|
"""Sparse RCNN with ResNet50-FPN, 100 proposals, 3x schedule, MS training.""" |
|
|
|
_base_ = "./sparse_rcnn_r50_fpn_1x_det_bdd100k.py" |
|
data_root = "../data/bdd100k/" |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True |
|
) |
|
min_values = (600, 624, 648, 672, 696, 720) |
|
train_pipeline = [ |
|
dict(type="LoadImageFromFile", to_float32=True), |
|
dict(type="LoadAnnotations", with_bbox=True), |
|
dict( |
|
type="Resize", |
|
img_scale=[(1280, value) for value in min_values], |
|
multiscale_mode="value", |
|
keep_ratio=True, |
|
), |
|
dict(type="RandomFlip", flip_ratio=0.5), |
|
dict(type="Normalize", **img_norm_cfg), |
|
dict(type="Pad", size_divisor=32), |
|
dict(type="DefaultFormatBundle"), |
|
dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels"]), |
|
] |
|
|
|
data = dict(train=dict(pipeline=train_pipeline)) |
|
lr_config = dict(policy="step", step=[27, 33]) |
|
runner = dict(type="EpochBasedRunner", max_epochs=36) |
|
load_from = "https://dl.cv.ethz.ch/bdd100k/det/models/sparse_rcnn_r50_fpn_3x_det_bdd100k.pth" |
|
|