{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from templates import *\n", "from templates_cls import *\n", "from experiment_classifier import ClsModel\n", "\n", "import matplotlib.pyplot as plt\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def show_images(images, cols = 1, titles = None, apply_convert=False):\n", " if apply_convert: images = [convert(img) for img in images]\n", " assert((titles is None)or (len(images) == len(titles)))\n", " n_images = len(images)\n", " if titles is None: titles = ['Image (%d)' % i for i in range(1,n_images + 1)]\n", " fig = plt.figure()\n", " for n, (image, title) in enumerate(zip(images, titles)):\n", " a = fig.add_subplot(cols, int(np.ceil(n_images/float(cols))), n + 1)\n", " if image.ndim == 2:\n", " plt.gray()\n", " plt.imshow(image)\n", " a.set_title(title)\n", " fig.set_size_inches(np.array(fig.get_size_inches()) * n_images*2)\n", " plt.show()\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "