qninhdt commited on
Commit
9a9a2f5
·
1 Parent(s): 8b94669
scripts/generate_dataset.sh CHANGED
@@ -1,13 +1,13 @@
1
- mkdir -p data
2
- mkdir -p data/apigen
3
- mkdir -p data/glaive
4
- mkdir -p data/toolace
5
 
6
  # Download datasets
7
- # wget -O data/apigen/xlam_function_calling_60k.json https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k/resolve/main/xlam_function_calling_60k.json
8
  echo "APIGen cannot be downloaded directly due to permission issues. Please download it manually and place it in the datasets/apigen folder."
9
- wget -O data/glaive/glaive-function-calling-v2.json https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2/resolve/main/glaive-function-calling-v2.json
10
- wget -O data/toolace/data.json https://huggingface.co/datasets/Team-ACE/ToolACE/resolve/main/data.json
11
 
12
  # Preprocess datasets
13
  python ./scripts/preprocess_apigen_dataset.py
 
1
+ mkdir -p datasets
2
+ mkdir -p datasets/apigen
3
+ mkdir -p datasets/glaive
4
+ mkdir -p datasets/toolace
5
 
6
  # Download datasets
7
+ # wget -O datasets/apigen/xlam_function_calling_60k.json https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k/resolve/main/xlam_function_calling_60k.json
8
  echo "APIGen cannot be downloaded directly due to permission issues. Please download it manually and place it in the datasets/apigen folder."
9
+ wget -O datasets/glaive/glaive-function-calling-v2.json https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2/resolve/main/glaive-function-calling-v2.json
10
+ wget -O datasets/toolace/data.json https://huggingface.co/datasets/Team-ACE/ToolACE/resolve/main/data.json
11
 
12
  # Preprocess datasets
13
  python ./scripts/preprocess_apigen_dataset.py
scripts/mix_datasets.py CHANGED
@@ -6,7 +6,7 @@ DATASETS = ["apigen", "glaive", "toolace"]
6
  data = []
7
 
8
  for dataset_name in DATASETS:
9
- with open(f"./data/{dataset_name}/output.json") as f:
10
  subdata = json.load(f)
11
 
12
  subdata = [{**item, "source": dataset_name} for item in subdata]
@@ -86,6 +86,12 @@ from random import shuffle, seed
86
  one_two = [item for item in data if len(item["used_tools"]) in [1, 2]]
87
  other = [item for item in data if len(item["used_tools"]) > 2]
88
 
 
 
 
 
 
 
89
  train_samples = one_two[: int(len(one_two) * 0.8)]
90
  test_samples = one_two[int(len(one_two) * 0.8) :] + other
91
 
@@ -118,10 +124,10 @@ print("Number of samples in test dataset:", len(test_dataset["samples"]))
118
 
119
  import os
120
 
121
- os.makedirs("./data/mixed", exist_ok=True)
122
 
123
- with open("./data/mixed/train.json", "w") as f:
124
  json.dump(train_dataset, f, indent=2)
125
 
126
- with open("./data/mixed/test.json", "w") as f:
127
  json.dump(test_dataset, f, indent=2)
 
6
  data = []
7
 
8
  for dataset_name in DATASETS:
9
+ with open(f"./datasets/{dataset_name}/output.json") as f:
10
  subdata = json.load(f)
11
 
12
  subdata = [{**item, "source": dataset_name} for item in subdata]
 
86
  one_two = [item for item in data if len(item["used_tools"]) in [1, 2]]
87
  other = [item for item in data if len(item["used_tools"]) > 2]
88
 
89
+ seed(42)
90
+ shuffle(one_two)
91
+
92
+ seed(42)
93
+ shuffle(other)
94
+
95
  train_samples = one_two[: int(len(one_two) * 0.8)]
96
  test_samples = one_two[int(len(one_two) * 0.8) :] + other
97
 
 
124
 
125
  import os
126
 
127
+ os.makedirs("./datasets/mixed", exist_ok=True)
128
 
129
+ with open("./datasets/mixed/train.json", "w") as f:
130
  json.dump(train_dataset, f, indent=2)
131
 
132
+ with open("./datasets/mixed/test.json", "w") as f:
133
  json.dump(test_dataset, f, indent=2)
scripts/preprocess_apigen_dataset.py CHANGED
@@ -1,6 +1,6 @@
1
  import json
2
 
3
- with open("./data/apigen/xlam_function_calling_60k.json", "r") as f:
4
  data = json.load(f)
5
 
6
  results = []
@@ -23,5 +23,5 @@ for sample in tqdm(data, desc="Processing APIGen samples"):
23
 
24
  results.append(result)
25
 
26
- with open("./data/apigen/output.json", "w") as f:
27
  json.dump(results, f, indent=4)
 
1
  import json
2
 
3
+ with open("./datasets/apigen/xlam_function_calling_60k.json", "r") as f:
4
  data = json.load(f)
5
 
6
  results = []
 
23
 
24
  results.append(result)
25
 
26
+ with open("./datasets/apigen/output.json", "w") as f:
27
  json.dump(results, f, indent=4)
scripts/preprocess_glaive_dataset.py CHANGED
@@ -2,7 +2,7 @@ import re
2
  import json
3
 
4
 
5
- with open("./data/glaive/glaive-function-calling-v2.json", "r") as f:
6
  data = json.load(f)
7
 
8
 
@@ -53,5 +53,5 @@ for sample in tqdm(data, desc="Processing GLAIVE samples"):
53
  if processed:
54
  results.extend(processed)
55
 
56
- with open("./data/glaive/output.json", "w") as f:
57
  json.dump(results, f, indent=2)
 
2
  import json
3
 
4
 
5
+ with open("./datasets/glaive/glaive-function-calling-v2.json", "r") as f:
6
  data = json.load(f)
7
 
8
 
 
53
  if processed:
54
  results.extend(processed)
55
 
56
+ with open("./datasets/glaive/output.json", "w") as f:
57
  json.dump(results, f, indent=2)
scripts/preprocess_toolace_dataset.py CHANGED
@@ -1,7 +1,7 @@
1
  import json
2
  import re
3
 
4
- with open("./data/toolace/data.json") as f:
5
  data = json.load(f)
6
 
7
 
@@ -58,5 +58,5 @@ for sample in tqdm(data, desc="Processing ToolACE samples"):
58
  if processed:
59
  results.extend(processed)
60
 
61
- with open("./data/toolace/output.json", "w") as f:
62
  json.dump(results, f, indent=2)
 
1
  import json
2
  import re
3
 
4
+ with open("./datasets/toolace/data.json") as f:
5
  data = json.load(f)
6
 
7
 
 
58
  if processed:
59
  results.extend(processed)
60
 
61
+ with open("./datasets/toolace/output.json", "w") as f:
62
  json.dump(results, f, indent=2)
src/models/miniagent_module.py CHANGED
@@ -67,10 +67,6 @@ class MiniAgentModule(LightningModule):
67
  pred = self.pred_model(inst_emb_r, tool_emb_r) # [BxB, 1]
68
  pred = pred.view(B, B) # [B, B]
69
 
70
- # target = torch.eye(B, device=pred.device).float()
71
-
72
- # pos_weight = torch.tensor([B - 1], device=pred.device)
73
- # loss = F.binary_cross_entropy_with_logits(pred, target, pos_weight=pos_weight)
74
  labels = torch.arange(B, device=pred.device).long()
75
  loss = (F.cross_entropy(pred, labels) + F.cross_entropy(pred.T, labels)) * 0.5
76
 
@@ -146,5 +142,5 @@ class MiniAgentModule(LightningModule):
146
  pass
147
 
148
  def configure_optimizers(self):
149
- opt = torch.optim.AdamW(self.parameters(), lr=self.lr)
150
  return opt
 
67
  pred = self.pred_model(inst_emb_r, tool_emb_r) # [BxB, 1]
68
  pred = pred.view(B, B) # [B, B]
69
 
 
 
 
 
70
  labels = torch.arange(B, device=pred.device).long()
71
  loss = (F.cross_entropy(pred, labels) + F.cross_entropy(pred.T, labels)) * 0.5
72
 
 
142
  pass
143
 
144
  def configure_optimizers(self):
145
+ opt = torch.optim.AdamW(self.parameters(), lr=self.lr, weight_decay=1e-4)
146
  return opt
src/models/mlp_module.py CHANGED
@@ -7,6 +7,7 @@ class MLPProjection(nn.Module):
7
  def __init__(self, input_dim, hidden_dim, output_dim):
8
  super().__init__()
9
  self.linear1 = nn.Linear(input_dim, hidden_dim)
 
10
  self.linear2 = nn.Linear(hidden_dim, output_dim)
11
 
12
  def forward(self, x_output):
@@ -15,6 +16,7 @@ class MLPProjection(nn.Module):
15
 
16
  x = self.linear1(x)
17
  x = F.silu(x)
 
18
  x = self.linear2(x)
19
 
20
  return x
@@ -30,13 +32,15 @@ class MLPPrediction(nn.Module):
30
  real_input_dim = input_dim * (2 + int(use_abs_diff) + int(use_mult))
31
 
32
  self.mlp = nn.Sequential(
33
- nn.Linear(real_input_dim, 1024),
34
- nn.SiLU(),
35
- nn.Linear(1024, 512),
36
  nn.SiLU(),
 
37
  nn.Linear(512, 256),
38
  nn.SiLU(),
39
- nn.Linear(256, 1),
 
 
 
40
  )
41
 
42
  def forward(self, x1, x2):
 
7
  def __init__(self, input_dim, hidden_dim, output_dim):
8
  super().__init__()
9
  self.linear1 = nn.Linear(input_dim, hidden_dim)
10
+ self.dropout = nn.Dropout(0.3)
11
  self.linear2 = nn.Linear(hidden_dim, output_dim)
12
 
13
  def forward(self, x_output):
 
16
 
17
  x = self.linear1(x)
18
  x = F.silu(x)
19
+ x = self.dropout(x)
20
  x = self.linear2(x)
21
 
22
  return x
 
32
  real_input_dim = input_dim * (2 + int(use_abs_diff) + int(use_mult))
33
 
34
  self.mlp = nn.Sequential(
35
+ nn.Linear(real_input_dim, 512),
 
 
36
  nn.SiLU(),
37
+ nn.Dropout(0.3),
38
  nn.Linear(512, 256),
39
  nn.SiLU(),
40
+ nn.Dropout(0.3),
41
+ nn.Linear(256, 128),
42
+ nn.SiLU(),
43
+ nn.Linear(128, 1),
44
  )
45
 
46
  def forward(self, x1, x2):
test_bert.ipynb CHANGED
@@ -154,7 +154,7 @@
154
  "metadata": {},
155
  "outputs": [],
156
  "source": [
157
- "datamodule = MixedDataModule(dataset_path=\"./data/mixed\", batch_size=32, num_workers=4, bert_model=\"bert-base-uncased\", tool_capacity=16)"
158
  ]
159
  },
160
  {
 
154
  "metadata": {},
155
  "outputs": [],
156
  "source": [
157
+ "datamodule = MixedDataModule(dataset_path=\"./datasets/mixed\", batch_size=32, num_workers=4, bert_model=\"bert-base-uncased\", tool_capacity=16)"
158
  ]
159
  },
160
  {