det / configs /det /cascade_rcnn_swin-t_fpn_3x_det_bdd100k.py
qninhdt's picture
Upload 83 files
8bb3bd1 verified
"""Cascade RCNN with Swin-T, 3x schedule, MS training."""
_base_ = [
"../_base_/models/cascade_rcnn_r50_fpn.py",
"../_base_/datasets/bdd100k_mstrain.py",
"../_base_/schedules/schedule_3x.py",
"../_base_/default_runtime.py",
]
pretrained = "https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth" # noqa
model = dict(
backbone=dict(
_delete_=True,
type="SwinTransformer",
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(type="Pretrained", checkpoint=pretrained),
),
neck=dict(in_channels=[96, 192, 384, 768]),
)
optimizer = dict(
_delete_=True,
type="AdamW",
lr=0.0001,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_cfg=dict(
custom_keys={
"absolute_pos_embed": dict(decay_mult=0.0),
"relative_position_bias_table": dict(decay_mult=0.0),
"norm": dict(decay_mult=0.0),
}
),
)
lr_config = dict(warmup_iters=1000, step=[27, 33])
data = dict(samples_per_gpu=2, workers_per_gpu=2)
load_from = "https://dl.cv.ethz.ch/bdd100k/det/models/cascade_rcnn_swin-t_fpn_3x_det_bdd100k.pth"