ "rewards/chosen": -0.3443165421485901,
204
+ "rewards/margins": 0.21035107970237732,
205
+ "rewards/rejected": -0.5546677112579346,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.09687184661957618,
210
+ "grad_norm": 0.155408576130867,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 13.7767915725708,
213
+ "logits/rejected": 14.654029846191406,
214
+ "logps/chosen": -0.2693817615509033,
215
+ "logps/rejected": -0.38339418172836304,
216
+ "loss": 0.9012,
217
+ "rewards/accuracies": 0.637499988079071,
218
+ "rewards/chosen": -0.40407267212867737,
219
+ "rewards/margins": 0.17101867496967316,
220
+ "rewards/rejected": -0.5750913619995117,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.10494450050454086,
225
+ "grad_norm": 0.31760165095329285,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 13.619878768920898,
228
+ "logits/rejected": 14.147298812866211,
229
+ "logps/chosen": -0.2787878215312958,
230
+ "logps/rejected": -0.35886240005493164,
231
+ "loss": 0.8911,
232
+ "rewards/accuracies": 0.5249999761581421,
233
+ "rewards/chosen": -0.41818171739578247,
234
+ "rewards/margins": 0.12011190503835678,
235
+ "rewards/rejected": -0.5382936000823975,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.11301715438950555,
240
+ "grad_norm": 0.10735614597797394,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 13.27166748046875,
243
+ "logits/rejected": 13.826273918151855,
244
+ "logps/chosen": -0.25437131524086,
245
+ "logps/rejected": -0.3877837061882019,
246
+ "loss": 0.8915,
247
+ "rewards/accuracies": 0.6499999761581421,
248
+ "rewards/chosen": -0.3815569281578064,
249
+ "rewards/margins": 0.20011858642101288,
250
+ "rewards/rejected": -0.5816755890846252,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.12108980827447023,
255
+ "grad_norm": 0.12984605133533478,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 12.981040954589844,
258
+ "logits/rejected": 13.055997848510742,
259
+ "logps/chosen": -0.27253809571266174,
260
+ "logps/rejected": -0.32365134358406067,
261
+ "loss": 0.8954,
262
+ "rewards/accuracies": 0.4375,
263
+ "rewards/chosen": -0.4088071286678314,
264
+ "rewards/margins": 0.07666991651058197,
265
+ "rewards/rejected": -0.4854770302772522,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.12108980827447023,
270
+ "eval_logits/chosen": 12.205692291259766,
271
+ "eval_logits/rejected": 12.830544471740723,
272
+ "eval_logps/chosen": -0.2716449201107025,
273
+ "eval_logps/rejected": -0.37988847494125366,
274
+ "eval_loss": 0.8780961036682129,
275
+ "eval_rewards/accuracies": 0.5841584205627441,
276
+ "eval_rewards/chosen": -0.40746742486953735,
277
+ "eval_rewards/margins": 0.16236530244350433,
278
+ "eval_rewards/rejected": -0.5698326826095581,
279
+ "eval_runtime": 30.0006,
280
+ "eval_samples_per_second": 26.699,
281
+ "eval_steps_per_second": 3.367,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.12916246215943492,
286
+ "grad_norm": 0.1466989368200302,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 12.592086791992188,
289
+ "logits/rejected": 12.590131759643555,
290
+ "logps/chosen": -0.2901991307735443,
291
+ "logps/rejected": -0.37141314148902893,
292
+ "loss": 0.8814,
293
+ "rewards/accuracies": 0.5874999761581421,
294
+ "rewards/chosen": -0.4352986812591553,
295
+ "rewards/margins": 0.12182100117206573,
296
+ "rewards/rejected": -0.5571196675300598,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.13723511604439959,
301
+ "grad_norm": 0.15794874727725983,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 10.324287414550781,
304
+ "logits/rejected": 11.248865127563477,
305
+ "logps/chosen": -0.24505829811096191,
306
+ "logps/rejected": -0.4437941610813141,
307
+ "loss": 0.8739,
308
+ "rewards/accuracies": 0.7124999761581421,
309
+ "rewards/chosen": -0.3675874173641205,
310
+ "rewards/margins": 0.29810377955436707,
311
+ "rewards/rejected": -0.6656912565231323,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.14530776992936428,
316
+ "grad_norm": 0.34027722477912903,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 9.277830123901367,
319
+ "logits/rejected": 10.56584644317627,
320
+ "logps/chosen": -0.29055729508399963,
321
+ "logps/rejected": -0.4694874882698059,
322
+ "loss": 0.8732,
323
+ "rewards/accuracies": 0.6499999761581421,
324
+ "rewards/chosen": -0.43583592772483826,
325
+ "rewards/margins": 0.2683953046798706,
326
+ "rewards/rejected": -0.7042312026023865,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.15338042381432895,
331
+ "grad_norm": 0.21653155982494354,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 6.692442417144775,
334
+ "logits/rejected": 8.371492385864258,
335
+ "logps/chosen": -0.2739722728729248,
336
+ "logps/rejected": -0.5168331265449524,
337
+ "loss": 0.8425,
338
+ "rewards/accuracies": 0.6875,
339
+ "rewards/chosen": -0.4109583795070648,
340
+ "rewards/margins": 0.36429136991500854,
341
+ "rewards/rejected": -0.7752498388290405,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.16145307769929365,
346
+ "grad_norm": 0.27401649951934814,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 7.028637886047363,
349
+ "logits/rejected": 7.22598123550415,
350
+ "logps/chosen": -0.32309776544570923,
351
+ "logps/rejected": -0.5094671249389648,
352
+ "loss": 0.8327,
353
+ "rewards/accuracies": 0.612500011920929,
354
+ "rewards/chosen": -0.48464661836624146,
355
+ "rewards/margins": 0.2795540988445282,
356
+ "rewards/rejected": -0.7642006874084473,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.16145307769929365,
361
+ "eval_logits/chosen": 6.369185924530029,
362
+ "eval_logits/rejected": 6.641132831573486,
363
+ "eval_logps/chosen": -0.32840561866760254,
364
+ "eval_logps/rejected": -0.5301258563995361,
365
+ "eval_loss": 0.8103437423706055,
366
+ "eval_rewards/accuracies": 0.6237623691558838,
367
+ "eval_rewards/chosen": -0.4926084876060486,
368
+ "eval_rewards/margins": 0.30258041620254517,
369
+ "eval_rewards/rejected": -0.795188844203949,
370
+ "eval_runtime": 29.9886,
371
+ "eval_samples_per_second": 26.71,
372
+ "eval_steps_per_second": 3.368,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.16952573158425832,
377
+ "grad_norm": 0.3183073103427887,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 5.25254487991333,
380
+ "logits/rejected": 5.84013032913208,
381
+ "logps/chosen": -0.3624248802661896,
382
+ "logps/rejected": -0.6147049069404602,
383
+ "loss": 0.7877,
384
+ "rewards/accuracies": 0.625,
385
+ "rewards/chosen": -0.5436373949050903,
386
+ "rewards/margins": 0.3784201443195343,
387
+ "rewards/rejected": -0.9220573306083679,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.17759838546922302,
392
+ "grad_norm": 0.3535729646682739,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 4.473980903625488,
395
+ "logits/rejected": 3.9927191734313965,
396
+ "logps/chosen": -0.3647093176841736,
397
+ "logps/rejected": -0.6410630345344543,
398
+ "loss": 0.7816,
399
+ "rewards/accuracies": 0.612500011920929,
400
+ "rewards/chosen": -0.547063946723938,
401
+ "rewards/margins": 0.4145306646823883,
402
+ "rewards/rejected": -0.9615945816040039,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.1856710393541877,
407
+ "grad_norm": 0.4819677174091339,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 2.7333035469055176,
410
+ "logits/rejected": 2.521853446960449,
411
+ "logps/chosen": -0.40259629487991333,
412
+ "logps/rejected": -0.7537732720375061,
413
+ "loss": 0.7306,
414
+ "rewards/accuracies": 0.6625000238418579,
415
+ "rewards/chosen": -0.6038944721221924,
416
+ "rewards/margins": 0.5267654657363892,
417
+ "rewards/rejected": -1.1306599378585815,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.19374369323915236,
422
+ "grad_norm": 0.4125296175479889,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 2.212467908859253,
425
+ "logits/rejected": 1.1434030532836914,
426
+ "logps/chosen": -0.4652811884880066,
427
+ "logps/rejected": -0.8928227424621582,
428
+ "loss": 0.7214,
429
+ "rewards/accuracies": 0.625,
430
+ "rewards/chosen": -0.6979218125343323,
431
+ "rewards/margins": 0.6413123607635498,
432
+ "rewards/rejected": -1.3392341136932373,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.20181634712411706,
437
+ "grad_norm": 0.4265546202659607,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 0.4756811559200287,
440
+ "logits/rejected": 0.07218921184539795,
441
+ "logps/chosen": -0.4880926012992859,
442
+ "logps/rejected": -1.0095646381378174,
443
+ "loss": 0.6811,
444
+ "rewards/accuracies": 0.7124999761581421,
445
+ "rewards/chosen": -0.7321388721466064,
446
+ "rewards/margins": 0.7822080850601196,
447
+ "rewards/rejected": -1.5143468379974365,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.20181634712411706,
452
+ "eval_logits/chosen": 1.6732138395309448,
453
+ "eval_logits/rejected": 0.5167235732078552,
454
+ "eval_logps/chosen": -0.5383209586143494,
455
+ "eval_logps/rejected": -1.0026048421859741,
456
+ "eval_loss": 0.6842760443687439,
457
+ "eval_rewards/accuracies": 0.6336633563041687,
458
+ "eval_rewards/chosen": -0.8074814677238464,
459
+ "eval_rewards/margins": 0.6964258551597595,
460
+ "eval_rewards/rejected": -1.5039072036743164,
461
+ "eval_runtime": 29.9884,
462
+ "eval_samples_per_second": 26.71,
463
+ "eval_steps_per_second": 3.368,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.20988900100908173,
468
+ "grad_norm": 0.5196985006332397,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 1.7947940826416016,
471
+ "logits/rejected": 0.9839111566543579,
472
+ "logps/chosen": -0.6005308032035828,
473
+ "logps/rejected": -0.9484688639640808,
474
+ "loss": 0.7141,
475
+ "rewards/accuracies": 0.512499988079071,
476
+ "rewards/chosen": -0.9007962942123413,
477
+ "rewards/margins": 0.5219069719314575,
478
+ "rewards/rejected": -1.4227031469345093,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.21796165489404642,
483
+ "grad_norm": 1.302403450012207,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 2.2894890308380127,
486
+ "logits/rejected": 1.2887728214263916,
487
+ "logps/chosen": -0.5904151797294617,
488
+ "logps/rejected": -1.1889005899429321,
489
+ "loss": 0.6647,
490
+ "rewards/accuracies": 0.637499988079071,
491
+ "rewards/chosen": -0.8856227993965149,
492
+ "rewards/margins": 0.8977279663085938,
493
+ "rewards/rejected": -1.783350944519043,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.2260343087790111,
498
+ "grad_norm": 0.7729688286781311,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 0.4874440133571625,
501
+ "logits/rejected": -0.3855375349521637,
502
+ "logps/chosen": -0.624158501625061,
503
+ "logps/rejected": -1.4413455724716187,
504
+ "loss": 0.5629,
505
+ "rewards/accuracies": 0.637499988079071,
506
+ "rewards/chosen": -0.9362378120422363,
507
+ "rewards/margins": 1.2257804870605469,
508
+ "rewards/rejected": -2.162018299102783,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.2341069626639758,
513
+ "grad_norm": 0.41621893644332886,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 1.3461151123046875,
516
+ "logits/rejected": 0.733107328414917,
517
+ "logps/chosen": -0.7516278624534607,
518
+ "logps/rejected": -1.6215450763702393,
519
+ "loss": 0.5544,
520
+ "rewards/accuracies": 0.6000000238418579,
521
+ "rewards/chosen": -1.1274420022964478,
522
+ "rewards/margins": 1.3048756122589111,
523
+ "rewards/rejected": -2.4323174953460693,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.24217961654894046,
528
+ "grad_norm": 0.45633476972579956,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 0.6991375684738159,
531
+ "logits/rejected": 0.1667344868183136,
532
+ "logps/chosen": -0.7924041152000427,
533
+ "logps/rejected": -2.521883249282837,
534
+ "loss": 0.4968,
535
+ "rewards/accuracies": 0.800000011920929,
536
+ "rewards/chosen": -1.1886063814163208,
537
+ "rewards/margins": 2.5942187309265137,
538
+ "rewards/rejected": -3.782824754714966,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.24217961654894046,
543
+ "eval_logits/chosen": 1.107033610343933,
544
+ "eval_logits/rejected": 0.10493909567594528,
545
+ "eval_logps/chosen": -0.8693537712097168,
546
+ "eval_logps/rejected": -2.1045310497283936,
547
+ "eval_loss": 0.4899609684944153,
548
+ "eval_rewards/accuracies": 0.6633663177490234,
549
+ "eval_rewards/chosen": -1.3040307760238647,
550
+ "eval_rewards/margins": 1.852765679359436,
551
+ "eval_rewards/rejected": -3.15679669380188,
552
+ "eval_runtime": 30.0102,
553
+ "eval_samples_per_second": 26.691,
554
+ "eval_steps_per_second": 3.366,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.25025227043390513,
559
+ "grad_norm": 2.2053284645080566,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 0.6556342244148254,
562
+ "logits/rejected": -0.14924369752407074,
563
+ "logps/chosen": -0.8949082493782043,
564
+ "logps/rejected": -2.1485395431518555,
565
+ "loss": 0.5372,
566
+ "rewards/accuracies": 0.699999988079071,
567
+ "rewards/chosen": -1.342362403869629,
568
+ "rewards/margins": 1.8804467916488647,
569
+ "rewards/rejected": -3.222809314727783,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.25832492431886983,
574
+ "grad_norm": 0.8357079029083252,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 1.4236268997192383,
577
+ "logits/rejected": 0.44775086641311646,
578
+ "logps/chosen": -0.8566747903823853,
579
+ "logps/rejected": -2.4265379905700684,
580
+ "loss": 0.4974,
581
+ "rewards/accuracies": 0.6875,
582
+ "rewards/chosen": -1.285012125968933,
583
+ "rewards/margins": 2.35479474067688,
584
+ "rewards/rejected": -3.6398072242736816,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.26639757820383453,
589
+ "grad_norm": 1.5514745712280273,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 1.0238934755325317,
592
+ "logits/rejected": 0.31885427236557007,
593
+ "logps/chosen": -0.9286335110664368,
594
+ "logps/rejected": -2.957723379135132,
595
+ "loss": 0.4777,
596
+ "rewards/accuracies": 0.75,
597
+ "rewards/chosen": -1.3929500579833984,
598
+ "rewards/margins": 3.043635129928589,
599
+ "rewards/rejected": -4.436585426330566,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.27447023208879917,
604
+ "grad_norm": 0.7523798942565918,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.0386161804199219,
607
+ "logits/rejected": 0.1279783844947815,
608
+ "logps/chosen": -1.0053694248199463,
609
+ "logps/rejected": -2.8961727619171143,
610
+ "loss": 0.4718,
611
+ "rewards/accuracies": 0.7749999761581421,
612
+ "rewards/chosen": -1.5080541372299194,
613
+ "rewards/margins": 2.8362045288085938,
614
+ "rewards/rejected": -4.344258785247803,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.28254288597376387,
619
+ "grad_norm": 0.6102933287620544,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 0.5982325077056885,
622
+ "logits/rejected": 0.07386422157287598,
623
+ "logps/chosen": -1.0740950107574463,
624
+ "logps/rejected": -2.4773449897766113,
625
+ "loss": 0.4909,
626
+ "rewards/accuracies": 0.7124999761581421,
627
+ "rewards/chosen": -1.6111425161361694,
628
+ "rewards/margins": 2.104874849319458,
629
+ "rewards/rejected": -3.716017246246338,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.28254288597376387,
634
+ "eval_logits/chosen": 1.3659090995788574,
635
+ "eval_logits/rejected": 0.5649093985557556,
636
+ "eval_logps/chosen": -1.113811731338501,
637
+ "eval_logps/rejected": -2.65985107421875,
638
+ "eval_loss": 0.44899094104766846,
639
+ "eval_rewards/accuracies": 0.6633663177490234,
640
+ "eval_rewards/chosen": -1.6707175970077515,
641
+ "eval_rewards/margins": 2.319058895111084,
642
+ "eval_rewards/rejected": -3.989776849746704,
643
+ "eval_runtime": 29.9887,
644
+ "eval_samples_per_second": 26.71,
645
+ "eval_steps_per_second": 3.368,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.29061553985872857,
650
+ "grad_norm": 0.4950815737247467,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 1.4646549224853516,
653
+ "logits/rejected": 1.0656757354736328,
654
+ "logps/chosen": -1.0681949853897095,
655
+ "logps/rejected": -2.9191997051239014,
656
+ "loss": 0.4561,
657
+ "rewards/accuracies": 0.737500011920929,
658
+ "rewards/chosen": -1.6022924184799194,
659
+ "rewards/margins": 2.7765071392059326,
660
+ "rewards/rejected": -4.3787994384765625,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.29868819374369326,
665
+ "grad_norm": 1.830091118812561,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 2.0835390090942383,
668
+ "logits/rejected": 1.3285930156707764,
669
+ "logps/chosen": -1.1288923025131226,
670
+ "logps/rejected": -3.2559380531311035,
671
+ "loss": 0.4305,
672
+ "rewards/accuracies": 0.737500011920929,
673
+ "rewards/chosen": -1.693338394165039,
674
+ "rewards/margins": 3.190568208694458,
675
+ "rewards/rejected": -4.883906364440918,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.3067608476286579,
680
+ "grad_norm": 2.1292569637298584,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 1.5609261989593506,
683
+ "logits/rejected": 1.0038378238677979,
684
+ "logps/chosen": -1.2937371730804443,
685
+ "logps/rejected": -3.3292288780212402,
686
+ "loss": 0.4358,
687
+ "rewards/accuracies": 0.737500011920929,
688
+ "rewards/chosen": -1.9406057596206665,
689
+ "rewards/margins": 3.0532374382019043,
690
+ "rewards/rejected": -4.993843078613281,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.3148335015136226,
695
+ "grad_norm": 2.124483346939087,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 1.9905683994293213,
698
+ "logits/rejected": 1.498375415802002,
699
+ "logps/chosen": -1.4837720394134521,
700
+ "logps/rejected": -3.7814183235168457,
701
+ "loss": 0.4565,
702
+ "rewards/accuracies": 0.7250000238418579,
703
+ "rewards/chosen": -2.225658416748047,
704
+ "rewards/margins": 3.44646954536438,
705
+ "rewards/rejected": -5.672127723693848,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3229061553985873,
710
+ "grad_norm": 1.8990832567214966,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 2.05663800239563,
713
+ "logits/rejected": 1.7521194219589233,
714
+ "logps/chosen": -1.662553071975708,
715
+ "logps/rejected": -4.254827976226807,
716
+ "loss": 0.408,
717
+ "rewards/accuracies": 0.887499988079071,
718
+ "rewards/chosen": -2.4938297271728516,
719
+ "rewards/margins": 3.8884124755859375,
720
+ "rewards/rejected": -6.382241725921631,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3229061553985873,
725
+ "eval_logits/chosen": 1.7070311307907104,
726
+ "eval_logits/rejected": 1.3909664154052734,
727
+ "eval_logps/chosen": -2.0459556579589844,
728
+ "eval_logps/rejected": -4.069729804992676,
729
+ "eval_loss": 0.38578492403030396,
730
+ "eval_rewards/accuracies": 0.8613861203193665,
731
+ "eval_rewards/chosen": -3.0689334869384766,
732
+ "eval_rewards/margins": 3.035661458969116,
733
+ "eval_rewards/rejected": -6.104594707489014,
734
+ "eval_runtime": 30.015,
735
+ "eval_samples_per_second": 26.687,
736
+ "eval_steps_per_second": 3.365,
737
+ "step": 400
738
+ }
739
+ ],
740
+ "logging_steps": 10,
741
+ "max_steps": 1500,
742
+ "num_input_tokens_seen": 0,
743
+ "num_train_epochs": 2,
744
+ "save_steps": 50,
745
+ "stateful_callbacks": {
746
+ "TrainerControl": {
747
+ "args": {
748
+ "should_epoch_stop": false,
749
+ "should_evaluate": false,
750
+ "should_log": false,
751
+ "should_save": true,
752
+ "should_training_stop": false
753
+ },
754
+ "attributes": {}
755
+ }
756
+ },
757
+ "total_flos": 9.732130957678346e+17,
758
+ "train_batch_size": 1,
759
+ "trial_name": null,
760
+ "trial_params": null
761
+ }
checkpoint-400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b4baf06be36eabcb39d3d1f4e89871aeacdc0329940b46389df0d3da443c59c
3
+ size 7224
checkpoint-400/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)