psp-dada commited on
Commit
93ea1d1
·
verified ·
1 Parent(s): c66752b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -2
README.md CHANGED
@@ -7,13 +7,94 @@ language:
7
  base_model:
8
  - Qwen/Qwen2.5-VL-7B-Instruct
9
  pipeline_tag: image-text-to-text
 
 
 
10
  ---
11
 
12
- # Model Card for SENTINEL:<br> Mitigating Object Hallucinations via Sentence-Level Early Intervention <!-- omit in toc -->
13
 
14
  <a href='https://arxiv.org/abs/2507.12455'>
15
  <img src='https://img.shields.io/badge/Paper-Arxiv-purple'></a>
16
  <a href='https://github.com/pspdada/SENTINEL'>
17
  <img src='https://img.shields.io/badge/Github-Repo-Green'></a>
 
 
 
 
18
 
19
- For the details of this model, please refer to the [documentation](https://github.com/pspdada/SENTINEL?tab=readme-ov-file#-model-weights) of the GitHub repo.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  base_model:
8
  - Qwen/Qwen2.5-VL-7B-Instruct
9
  pipeline_tag: image-text-to-text
10
+ library_name: transformers
11
+ tags:
12
+ - lora
13
  ---
14
 
15
+ # Model Card for ``psp-dada/Qwen2.5-VL-7B-Instruct-SENTINEL`` | ICCV2025 | SENTINEL:<br>Mitigating Object Hallucinations via Sentence-Level Early Intervention <!-- omit in toc -->
16
 
17
  <a href='https://arxiv.org/abs/2507.12455'>
18
  <img src='https://img.shields.io/badge/Paper-Arxiv-purple'></a>
19
  <a href='https://github.com/pspdada/SENTINEL'>
20
  <img src='https://img.shields.io/badge/Github-Repo-Green'></a>
21
+ <a href='https://huggingface.co/papers/2507.12455'>
22
+ <img src='https://img.shields.io/badge/Discussion-HF-blue'></a>
23
+ <a href='https://github.com/pspdada/SENTINEL/blob/main/LICENSE'>
24
+ <img src='https://img.shields.io/badge/LICENSE-Apache_2.0-yellow'></a>
25
 
26
+ ## 🎊 News <!-- omit in toc -->
27
+
28
+ - [2025.07.21] All code, data, and models are released!
29
+ - [2025.06.26] 🎉 Our SENTINEL is accepted by **ICCV 2025**!
30
+
31
+ ## 🚀 Overview <!-- omit in toc -->
32
+
33
+ **SENTINEL** introduces an automatic, sentence‑level early intervention strategy to prevent and mitigate object hallucinations in multimodal large language models (MLLMs). Key advantages:
34
+
35
+ - **Annotation‑free**: No human labeling required.
36
+
37
+ - **Model-agnostic**: Compatible with any MLLM architecture.
38
+
39
+ - **Efficient**: Lightweight LoRA fine‑tuning.
40
+
41
+ ## 🔑 Key Features
42
+
43
+ - 🧠 **Early intervention halts hallucination propagation**. We find that hallucinations of MLLMs predominantly arise in early sentences and propagate through the rest of the output. SENTINEL interrupts this chain early to maximize mitigation.
44
+ <table align="center">
45
+ <p align="center">
46
+ <img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure2.png" width="80%" />
47
+ </p>
48
+ </table>
49
+
50
+ - 🔍 **In-domain contextual preference learning without human labels**. SENTINEL constructs hallucinated/factual samples via detector cross-validation and builds context-aware preference data without relying on proprietary LLMs or manual annotations.
51
+ <table align="center">
52
+ <p align="center">
53
+ <img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure3.png" width="80%" />
54
+ </p>
55
+ </table>
56
+
57
+ - 💡 **Context matters: rich coherence drives robustness**. By prioritizing context-coherent positive samples over hallucinated ones, SENTINEL significantly boosts generalization.
58
+ <table align="center">
59
+ <p align="center">
60
+ <img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure4.png" width="80%" />
61
+ </p>
62
+ </table>
63
+
64
+ - ♻️ **Iterative contextual bootstrapping for diverse hallucination-free contexts**. Our pipeline dynamically grows non-hallucinated contexts and expands coverage across varied scenes, improving robustness across generations.
65
+ <table align="center">
66
+ <p align="center">
67
+ <img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/figure5.png" width="80%" />
68
+ </p>
69
+ </table>
70
+
71
+ - 📊 **State-of-the-art results across benchmarks**.
72
+ SENTINEL achieves **up to 92% reduction** in hallucinations and outperforms prior SOTA methods across Object HalBench, AMBER, and HallusionBench, while maintaining or improving general task performance.
73
+ <table align="center">
74
+ <p align="center">
75
+ <img src="https://github.com/pspdada/SENTINEL/raw/main/docs/figures/table1.png" width="80%" />
76
+ </p>
77
+ </table>
78
+
79
+ ## How to use
80
+
81
+ This model is a PEFT (LoRA) adapter. You first need to load the base model (`Qwen/Qwen2.5-VL-7B-Instruct`) and then load this adapter on top of it.
82
+
83
+ **For the details of this model, please refer to the [documentation](https://github.com/pspdada/SENTINEL?tab=readme-ov-file#-model-weights) of the GitHub repo.**
84
+
85
+ ## 📝 Citation
86
+
87
+ If you find our model/code/data/paper helpful, please consider citing our papers 📝 and starring us ⭐️!
88
+
89
+ ```bibtex
90
+ @article{peng2025mitigating,
91
+ title={Mitigating Object Hallucinations via Sentence-Level Early Intervention},
92
+ author={Peng, Shangpin and Yang, Senqiao and Jiang, Li and Tian, Zhuotao},
93
+ journal={arXiv preprint arXiv:2507.12455},
94
+ year={2025}
95
+ }
96
+ ```
97
+
98
+ ## 📧 Contact us <!-- omit in toc -->
99
+
100
+ If you have any questions, comments, or suggestions, please do not hesitate to submit an issue or PR to help advance research in this area.