Update README.md
Browse files
README.md
CHANGED
@@ -7,13 +7,94 @@ language:
|
|
7 |
base_model:
|
8 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
9 |
pipeline_tag: image-text-to-text
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
# Model Card for SENTINEL:<br>
|
13 |
|
14 |
<a href='https://arxiv.org/abs/2507.12455'>
|
15 |
<img src='https://img.shields.io/badge/Paper-Arxiv-purple'></a>
|
16 |
<a href='https://github.com/pspdada/SENTINEL'>
|
17 |
<img src='https://img.shields.io/badge/Github-Repo-Green'></a>
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
base_model:
|
8 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
9 |
pipeline_tag: image-text-to-text
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- lora
|
13 |
---
|
14 |
|
15 |
+
# Model Card for ``psp-dada/Qwen2.5-VL-7B-Instruct-SENTINEL`` | ICCV2025 | SENTINEL:<br>Mitigating Object Hallucinations via Sentence-Level Early Intervention <!-- omit in toc -->
|
16 |
|
17 |
<a href='https://arxiv.org/abs/2507.12455'>
|
18 |
<img src='https://img.shields.io/badge/Paper-Arxiv-purple'></a>
|
19 |
<a href='https://github.com/pspdada/SENTINEL'>
|
20 |
<img src='https://img.shields.io/badge/Github-Repo-Green'></a>
|
21 |
+
<a href='https://huggingface.co/papers/2507.12455'>
|
22 |
+
<img src='https://img.shields.io/badge/Discussion-HF-blue'></a>
|
23 |
+
<a href='https://github.com/pspdada/SENTINEL/blob/main/LICENSE'>
|
24 |
+
<img src='https://img.shields.io/badge/LICENSE-Apache_2.0-yellow'></a>
|
25 |
|
26 |
+
## 🎊 News <!-- omit in toc -->
|
27 |
+
|
28 |
+
- [2025.07.21] All code, data, and models are released!
|
29 |
+
- [2025.06.26] 🎉 Our SENTINEL is accepted by **ICCV 2025**!
|
30 |
+
|
31 |
+
## 🚀 Overview <!-- omit in toc -->
|
32 |
+
|
33 |
+
**SENTINEL** introduces an automatic, sentence‑level early intervention strategy to prevent and mitigate object hallucinations in multimodal large language models (MLLMs). Key advantages:
|
34 |
+
|
35 |
+
- **Annotation‑free**: No human labeling required.
|
36 |
+
|
37 |
+
- **Model-agnostic**: Compatible with any MLLM architecture.
|
38 |
+
|
39 |
+
- **Efficient**: Lightweight LoRA fine‑tuning.
|
40 |
+
|
41 |
+
## 🔑 Key Features
|
42 |
+
|
43 |
+
- 🧠 **Early intervention halts hallucination propagation**. We find that hallucinations of MLLMs predominantly arise in early sentences and propagate through the rest of the output. SENTINEL interrupts this chain early to maximize mitigation.
|
44 |
+
<table align="center">
|
45 |
+
<p align="center">
|
46 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure2.png" width="80%" />
|
47 |
+
</p>
|
48 |
+
</table>
|
49 |
+
|
50 |
+
- 🔍 **In-domain contextual preference learning without human labels**. SENTINEL constructs hallucinated/factual samples via detector cross-validation and builds context-aware preference data without relying on proprietary LLMs or manual annotations.
|
51 |
+
<table align="center">
|
52 |
+
<p align="center">
|
53 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure3.png" width="80%" />
|
54 |
+
</p>
|
55 |
+
</table>
|
56 |
+
|
57 |
+
- 💡 **Context matters: rich coherence drives robustness**. By prioritizing context-coherent positive samples over hallucinated ones, SENTINEL significantly boosts generalization.
|
58 |
+
<table align="center">
|
59 |
+
<p align="center">
|
60 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure4.png" width="80%" />
|
61 |
+
</p>
|
62 |
+
</table>
|
63 |
+
|
64 |
+
- ♻️ **Iterative contextual bootstrapping for diverse hallucination-free contexts**. Our pipeline dynamically grows non-hallucinated contexts and expands coverage across varied scenes, improving robustness across generations.
|
65 |
+
<table align="center">
|
66 |
+
<p align="center">
|
67 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure5.png" width="80%" />
|
68 |
+
</p>
|
69 |
+
</table>
|
70 |
+
|
71 |
+
- 📊 **State-of-the-art results across benchmarks**.
|
72 |
+
SENTINEL achieves **up to 92% reduction** in hallucinations and outperforms prior SOTA methods across Object HalBench, AMBER, and HallusionBench, while maintaining or improving general task performance.
|
73 |
+
<table align="center">
|
74 |
+
<p align="center">
|
75 |
+
<img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/table1.png" width="80%" />
|
76 |
+
</p>
|
77 |
+
</table>
|
78 |
+
|
79 |
+
## How to use
|
80 |
+
|
81 |
+
This model is a PEFT (LoRA) adapter. You first need to load the base model (`Qwen/Qwen2.5-VL-7B-Instruct`) and then load this adapter on top of it.
|
82 |
+
|
83 |
+
**For the details of this model, please refer to the [documentation](https://github.com/pspdada/SENTINEL?tab=readme-ov-file#-model-weights) of the GitHub repo.**
|
84 |
+
|
85 |
+
## 📝 Citation
|
86 |
+
|
87 |
+
If you find our model/code/data/paper helpful, please consider citing our papers 📝 and starring us ⭐️!
|
88 |
+
|
89 |
+
```bibtex
|
90 |
+
@article{peng2025mitigating,
|
91 |
+
title={Mitigating Object Hallucinations via Sentence-Level Early Intervention},
|
92 |
+
author={Peng, Shangpin and Yang, Senqiao and Jiang, Li and Tian, Zhuotao},
|
93 |
+
journal={arXiv preprint arXiv:2507.12455},
|
94 |
+
year={2025}
|
95 |
+
}
|
96 |
+
```
|
97 |
+
|
98 |
+
## 📧 Contact us <!-- omit in toc -->
|
99 |
+
|
100 |
+
If you have any questions, comments, or suggestions, please do not hesitate to submit an issue or PR to help advance research in this area.
|