File size: 6,508 Bytes
1ab03a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# pre-download the weights for 256 resolution model to checkpoints/ffhq256_autoenc and checkpoints/ffhq256_autoenc_cls
# wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
# bunzip2 shape_predictor_68_face_landmarks.dat.bz2
import os
import torch
from torchvision.utils import save_image
import tempfile
from templates import *
from templates_cls import *
from experiment_classifier import ClsModel
from align import LandmarksDetector, image_align
from cog import BasePredictor, Path, Input, BaseModel
class ModelOutput(BaseModel):
image: Path
class Predictor(BasePredictor):
def setup(self):
self.aligned_dir = "aligned"
os.makedirs(self.aligned_dir, exist_ok=True)
self.device = "cuda:0"
# Model Initialization
model_config = ffhq256_autoenc()
self.model = LitModel(model_config)
state = torch.load("checkpoints/ffhq256_autoenc/last.ckpt", map_location="cpu")
self.model.load_state_dict(state["state_dict"], strict=False)
self.model.ema_model.eval()
self.model.ema_model.to(self.device)
# Classifier Initialization
classifier_config = ffhq256_autoenc_cls()
classifier_config.pretrain = None # a bit faster
self.classifier = ClsModel(classifier_config)
state_class = torch.load(
"checkpoints/ffhq256_autoenc_cls/last.ckpt", map_location="cpu"
)
print("latent step:", state_class["global_step"])
self.classifier.load_state_dict(state_class["state_dict"], strict=False)
self.classifier.to(self.device)
self.landmarks_detector = LandmarksDetector(
"shape_predictor_68_face_landmarks.dat"
)
def predict(
self,
image: Path = Input(
description="Input image for face manipulation. Image will be aligned and cropped, "
"output aligned and manipulated images.",
),
target_class: str = Input(
default="Bangs",
choices=[
"5_o_Clock_Shadow",
"Arched_Eyebrows",
"Attractive",
"Bags_Under_Eyes",
"Bald",
"Bangs",
"Big_Lips",
"Big_Nose",
"Black_Hair",
"Blond_Hair",
"Blurry",
"Brown_Hair",
"Bushy_Eyebrows",
"Chubby",
"Double_Chin",
"Eyeglasses",
"Goatee",
"Gray_Hair",
"Heavy_Makeup",
"High_Cheekbones",
"Male",
"Mouth_Slightly_Open",
"Mustache",
"Narrow_Eyes",
"Beard",
"Oval_Face",
"Pale_Skin",
"Pointy_Nose",
"Receding_Hairline",
"Rosy_Cheeks",
"Sideburns",
"Smiling",
"Straight_Hair",
"Wavy_Hair",
"Wearing_Earrings",
"Wearing_Hat",
"Wearing_Lipstick",
"Wearing_Necklace",
"Wearing_Necktie",
"Young",
],
description="Choose manipulation direction.",
),
manipulation_amplitude: float = Input(
default=0.3,
ge=-0.5,
le=0.5,
description="When set too strong it would result in artifact as it could dominate the original image information.",
),
T_step: int = Input(
default=100,
choices=[50, 100, 125, 200, 250, 500],
description="Number of step for generation.",
),
T_inv: int = Input(default=200, choices=[50, 100, 125, 200, 250, 500]),
) -> List[ModelOutput]:
img_size = 256
print("Aligning image...")
for i, face_landmarks in enumerate(
self.landmarks_detector.get_landmarks(str(image)), start=1
):
image_align(str(image), f"{self.aligned_dir}/aligned.png", face_landmarks)
data = ImageDataset(
self.aligned_dir,
image_size=img_size,
exts=["jpg", "jpeg", "JPG", "png"],
do_augment=False,
)
print("Encoding and Manipulating the aligned image...")
cls_manipulation_amplitude = manipulation_amplitude
interpreted_target_class = target_class
if (
target_class not in CelebAttrDataset.id_to_cls
and f"No_{target_class}" in CelebAttrDataset.id_to_cls
):
cls_manipulation_amplitude = -manipulation_amplitude
interpreted_target_class = f"No_{target_class}"
batch = data[0]["img"][None]
semantic_latent = self.model.encode(batch.to(self.device))
stochastic_latent = self.model.encode_stochastic(
batch.to(self.device), semantic_latent, T=T_inv
)
cls_id = CelebAttrDataset.cls_to_id[interpreted_target_class]
class_direction = self.classifier.classifier.weight[cls_id]
normalized_class_direction = F.normalize(class_direction[None, :], dim=1)
normalized_semantic_latent = self.classifier.normalize(semantic_latent)
normalized_manipulation_amp = cls_manipulation_amplitude * math.sqrt(512)
normalized_manipulated_semantic_latent = (
normalized_semantic_latent
+ normalized_manipulation_amp * normalized_class_direction
)
manipulated_semantic_latent = self.classifier.denormalize(
normalized_manipulated_semantic_latent
)
# Render Manipulated image
manipulated_img = self.model.render(
stochastic_latent, manipulated_semantic_latent, T=T_step
)[0]
original_img = data[0]["img"]
model_output = []
out_path = Path(tempfile.mkdtemp()) / "original_aligned.png"
save_image(convert2rgb(original_img), str(out_path))
model_output.append(ModelOutput(image=out_path))
out_path = Path(tempfile.mkdtemp()) / "manipulated_img.png"
save_image(convert2rgb(manipulated_img, adjust_scale=False), str(out_path))
model_output.append(ModelOutput(image=out_path))
return model_output
def convert2rgb(img, adjust_scale=True):
convert_img = torch.tensor(img)
if adjust_scale:
convert_img = (convert_img + 1) / 2
return convert_img.cpu()
|