swim_new / baselines /sdedit.py
qninhdt
cc
cc7ad25
import click
import torch
import os
from PIL import Image
from io import BytesIO
from itertools import batched
from tqdm import tqdm
import torchvision.transforms as T
from diffusers import StableDiffusionImg2ImgPipeline
@click.command()
@click.option("--input")
@click.option("--output")
@click.option("--prompt")
@click.option("--strength", type=float, default=0.5)
@click.option("--batch_size", type=int, default=1)
def sdedit(input, output, prompt, strength, batch_size):
os.makedirs(output, exist_ok=True)
prompts = [prompt] * batch_size
batches = list(batched(os.listdir(input), batch_size))
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
).to("cuda")
transform = T.Compose([T.Resize(512), T.CenterCrop(512)])
for batch in tqdm(batches):
images = [Image.open(os.path.join(input, name)) for name in batch]
images = [image.resize((768, 512)) for image in images]
output_images = pipe(prompt=prompts, image=images, strength=strength).images
for name, output_image in zip(batch, output_images):
output_image = output_image.resize((512, 512))
output_image.save(os.path.join(output, name))
if __name__ == "__main__":
sdedit()